
Network Working Group B. Carpenter
Internet-Draft Univ. of Auckland
Intended status: Experimental November 7, 2007
Expires: May 10, 2008

Shimmed IPv4/IPv6 Address Network Translation Interface (SHANTI)
draft-carpenter-shanti-01

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on May 10, 2008.

Copyright Notice

 Copyright (C) The IETF Trust (2007).

Abstract

 There is a pragmatic need for a packet-level translation mechanism
 between IPv4 and IPv6, for scenarios where no other mode of IPv4 to
 IPv6 interworking is possible. The mechanism defined here uses a
 shim in both the translator and the IPv6 host to mitigate the
 problems introduced by stateless translation.

Carpenter Expires May 10, 2008 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft Shimmed IPv4/IPv6 Translation November 2007

Table of Contents

1. Introduction . 3
1.1. Disclaimer . 3
1.2. Summary of operation 3
1.3. Requirements notation 5

2. Scenario of addresses and ports 5
3. General walkthroughs . 8
4. Placement of the shim . 9
5. DNS . 9
6. ICMP . 10
7. Unresolved issues . 10
8. Security Considerations 13
9. IANA Considerations . 14
10. Acknowledgements . 14
11. Change log [RFC Editor: please remove this section] 14
12. References . 14
12.1. Normative References 14
12.2. Informative References 14

 Author's Address . 15
 Intellectual Property and Copyright Statements 16

Carpenter Expires May 10, 2008 [Page 2]

Internet-Draft Shimmed IPv4/IPv6 Translation November 2007

Dedication

 A few days before his tragic death, itojun (Jun-ichiro Itoh Hagino)
 responded to a comment that "I absolutely don't like to see ::FFFF/96
 on the wire" by writing "then we'd have to deprecate SIIT at least.
 still, you cannot be sure that ::ffff:0:0/96 are not on the wire."
 This directly inspired the idea behind SHANTI. This proposal is
 dedicated to itojun.

1. Introduction

1.1. Disclaimer

 This proposal is incomplete. It is posted to seek comments on
 plausibility; much more work is needed to make it implementable.

1.2. Summary of operation

 There has long been a defined mechanism for stateless translation
 betweeen IPv4 and IPv6 packet formats, named SIIT [RFC2765]. Its
 intended use is any scenario where dual stack coexistence between
 IPv4 and IPv6, possibly accompanied by dual stack application level
 proxies, is insufficient. In the most stringent case, this will
 occur when communication is needed between unmodified ("legacy") IPv4
 hosts and IPv6-only hosts that have no IPv4 code, and no dual stack
 proxy is available for the application protocol of interest. Thus
 the scenario of interest is one where an IPv6-only host is modified
 (with the inclusion of a shim and DNS resolver changes) to allow it
 to leverage a separate device (the translator) to access IPv4-only
 sections of the Internet.

 The previously proposed solution for this requirement, NAT-PT
 [RFC2766], has known issues and has been deprecated [RFC4966]. The
 present proposal does not resolve all of those issues; a later
 section will identify the issues believed to remain open. This
 proposal aims to resolve those issues that can be handled if the IPv6
 protocol stack communicating with a translator can obtain information
 about the translation. The objectives are to ensure that
 o from the IPv4 host's point of view, nothing is worse than in the
 case of an IPv4-to-IPv4 translation
 o from the IPv6 host's point of view, no special code is generally
 required in the transport layer or above. However, information
 about the translation is available in the IPv6 host's network
 stack, as needed. This is the crucial difference from NAT-PT.
 o IPv6 routing is not affected in any way, and there is no risk of
 importing "entropy" from the IPv4 routing tables into IPv6.

https://datatracker.ietf.org/doc/html/rfc2765
https://datatracker.ietf.org/doc/html/rfc2766
https://datatracker.ietf.org/doc/html/rfc4966

Carpenter Expires May 10, 2008 [Page 3]

Internet-Draft Shimmed IPv4/IPv6 Translation November 2007

 To achieve these goals, a shim is inserted in the protocol stack at
 both the IPv6 host and at the translator. Its objective is to allow
 the IPv6 stack at the host to be aware of the presence of the
 translator, of the addresses involved in the translation, and of any
 other information known by the translator that may be of value to the
 IPv6 host. A shim model is chosen, as in SHIM6
 [I-D.ietf-shim6-proto], so that upper layer protocols (ULPs) have no
 need to be aware of anything unusual. The mechanism is known as
 SHimmed Address Network Translation Interface (SHANTI, which means
 "inner peace" in Sanskrit).

 As in SHIM6, ULPs are presented with an upper layer identifier (ULID)
 in the form of an IPv6 address which is independent of any
 manipulation of addresses in the shim or translator.

