
Network Working Group B. Carpenter
Internet-Draft University of Auckland
Intended Status: Informational B. Aboba (ed)
Expires: April 24, 2009 Microsoft Corporation
 27 October 2008

Design Considerations for Protocol Extensions
draft-carpenter-extension-recs-04

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on April 24, 2009.

Copyright Notice

 Copyright (C) The IETF Trust (2008).

Abstract

 This document discusses issues related to the extensibility of
 Internet protocols, with a focus on the architectural design
 considerations involved. Concrete case study examples are included.
 It is intended to assist designers of both base protocols and
 extensions.

Carpenter & Aboba Informational [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft Design Considerations for Extensions 27 October 2008

Table of Contents

1. Introduction . 3
1.1 Requirements Language 3

2. Architectural Principles 3
2.1 Limited Extensibility 4
2.2 Global Interoperability 5
2.3 Protocol Variations 5
2.4 Extension Documentation 6
2.5 Testability . 6
2.6 Parameter Registration 7
2.7 Extensions to Critical Infrastructure 7
2.8 Architectural Compatibility 8

3. Specific Considerations for Robust Extensions 8
3.1. Interoperability Checklist 8
3.2. When is an Extension Routine? 9
3.3. What Constitutes a Major Extension? 10

4. Considerations for the Base Protocol 10
4.1. Version Numbers . 11
4.2. Reserved Fields . 13
4.3. Encoding Formats . 13

5. Security Considerations 13
6. IANA Considerations . 13
7. References . 14
7.1. Normative References 14
7.2. Informative References 14

Acknowledgments . 16
Appendix A - Examples . 17
A.1. Already documented cases 17
A.2. RADIUS Extensions . 17
A.3. TLS Extensions . 18
A.4. L2TP Extensions . 20

Change log . 21
Authors' Addresses . 22
Full Copyright Statement . 23
Intellectual Property . 23

Carpenter & Aboba Informational [Page 2]

Internet-Draft Design Considerations for Extensions 27 October 2008

1. Introduction

 Internet Engineering Task Force (IETF) protocols typically include
 mechanisms whereby they can be extended in the future. It is of
 course a good principle to design extensibility into protocols; one
 common definition of a successful protocol is one that becomes widely
 used in ways not originally anticipated. Well-designed extensibility
 mechanisms facilitate the evolution of protocols and help make it
 easier to roll out incremental changes in an interoperable fashion.

 When an initial protocol design is extended, there is always a risk
 of unintended consequences, such as interoperability problems or
 security vulnerabilities. This risk is especially high if the
 extension is performed by a different team than the original
 designers, who may stray outside implicit design constraints or
 assumptions. As a result, extensions should be done carefully and
 with a full understanding of the base protocol, existing
 implementations, and current operational practice.

 This is hardly a recent concern. "TCP Extensions Considered Harmful"
 [RFC1263] was published in 1991. "Extend" or "extension" occurs in
 the title of more than 300 existing Request For Comment (RFC)
 documents. Yet generic extension considerations have not been
 documented previously.

 This document describes technical considerations for protocol
 extensions, in order to minimize such risks. It is intended to
 assist designers of both base protocols and extensions. Formal
 procedures for extending IETF protocols are discussed in "Procedures
 for Protocol Extensions and Variations" BCP 125 [RFC4775].

Section 2 describes architectural principles for protocol
 extensibility. Section 3 is aimed principally at extension
 designers, and Section 4 at base protocol designers. Nevertheless,
 readers are advised to study the whole document, since the
 considerations are closely linked.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in BCP 14, RFC 2119
 [RFC2119].

2. Architectural Principles

 This Section describes basic principles of protocol extensibility:

https://datatracker.ietf.org/doc/html/rfc1263
https://datatracker.ietf.org/doc/html/bcp125
https://datatracker.ietf.org/doc/html/rfc4775
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Carpenter & Aboba Informational [Page 3]

Internet-Draft Design Considerations for Extensions 27 October 2008

 1. Extensibility features should be limited to what is clearly
 necessary when the protocol is developed.

 2. Protocol extensions should be designed for global
 interoperability.

 3. Protocol extension mechanisms should not be used to create
 incompatible protocol variations.

 4. Extension mechanisms need to be fully documented.

 5. Extension mechanisms need to be testable.

 6. Protocol parameters should be registered and used for their
 intended purpose.

 7. Extensions to critical infrastructure should not impact the
 security or reliability of the global Internet.

 8. Extension mechanisms should be explicitly identified and should be
 architecturally compatible with the base protocol design.

2.1. Limited Extensibility

 Protocols that permit easy extensions may have the perverse side
 effect of making it easy to construct incompatible extensions.
 Consequently, protocols should not be made more extensible than
 clearly necessary at inception, and the process for defining new
 extensibility mechanisms should ensure that adequate review of
 proposed extensions will take place before widespread adoption. In
 practice, this means that the "First Come First Served" allocation
 policy described in "Guidelines for Writing an IANA Considerations
 Section in RFCs" [RFC5226], as well as similar policies that allow
 routine extensions should be used sparingly, as they imply minimal or
 no review. In particular, they should be limited to cases, such as
 allowing new opaque data elements, that are unlikely to cause
 protocol failures.

 In order to increase the likelihood that routine extensions are truly
 routine, protocol documents should provide guidelines explaining how
 they should be performed. For example, even though DHCP carries
 opaque data, defining a new option using completely unstructured data
 may lead to an option that is (unnecessarily) hard for clients and
 servers to process.

https://datatracker.ietf.org/doc/html/rfc5226

Carpenter & Aboba Informational [Page 4]

Internet-Draft Design Considerations for Extensions 27 October 2008

2.2. Global Interoperability

 Global interoperability is a primary goal of Internet protocol
 design. Experience shows that software is often used outside the
 particular special environment it was originally intended for, so
 extensions cannot be designed for an isolated environment. Designers
 of extensions must assume the high likelihood of a system using the
 extension having to interoperate with systems on the global Internet.

 For this reason, an extension may lead to interoperability failures
 unless the extended protocol correctly supports all mandatory and
 optional features of the unextended base protocol, and
 implementations of the base protocol operate correctly in the
 presence of the extensions.

 Consider for example a "private" extension installed on a work
 computer which, being portable, is sometimes installed on a home
 network or in a hotel. If the "private" extension is incompatible
 with an unextended version of the same protocol, problems will occur.

2.3. Protocol Variations

 Protocol extension mechanisms should not be used to create
 incompatible forks in development instead. Ideally, the protocol
 mechanisms for extension and versioning should be sufficiently well
 described that compatibility can be assessed on paper. Otherwise,
 when two "private" extensions encounter each other on a public
 network, unexpected interoperability problems may occur.

 An example of what might go wrong is misuse of the "X-" mail header
 fields originally defined in the Simple Mail Transfer Protocol (SMTP)
 [RFC0822]. X-anything was a valid mail header field; but it had no
 defined meaning in the standard. Suppose a mail implementation
 assigns specific semantics to X-anything that causes it to take
 specific action, such as discarding a message as spam. If it
 encounters a message from a different implementation that assigns
 different semantics, it may take quite inappropriate action, such as
 discarding a valid message. Thus, relying on the implied semantics
 of an "X-" header field automatically creates a risk of operational
 failures. "X-" header fields were removed from "Internet Message
 Format" [RFC2822]. Even when they are assigned semantics, as in
 "Mapping Between the Multimedia Message Service (MMS) and Internet
 Mail" [RFC4356], great care must be taken that implementations do not
 rely on such semantics in messages that have crossed the open
 Internet.

 Thus we observe that a key requirement for interoperable extension
 design is that the base protocol must be well designed for

https://datatracker.ietf.org/doc/html/rfc0822
https://datatracker.ietf.org/doc/html/rfc2822
https://datatracker.ietf.org/doc/html/rfc4356

Carpenter & Aboba Informational [Page 5]

Internet-Draft Design Considerations for Extensions 27 October 2008

 interoperability, and that extensions must have unambiguous
 semantics.

 Protocol variations - specifications that look very similar to the
 original but are actually different - are even more harmful to
 interoperability than extensions. In general, such variations should
 be avoided. If they cannot be avoided, as many of the following
 considerations as possible should be applied, to minimize the damage
 to interoperability.

2.4. Extension Documentation

 Some protocol components are designed with the specific intention of
 allowing extensibility. These should be clearly identified, with
 specific and complete instructions on how to extend them, including
 the process for adequate review of extension proposals: do they need
 community review and if so how much and by whom? For example, the
 definition of additional data elements that can be carried opaquely
 may require no review, while the addition of new data types or new
 protocol messages might require a Standards Track action. Guidance
 on writing appropriate IANA Considerations text may be found in
 [RFC5226].

 In a number of cases, there is a need for explicit guidance relating
 to extensions beyond what is encapsulated in the IANA considerations
 section of the base specification. The usefulness of "Guidelines for
 Authors and Reviewers of MIB Documents" [RFC4181] suggests that
 protocols whose data model is likely to be widely extended
 (particularly using vendor-specific elements) need a Design
 Guidelines document specifically addressing extensions.

2.5. Testability

 Experience shows that it is insufficient to correctly specify
 extensibility and backwards compatibility in an RFC. It is also
 important that implementations respect the compatibility mechanisms;
 if not, non-interoperable pairs of implementations may arise. The
 TLS case study shows how important this can be.

 In order to determine whether protocol extension mechanisms have been
 properly implemented, testing is required. However, for this to be
 possible, test cases need to be developed. If a base protocol
 document specifies extension mechanisms but does not utilize them or
 provide examples, it may not be possible to develop test cases based
 on the base protocol specification alone. As a result, base protocol
 implementations may not be properly tested and non-compliant
 extension behavior may not be detected until these implementations
 are widely deployed.

https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc4181

Carpenter & Aboba Informational [Page 6]

Internet-Draft Design Considerations for Extensions 27 October 2008

 To encourage correct implementation of extension mechanisms, base
 protocol specifications should clearly articulate the expected
 behavior of extension mechanisms and should include examples of
 correct and incorrect extension behavior.

2.6. Parameter Registration

 An extension is often likely to make use of additional values added
 to an existing IANA registry (in many cases, simply by adding a new
 Type-Length-Value (TLV) field). To avoid conflicting usage of the
 same value, it is essential that all new values are properly
 registered by the applicable procedures. See BCP 26, [RFC5226] for
 the general rules, and individual protocol RFCs, and the IANA web
 site, for specific rules and registries. If this is not done, there
 is nothing to prevent two different extensions picking the same
 value. When these two extensions "meet" each other on the Internet,
 failure is inevitable.

 A surprisingly common case of this is misappropriation of assigned
 Transport Control Protocol (TCP) (or User Datagram Protocol (UDP))
 registered port numbers. This can lead to a client for one service
 attempting to communicate with a server for another service.
 Numerous cases could be cited, but not without embarrassing specific
 implementors.

 In some cases, it may be appropriate to use values designated as
 "experimental" or "local use" in early implementations of an
 extension. For example, "Experimental Values in IPv4, IPv6, ICMPv4,
 ICMPv6, UDP and TCP Headers" [RFC4727] discusses experimental values
 for IP and transport headers, and "Definition of the Differentiated
 Services Field (DS Field) in the IPv4 and IPv6 Headers" [RFC2474]
 defines experimental/local use ranges for differentiated services
 code points. Such values should be used with care and only for their
 stated purpose: experiments and local use. They are unsuitable for
 Internet-wide use, since they may be used for conflicting purposes
 and thereby cause interoperability failures. Packets containing
 experimental or local use values must not be allowed out of the
 domain in which they are meaningful.

2.7. Extensions to Critical Infrastructure

 Some protocols (such as Domain Name Service (DNS) and Border Gateway
 Protocol (BGP) have become critical components of the Internet
 infrastructure. When such protocols are extended, the potential
 exists for negatively impacting the reliability and security of the
 global Internet.

 As a result, special care needs to be taken with these extensions,

https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc4727
https://datatracker.ietf.org/doc/html/rfc2474

Carpenter & Aboba Informational [Page 7]

Internet-Draft Design Considerations for Extensions 27 October 2008

 such as taking explicit steps to isolate existing uses from new ones.
 For example, this can be accomplished by requiring the extension to
 utilize a different port or multicast address, or by implementing the
 extension within a separate process, without access to the data and
 control structures of the base protocol.

2.8. Architectural Compatibility

 Since protocol extension mechanisms may impact interoperability, it
 is important that these mechanisms be architecturally compatible with
 the base protocol. This implies that documents relying on extension
 mechanisms need to explicitly identify them, rather than burying them
 in the text in the hope that they will escape notice.

 As part of the definition of new extension mechanisms, the authors
 need to address whether the mechanisms make use of features as
 envisaged by the original protocol designers, or whether a new
 extension mechanism is being invented. If a new extension mechanism
 is being invented, then architectural compatibility issues need to be
 addressed.

 For example, a document defining new data elements should not
 implicitly define new data types or protocol operations without
 explicitly describing those dependencies and discussing their impact.

3. Specific Considerations for Robust Extensions

 This section makes explicit some design considerations based on the
 community's experience with extensibility mechanisms.

3.1. Interoperability Checklist

 Good interoperability stems from a number of factors, including:

 1. Having a well-written specification. Does the specification
 make clear what an implementor needs to support and does it define
 the impact that individual operations (e.g. a message sent to a
 peer) will have when invoked?

 2. Learning lessons from deployment. This includes understanding
 what current implementations do and how a proposed extension will
 interact with deployed systems. Will a proposed extension (or its
 proposed usage) operationally stress existing implementations or
 the underlying protocol itself if widely deployed?

 3. Having an adequate transition or coexistence story. What
 impact will the proposed extension have on implementations that do
 not understand it? Is there a way to negotiate or determine the

Carpenter & Aboba Informational [Page 8]

Internet-Draft Design Considerations for Extensions 27 October 2008

 capabilities of a peer? Can the extended protocol negotiate with
 an unextended partner to find a common subset of useful functions?

 4. Respecting underlying architectural or security assumptions.
 This includes assumptions that may not be well-documented, those
 that may have arisen as the result of operational experience, or
 those that only became understood after the original protocol was
 published. For example, do the extensions reverse the flow of
 data, allow formerly static parameters to be changed on the fly,
 or change assumptions relating to the frequency of reads/writes?

 5. Minimizing impact on critical infrastructure. Does the
 proposed extension (or its proposed usage) have the potential for
 negatively impacting critical infrastructure to the point where
 explicit steps would be appropriate to isolate existing uses from
 new ones?

 6. Data model extensions. Does the proposed extension extend the
 data model in a major way? For example, are new data types
 defined that may require code changes within existing
 implementations?

3.2. When is an Extension Routine?

 An extension may be considered 'routine' if it amounts to a new data
 element of a type that is already supported within the data model,
 and if its handling is opaque to the protocol itself (e.g. does not
 substantially change the pattern of messages and responses).

 For this to apply, the protocol must have been designed to carry the
 proposed data type, so that no changes to the underlying base
 protocol or existing implementations are needed to carry the new data
 element.

 Moreover, no changes should be required to existing and currently
 deployed implementations of the underlying protocol unless they want
 to make use of the new data element. Using the existing protocol to
 carry a new data element should not impact existing implementations
 or cause operational problems. This typically requires that the
 protocol silently discard unknown data elements.

 Examples of routine extensions include the Dynamic Host Configuration
 Protocol (DHCP) vendor-specific option, RADIUS Vendor-Specific
 Attributes compliant with [RFC2865], the enterprise Object IDentifier
 (OID) tree for Management Information Base (MIB) modules, vendor
 Multipurpose Internet Mail Extension (MIME) types, and some classes
 of (non-critical) certification extensions. Such extensions can
 safely be made with minimal discussion.

https://datatracker.ietf.org/doc/html/rfc2865

Carpenter & Aboba Informational [Page 9]

Internet-Draft Design Considerations for Extensions 27 October 2008

3.3. What Constitutes a Major Extension?

 Major extensions may have characteristics leading to a risk of
 interoperability failure. Where these characteristics are present,
 it is necessary to pay extremely close attention to backward
 compatibility with implementations and deployments of the unextended
 protocol, and to the risk of inadvertent introduction of security or
 operational exposures. Extension designers should examine their
 design for the following issues:

 1. Modifications or extensions to the working of the underlying
 protocol. This can include changing the semantics of existing
 Protocol Data Units (PDUs) or defining new message types that may
 require implementation changes in existing and deployed
 implementations of the protocol, even if they do not want to make
 use of the new functions or data types. A base protocol without a
 "silent discard" rule for unknown data elements may automatically
 enter this category, even for apparently minor extensions.

 2. Changes to the basic architectural assumptions. This includes
 architectural assumptions that are explicitly stated or those that
 have been assumed by implementers. For example, this would
 include adding a requirement for session state to a previously
 stateless protocol.

 3. New usage scenarios not originally intended or investigated.
 This can potentially lead to operational difficulties when
 deployed, even in cases where the "on-the-wire" format has not
 changed. For example, the level of traffic carried by the
 protocol may increase substantially, packet sizes may increase,
 and implementation algorithms that are widely deployed may not
 scale sufficiently or otherwise be up to the new task at hand.
 For example, a new DNS Resource Record (RR) type that is too big
 to fit into a single UDP packet could cause interoperability
 problems with existing DNS clients and servers.

4. Considerations for the Base Protocol

 A good extension design depends on a good base protocol. Ideally,
 the document that defines a base protocol's extension mechanisms will
 include guidance to future extension writers that help them use
 extension mechanisms properly. It may also be possible to define
 classes of extensions that need little or no review, while other
 classes need wide review. The details will necessarily be
 technology-specific.

Carpenter & Aboba Informational [Page 10]

Internet-Draft Design Considerations for Extensions 27 October 2008

4.1. Version Numbers

 Any mechanism for extension by versioning must include provisions to
 ensure interoperability, or at least clean failure modes. Imagine
 someone creating a protocol and using a "version" field and
 populating it with a value (1, let's say), but giving no information
 about what would happen when a new version number appears in it.
 That's bad protocol design and description; it should be clear what
 the expectation is and how you test it. For example, stating that
 1.X must be compatible with any version 1 code, but version 2 or
 greater is not expected to be compatible, has different implications
 than stating that version 1 must be a proper subset of version 2.

 An example is ROHC (Robust Header Compression). ROHCv1 [RFC3095]
 supports a certain set of profiles for compression algorithms. But
 experience had shown that these profiles had limitations, so the ROHC
 WG developed ROHCv2 [RFC5225]. A ROHCv1 implementation does not
 contain code for the ROHCv2 profiles. As the ROHC WG charter said
 during the development of ROHCv2:

 It should be noted that the v2 profiles will thus not be
 compatible with the original (ROHCv1) profiles, which means less
 complex ROHC implementations can be realized by not providing
 support for ROHCv1 (over links not yet supporting ROHC, or by
 shifting out support for ROHCv1 in the long run). Profile support
 is agreed through the ROHC channel negotiation, which is part of
 the ROHC framework and thus not changed by ROHCv2.

 Thus in this case both backwards-compatible and backwards-
 incompatible deployments are possible. The important point is a
 clearly thought out approach to the question of operational
 compatibility. In the past, protocols have utilized a variety of
 strategies for versioning, many of which have proven problematic.
 These include:

 1. No versioning support. This approach is exemplified by
 Extensible Authentication Protocol (EAP) [RFC3748] as well as
 Remote Authentication Dial In User Service (RADIUS) [RFC2865],
 both of which provide no support for versioning. While lack of
 versioning support protects against the proliferation of
 incompatible dialects, the need for extensibility is likely to
 assert itself in other ways, so that ignoring versioning entirely
 may not be the most forward thinking approach.

 2. Highest mutually supported version. In this approach,
 implementations exchange the highest supported version, with the
 negotiation agreeing on the highest mutually supported protocol
 version. This approach implicitly assumes that later versions

https://datatracker.ietf.org/doc/html/rfc3095
https://datatracker.ietf.org/doc/html/rfc5225
https://datatracker.ietf.org/doc/html/rfc3748
https://datatracker.ietf.org/doc/html/rfc2865

Carpenter & Aboba Informational [Page 11]

Internet-Draft Design Considerations for Extensions 27 October 2008

 provide improved functionality, and that advertisement of a higher
 version number implies support for lower versions. Where these
 assumptions are invalid, this approach breaks down, potentially
 resulting in interoperability problems. An example of this issue
 occurs in [PEAP] where implementations of higher versions may not
 necessarily provide support for lower versions.

 3. Assumed backward compatibility. In this approach,
 implementations may send packets with higher version numbers to
 legacy implementations supporting lower versions, but with the
 assumption that the legacy implementations will interpret packets
 with higher version numbers using the semantics and syntax defined
 for lower versions. This is the approach taken by IEEE-802.1X
 [IEEE-802.1X]. For this approach to work, legacy implementations
 need to be able to accept packets of known type with higher
 protocol versions without discarding them; protocol enhancements
 need to permit silent discard of unsupported extensions;
 implementations supporting higher versions need to refrain from
 mandating new features when encountering legacy implementations.

 4. Major/minor versioning. In this approach, implementations with
 the same major version but a different minor version are assumed
 to be backward compatible, but implementations are assumed to be
 required to negotiate a mutually supported major version number.
 This approach assumes that implementations with a lower minor
 version number but the same major version can safely ignore
 unsupported protocol messages.

 5. Min/max versioning. In this approach, the client initiating
 the connection reports the highest and lowest protocol versions it
 understands. The server reports back the chosen protocol version:

 a. If the server understands one or more versions in the client's
 range, it reports back the highest mutually understood version.

 b. If there is no mutual version, then the server reports back
 some version that it does understand (selected as described
 below). The connection is then typically dropped by client or
 server, but reporting this version number first helps facilitate
 useful error messages at the client end:

 * If there is no mutual version, and the server speaks any
 version higher than client max, it reports the lowest version it
 speaks which is greater than the client max. The client can then
 report to the user, "You need to upgrade to at least version
 xx."

 * Else, the server reports the highest version it speaks. The

Carpenter & Aboba Informational [Page 12]

Internet-Draft Design Considerations for Extensions 27 October 2008

 client can then report to the user, "You need to request the
 server operator to upgrade to at least version min."

4.2. Reserved Fields

 Protocols commonly include one or more "reserved" fields, clearly
 intended for future extensions. It is good practice to specify the
 value to be inserted in such a field by the sender (typically zero)
 and the action to be taken by the receiver when seeing some other
 value (typically no action). If this is not done, future
 implementation of new values in the reserved field may break old
 software. Similarly, protocols should carefully specify how
 receivers should react to unknown TLVs etc., such that failures occur
 only when that is truly the desired result.

4.3. Encoding Formats

 Using widely-supported encoding formats leads to better
 interoperability and easier extensibility. An excellent example is
 the Simple Network Management Protocol (SNMP) SMI. Guidelines exist
 for defining the MIB objects that SNMP carries [RFC4181]. Also,
 multiple textual conventions have been published, so that MIB
 designers do not have to reinvent the wheel when they need a commonly
 encountered construct. For example, the "Textual Conventions for
 Internet Network Addresses" [RFC4001] can be used by any MIB designer
 needing to define objects containing IP addresses, thus ensuring
 consistency as the body of MIBs is extended.

5. Security Considerations

 An extension must not introduce new security risks without also
 providing adequate counter-measures, and in particular it must not
 inadvertently defeat security measures in the unextended protocol.
 Thus, the security analysis for an extension needs to be as thorough
 as for the original protocol - effectively it needs to be a
 regression analysis to check that the extension doesn't inadvertently
 invalidate the original security model.

 This analysis may be simple (e.g. adding an extra opaque data element
 is unlikely to create a new risk) or quite complex (e.g. adding a
 handshake to a previously stateless protocol may create a completely
 new opportunity for an attacker).

6. IANA Considerations

 This draft requires no action by IANA.

https://datatracker.ietf.org/doc/html/rfc4181
https://datatracker.ietf.org/doc/html/rfc4001

Carpenter & Aboba Informational [Page 13]

Internet-Draft Design Considerations for Extensions 27 October 2008

7. References

7.1. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC4775] Bradner, S., Carpenter, B., and T. Narten, "Procedures
 for Protocol Extensions and Variations", BCP 125, RFC

4775, December 2006.

[RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

7.2. Informative References

[I-D.ietf-radext-design]
 Weber, G. and A. DeKok, "RADIUS Design Guidelines",

draft-ietf-radext-design-05.txt, Internet draft (work in
 progress), August 2008.

[IEEE-802.1X] Institute of Electrical and Electronics Engineers, "Local
 and Metropolitan Area Networks: Port-Based Network Access
 Control", IEEE Standard 802.1X-2004, December 2004.

[PEAP] Palekar, A., Simon, D., Salowey, J., Zhou, H., Zorn, G.
 and S. Josefsson, "Protected EAP Protocol (PEAP) Version
 2", draft-josefsson-pppext-eap-tls-eap-10.txt, Expired
 Internet draft (work in progress), October 2004.

[RFC0822] Crocker, D., "Standard for the format of ARPA Internet
 text messages", STD 11, RFC 822, August 1982.

[RFC1263] O'Malley, S. and L. Peterson, "TCP Extensions Considered
 Harmful", RFC 1263, October 1991.

[RFC2246] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
RFC 2246, January 1999.

[RFC2474] Nichols, K., Blake, S., Baker, F., and D. Black,
 "Definition of the Differentiated Services Field (DS
 Field) in the IPv4 and IPv6 Headers", RFC 2474, December
 1998.

[RFC2661] Townsley, W., Valencia, A., Rubens, A., Pall, G., Zorn,
 G., and B. Palter, "Layer Two Tunneling Protocol "L2TP"",

RFC 2661, August 1999.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp125
https://datatracker.ietf.org/doc/html/rfc4775
https://datatracker.ietf.org/doc/html/rfc4775
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/draft-ietf-radext-design-05.txt
https://datatracker.ietf.org/doc/html/draft-josefsson-pppext-eap-tls-eap-10.txt
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc1263
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc2474
https://datatracker.ietf.org/doc/html/rfc2661

Carpenter & Aboba Informational [Page 14]

Internet-Draft Design Considerations for Extensions 27 October 2008

[RFC2671] Vixie, P., "Extension Mechanisms for DNS (EDNS0)",RFC
2671, August 1999.

[RFC2822] Resnick, P., "Internet Message Format", RFC 2822, April
 2001.

[RFC2865] Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)",

RFC 2865, June 2000.

[RFC3095] Bormann, C., Burmeister, C., Degermark, M., Fukushima,
 H., Hannu, H., Jonsson, L-E., Hakenberg, R., Koren, T.,
 Le, K., Liu, Z., Martensson, A., Miyazaki, A., Svanbro,
 K., Wiebke, T., Yoshimura, T., and H. Zheng, "RObust
 Header Compression (ROHC): Framework and four profiles:
 RTP, UDP, ESP, and uncompressed", RFC 3095, July 2001.

[RFC3427] Mankin, A., Bradner, S., Mahy, R., Willis, D., Ott, J.,
 and B. Rosen, "Change Process for the Session Initiation
 Protocol (SIP)", BCP 67, RFC 3427, December 2002.

[RFC3575] Aboba, B., "IANA Considerations for RADIUS (Remote
 Authentication Dial In User Service)", RFC 3575, July
 2003.

[RFC3597] Gustafsson, A., "Handling of Unknown DNS Resource Record
 (RR) Types", RFC 3597, September 2003.

[RFC3735] Hollenbeck, S., "Guidelines for Extending the Extensible
 Provisioning Protocol (EPP)", RFC 3735, March 2004.

[RFC3748] Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J. and H.
 Lefkowetz, "Extensible Authentication Protocol (EAP)",

RFC 3748, June 2004.

[RFC4001] Daniele, M., Haberman, B., Routhier, S., and J.
 Schoenwaelder, "Textual Conventions for Internet Network
 Addresses", RFC 4001, February 2005.

[RFC4181] Heard, C., "Guidelines for Authors and Reviewers of MIB
 Documents", BCP 111, RFC 4181, September 2005.

[RFC4356] Gellens, R., "Mapping Between the Multimedia Messaging
 Service (MMS) and Internet Mail", RFC 4356, January 2006.

[RFC4366] Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen,
 J., and T. Wright, "Transport Layer Security (TLS)
 Extensions", RFC 4366, April 2006.

https://datatracker.ietf.org/doc/html/rfc2671
https://datatracker.ietf.org/doc/html/rfc2671
https://datatracker.ietf.org/doc/html/rfc2822
https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc3095
https://datatracker.ietf.org/doc/html/bcp67
https://datatracker.ietf.org/doc/html/rfc3427
https://datatracker.ietf.org/doc/html/rfc3575
https://datatracker.ietf.org/doc/html/rfc3597
https://datatracker.ietf.org/doc/html/rfc3735
https://datatracker.ietf.org/doc/html/rfc3748
https://datatracker.ietf.org/doc/html/rfc4001
https://datatracker.ietf.org/doc/html/bcp111
https://datatracker.ietf.org/doc/html/rfc4181
https://datatracker.ietf.org/doc/html/rfc4356
https://datatracker.ietf.org/doc/html/rfc4366

Carpenter & Aboba Informational [Page 15]

Internet-Draft Design Considerations for Extensions 27 October 2008

[RFC4485] Rosenberg, J. and H. Schulzrinne, "Guidelines for Authors
 of Extensions to the Session Initiation Protocol (SIP)",

RFC 4485, May 2006.

[RFC4521] Zeilenga, K., "Considerations for Lightweight Directory
 Access Protocol (LDAP) Extensions", BCP 118, RFC 4521,
 June 2006.

[RFC4727] Fenner, B., "Experimental Values In IPv4, IPv6, ICMPv4,
 ICMPv6, UDP, and TCP Headers", RFC 4727, November 2006.

[RFC4929] Andersson, L. and A. Farrel, "Change Process for
 Multiprotocol Label Switching (MPLS) and Generalized MPLS
 (GMPLS) Protocols and Procedures", BCP 129, RFC 4929,
 June 2007.

[RFC5080] Nelson, D. and A. DeKok, "Common Remote Authentication
 Dial In User Service (RADIUS) Implementation Issues and
 Suggested Fixes", RFC 5080, December 2007.

[RFC5225] Pelletier, G. and K. Sandlund, "RObust Header Compression
 Version 2 (ROHCv2): Profiles for RTP, UDP, IP, ESP and
 UDP-Lite", RFC 5225, April 2008.

[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

Acknowledgments

 This document is heavily based on an earlier draft under a different
 title by Scott Bradner and Thomas Narten.

 That draft stated: The initial version of this document was put
 together by the IESG in 2002. Since then, it has been reworked in
 response to feedback from John Loughney, Henrik Levkowetz, Mark
 Townsley, Randy Bush and others.

 Valuable comments and suggestions on the current form of the document
 were made by Jari Arkko, Ted Hardie, Loa Andersson, Eric Rescorla,
 Pekka Savola, Stuart Cheshire, Leslie Daigle and Alfred Hoenes.

 The text on TLS experience was contributed by Yngve Pettersen.

https://datatracker.ietf.org/doc/html/rfc4485
https://datatracker.ietf.org/doc/html/bcp118
https://datatracker.ietf.org/doc/html/rfc4521
https://datatracker.ietf.org/doc/html/rfc4727
https://datatracker.ietf.org/doc/html/bcp129
https://datatracker.ietf.org/doc/html/rfc4929
https://datatracker.ietf.org/doc/html/rfc5080
https://datatracker.ietf.org/doc/html/rfc5225
https://datatracker.ietf.org/doc/html/rfc5246

Carpenter & Aboba Informational [Page 16]

Internet-Draft Design Considerations for Extensions 27 October 2008

Appendix A. Examples

 This section discusses some specific examples, as case studies.

A.1. Already documented cases

 There are certain documents that specify a change process or describe
 extension considerations for specific IETF protocols:

 The SIP change process [RFC3427], [RFC4485]
 The (G)MPLS change process (mainly procedural) [RFC4929]
 LDAP extensions [RFC4521]
 EPP extensions [RFC3735]
 DNS extensions [RFC2671][RFC3597]

 It is relatively common for MIBs, which are all in effect extensions
 of the SMI data model, to be defined or extended outside the IETF.

BCP 111 [RFC4181] offers detailed guidance for authors and reviewers.

A.2. RADIUS Extensions

 The RADIUS [RFC2865] protocol was designed to be extensible via
 addition of Attributes to a Data Dictionary on the server, without
 requiring code changes. However, this extensibility model assumed
 that Attributes would conform to a limited set of data types and that
 vendor extensions would be limited to use by vendors, in situations
 in which interoperability was not required. Subsequent developments
 have stretched those assumptions.

 [RFC2865] Section 6.2 defines a mechanism for Vendor-Specific
 extensions (Attribute 26), and states that use:

 should be encouraged instead of allocation of global attribute
 types, for functions specific only to one vendor's implementation
 of RADIUS, where no interoperability is deemed useful.

 However, in practice usage of Vendor-Specific Attributes (VSAs) has
 been considerably broader than this. In particular, VSAs have been
 used by Standards Development Organizations (SDOs) to define their
 own extensions to the RADIUS protocol.

 This has caused a number of problems. Since the VSA mechanism was
 not designed for interoperability, VSAs do not contain a "mandatory"
 bit. As a result, RADIUS clients and servers may not know whether it
 is safe to ignore unknown attributes. For example, [RFC2865] Section

5 states:

 A RADIUS server MAY ignore Attributes with an unknown Type. A

https://datatracker.ietf.org/doc/html/rfc3427
https://datatracker.ietf.org/doc/html/rfc4485
https://datatracker.ietf.org/doc/html/rfc4929
https://datatracker.ietf.org/doc/html/rfc4521
https://datatracker.ietf.org/doc/html/rfc3735
https://datatracker.ietf.org/doc/html/rfc2671
https://datatracker.ietf.org/doc/html/bcp111
https://datatracker.ietf.org/doc/html/rfc4181
https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc2865

Carpenter & Aboba Informational [Page 17]

Internet-Draft Design Considerations for Extensions 27 October 2008

 RADIUS client MAY ignore Attributes with an unknown Type.

 However, in the case where the VSAs pertain to security (e.g.
 Filters) it may not be safe to ignore them, since [RFC2865] also
 states:

 A NAS that does not implement a given service MUST NOT implement
 the RADIUS attributes for that service. For example, a NAS that
 is unable to offer ARAP service MUST NOT implement the RADIUS
 attributes for ARAP. A NAS MUST treat a RADIUS access-accept
 authorizing an unavailable service as an access-reject instead."

 Detailed discussion of the issues arising from this can be found in
 "Common Remote Authentication Dial In User Service (RADIUS)
 Implementation Issues and Suggested Fixes" [RFC5080] Section 2.5.

 Since it was not envisaged that multi-vendor VSA implementations
 would need to interoperate, [RFC2865] does not define the data model
 for VSAs, and allows multiple sub-attributes to be included within a
 single Attribute of type 26. However, this enables VSAs to be
 defined which would not be supportable by current implementations if
 placed within the standard RADIUS attribute space. This has caused
 problems in standardizing widely deployed VSAs, as discussed in
 "RADIUS Design Guidelines" [I-D.ietf-radext-design].

 In addition to extending RADIUS by use of VSAs, SDOs have also
 defined new values of the Service-Type attribute in order to create
 new RADIUS commands. Since [RFC2865] defined Service-Type values as
 being allocated First Come, First Served (FCFS), this essentially
 enabled new RADIUS commands to be allocated without IETF review.
 This oversight has since been fixed in "IANA Considerations for
 RADIUS" [RFC3575].

A.3. TLS Extensions

 The Secure Sockets Layer (SSL) v2 protocol was developed by Netscape
 to be used to secure online transactions on the Internet. It was
 later replaced by SSL v3, also developed by Netscape. SSL v3 was
 then further developed by the IETF as the Transport Layer Security
 (TLS) protocol.

 The SSL v3 protocol was not explicitly specified to be extended.
 Even TLS 1.0 [RFC2246] did not define an extension mechanism
 explicitly. However, extension "loopholes" were available.
 Extension mechanisms were finally defined in "Transport Layer
 Security (TLS) Extensions" [RFC4366]:

 o New versions

https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc5080#section-2.5
https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc3575
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc4366

Carpenter & Aboba Informational [Page 18]

Internet-Draft Design Considerations for Extensions 27 October 2008

 o New cipher suites
 o Compression
 o Expanded handshake messages
 o New record types
 o New handshake messages

 The protocol also defines how implementations should handle unknown
 extensions.

 Of the above extension methods, new versions and expanded handshake
 messages have caused the most interoperability problems.
 Implementations are supposed to ignore unknown record types but to
 reject unknown handshake messages.

 The new version support in SSL/TLS includes a capability to define
 new versions of the protocol, while allowing newer implementations to
 communicate with older implementations. As part of this
 functionality some Key Exchange methods include functionality to
 prevent version rollback attacks.

 The experience with this upgrade functionality in SSL and TLS is
 decidedly mixed.

 o SSL v2 and SSL v3/TLS are not compatible. It is possible to use
 SSL v2 protocol messages to initiate a SSL v3/TLS connection, but
 it is not possible to communicate with a SSL v2 implementation
 using SSL v3/TLS protocol messages.
 o There are implementations that refuse to accept handshakes using
 newer versions of the protocol than they support.
 o There are other implementations that accept newer versions, but
 have implemented the version rollback protection clumsily.

 The SSL v2 problem has forced SSL v3 and TLS clients to continue to
 use SSL v2 Client Hellos for their initial handshake with almost all
 servers until 2006, much longer than would have been desirable, in
 order to interoperate with old servers.

 The problem with incorrect handling of newer versions has also forced
 many clients to actually disable the newer protocol versions, either
 by default, or by automatically disabling the functionality, to be
 able to connect to such servers. Effectively, this means that the
 version rollback protection in SSL and TLS is non-existent if talking
 to a fatally compromised older version.

 SSL v3 and TLS also permitted expansion of the Client Hello and
 Server Hello handshake messages. This functionality was fully
 defined by the introduction of TLS Extensions, which makes it
 possible to add new functionality to the handshake, such as the name

Carpenter & Aboba Informational [Page 19]

Internet-Draft Design Considerations for Extensions 27 October 2008

 of the server the client is connecting to, request certificate status
 information, indicate Certificate Authority support, maximum record
 length, etc. Several of these extensions also introduce new
 handshake messages.

 It has turned out that many SSL v3 and TLS implementations that do
 not support TLS Extensions, did not, as specified in the protocols,
 ignore the unknown extensions, but instead failed to establish
 connections. Several of the implementations behaving in this manner
 are used by high profile Internet sites, such as online banking
 sites, and this has caused a significant delay in the deployment of
 clients supporting TLS Extensions, and several of the clients that
 have enabled support are using heuristics that allow them to disable
 the functionality when they detect a problem.

 Looking forward, the protocol version problem, in particular, can
 cause future security problems for the TLS protocol. The strength of
 the Digest algorithms (MD5 and SHA-1) used by SSL and and TLS is
 weakening. If MD5 and SHA-1 weaken to the point where it is feasible
 to mount successful attacks against older SSL and TLS versions, the
 current error recovery used by clients would become a security
 vulnerability (among many other serious problems for the Internet).

 To address this issue, TLS 1.2 [RFC5246] makes use of a newer
 cryptographic hash algorithm (SHA-256) during the TLS handshake by
 default. Legacy ciphersuites can still be used to protect
 application data, but new ciphersuites are specified for data
 protection as well as for authentication within the TLS handhshake.
 The hashing method can also be negotiated via a Hello extension.
 Implementations are encouraged to implement new ciphersuites, and to
 enable the negotiation of the ciphersuite used during a TLS session
 be governed by policy, thus enabling a more rapid transition away
 from weakened ciphersuites.

 The lesson to be drawn from this experience is that it isn't
 sufficient to design extensibility carefully; it must also be
 implemented carefully by every implementer, without exception.

A.4. L2TP Extensions

 Layer Two Tunneling Protocol (L2TP) [RFC2661] carries Attribute-Value
 Pairs (AVPs), with most AVPs having no semantics to the L2TP protocol
 itself. However, it should be noted that L2TP message types are
 identified by a Message Type AVP (Attribute Type 0) with specific AVP
 values indicating the actual message type. Thus, extensions relating
 to Message Type AVPs would likely be considered major extensions.

 L2TP also provides for Vendor-Specific AVPs. Because everything in

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc2661

Carpenter & Aboba Informational [Page 20]

Internet-Draft Design Considerations for Extensions 27 October 2008

 L2TP is encoded using AVPs, it would be easy to define vendor-
 specific AVPs that would be considered major extensions.

 L2TP also provides for a "mandatory" bit in AVPs. Recipients of L2TP
 messages containing AVPs they do not understand but that have the
 mandatory bit set, are expected to reject the message and terminate
 the tunnel or session the message refers to. This leads to
 interesting interoperability issues, because a sender can include a
 vendor-specific AVP with the M-bit set, which then causes the
 recipient to not interoperate with the sender. This sort of behavior
 is counter to the IETF ideals, as implementations of the IETF
 standard should interoperate successfully with other implementations
 and not require the implementation of non-IETF extensions in order to
 interoperate successfully. Section 4.2 of the L2TP specification
 [RFC2661] includes specific wording on this point, though there was
 significant debate at the time as to whether such language was by
 itself sufficient.

 Fortunately, it does not appear that the above concerns have been a
 problem in practice. At the time of this writing, the authors are
 unaware of the existence of vendor-specific AVPs that also set the M-
 bit.

Change log [RFC Editor: please remove this section]

draft-carpenter-extension-rec-04: 2008-10-24. Updated author
 addresses, fixed editorial issues.

draft-carpenter-extension-rec-03: 2008-10-17. Updated references,
 added material relating to versioning.

draft-carpenter-extension-rec-02: 2007-06-15. Reorganized Sections
 2 and 3.

draft-carpenter-extension-recs-01: 2007-03-04. Updated according to
 comments, especially the wording about TLS, added various specific
 examples.

draft-carpenter-extension-recs-00: original version, 2006-10-12.
 Derived from draft-iesg-vendor-extensions-02.txt dated 2004-06-04 by
 focusing on architectural issues; the more procedural issues in that
 draft were moved to RFC 4775.

https://datatracker.ietf.org/doc/html/rfc2661
https://datatracker.ietf.org/doc/html/draft-carpenter-extension-rec-04
https://datatracker.ietf.org/doc/html/draft-carpenter-extension-rec-03
https://datatracker.ietf.org/doc/html/draft-carpenter-extension-rec-02
https://datatracker.ietf.org/doc/html/draft-carpenter-extension-recs-01
https://datatracker.ietf.org/doc/html/draft-carpenter-extension-recs-00
https://datatracker.ietf.org/doc/html/draft-iesg-vendor-extensions-02.txt
https://datatracker.ietf.org/doc/html/rfc4775

Carpenter & Aboba Informational [Page 21]

Internet-Draft Design Considerations for Extensions 27 October 2008

Authors' Addresses

 Brian Carpenter
 Department of Computer Science
 University of Auckland
 PB 92019
 Auckland, 1142
 New Zealand

 Email: brian.e.carpenter@gmail.com

 Bernard Aboba
 Microsoft Corporation
 One Microsoft Way
 Redmond, WA 98052

 EMail: bernarda@microsoft.com
 Phone: +1 425 706 6605
 Fax: +1 425 936 7329

Carpenter & Aboba Informational [Page 22]

Internet-Draft Design Considerations for Extensions 27 October 2008

Full Copyright Statement

 Copyright (C) The IETF Trust (2008).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgment

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Carpenter & Aboba Informational [Page 23]