 Additionally, packets that flow over the IPv6 network all have quite
 normal IPv6 addresses, with no topological constraints. The same
 applies on the IPv4 side. This means that the translator may be
 positioned anywhere that is operationally convenient (e.g., on the
 IPv6 host's own site, within its ISP's network, or much closer to the
 IPv4 host). The only requirement is that there exists an IPv6 path
 between the IPv6 host and the translator, and an IPv4 path between
 the translator and the IPv4 host.

 There are two cases to consider:
 1. A new flow of packets is started by an IPv6 host. In this case,
 the principle of operation is that the shim in the IPv6 host
 exchanges information with the shim in the translator before the
 first packet of the new flow is released from the sending buffer.
 The result of the information exchange is that the shim knows
 what addresses and ports will be used for both IPv6 and IPv4, and
 can appropriately manipulate the packets before sending them to
 the translator via IPv6.
 2. A new flow of packets is started by an IPv4 host. In this case,
 the principle of operation is that the shim in the translator
 sends the first packet to the IPv6 host with a shim header
 defining what addresses and ports will be used for both IPv6 and
 IPv4. The shim in the IPv6 host can appropriately manipulate the
 packets before delivering them to the upper layer protocol.

 In neither case is any IPv4 component aware of any difference from a
 normal IPv4 packet stream.

 The reader is assumed to have a general understanding of SHIM6.
 Although this early draft does not assume that the SHIM6 mechanisms
 defined in [I-D.ietf-shim6-proto] would be used unchanged, they form
 a proof of concept for the type of communication required between two
 network-layer shims.

Carpenter Expires May 10, 2008 [Page 4]

Internet-Draft Shimmed IPv4/IPv6 Translation November 2007

 It should be noted that this mechanism adds complexity to an IPv6-
 only host. This has to be balanced against the complexity of a dual-
 stack host. In this model, no residual IPv4 code is needed in the
 IPv6 host. The shim has to handle the rewriting of addresses and
 port numbers, but nothing else.

1.3. Requirements notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Scenario of addresses and ports

 Consider an IPv6-only host X and and IPv4-only host Y.

 Let A(x) be an IPv6 address for X, and let a(y) be an IPv4 address
 for Y. Let the port in use at X be P(x) and at Y be P(y).

 We will observe later that it is irrelevant whether a(y) is
 translated by an IPv4 NAT, and whether P(y) is translated by an IPv4
 NAPT.

 Additionally, consider a translator T between X and Y. On the IPv6
 side it has address A(t) and on the IPv4 side it has address a(t).
 If port translation is in effect, P(x) will become P(tx) on the IPv4
 side. We will observe later that the A(t) address can be chosen from
 an address pool. We cannot assume that a(t) can be chosen from a
 pool, which is why port translation will be needed.

 Thus A() is always an IPv6 address and a() is always an IPv4 address.

 A diagram of the solution follows:

 X T Y

 ___________ A(x) A(t) _______________ a(t) a(y) _______
 | | | V6|P(x) P(y)| V6| | | V4|P(tx) P(y)| V4| |
 | | S | | | | S | S | | | | |
 | U | H | S | | S | H | I | S | | S | U |
 | L | I | T |------------| T | I | I | T |-----------| T | L |
 | P | M | A | | A | M | T | A | | A | P |
 | | | C | | C | | | C | | C | |
 | | X | K | | K | T | | K | | K | |
 |___|___|___| |___|___|___|___| |___|___|

 We will refer to the shim in X as SHIMX, and the shim in T as SHIMT.

https://datatracker.ietf.org/doc/html/rfc2119

Carpenter Expires May 10, 2008 [Page 5]

Internet-Draft Shimmed IPv4/IPv6 Translation November 2007

 The address set used by the shims for X is conceptually {a(t),A(x)},
 and for Y it is conceptually {a(y),A(t)}. In other words the ULP at
 X sees its own ULID as a(t) and Y's ULID as a(y), both filled out to
 128 bits. On the wire, the IPv6 packets between X and T use A(x) and
 A(t) as the actual address pair. The IPv4 packets between T and Y
 use a(t) and a(y). P(y) can be used everywhere, but we must assume
 that P(x) will be used on the IPv6 side and P(tx) on the IPv4 side.

 When a(t) and a(y) are filled out to 128 bits, an appropriate /96
 prefix must be used. This must checksum to zero when 16-bit
 transport checksums are computed. In SIIT, the ::ffff:0:0/96 IPv4-
 mapped format is used to fill out addresses for IPv4 hosts. Also in
 SIIT, an "IPv4-translated" address format is introduced to represent
 a synthetic IPv4 address for the IPv6 host, with the ::ffff:0:0:0/96
 prefix. This format, which is not in the IPv6 address architecture
 [RFC4291], could be used as the ULID for X. But since the shim has
 explicit knowledge of the addresses in use, is there any reason to
 use this format in preference to the IPv4-mapped format? The latter
 is assumed here for simplicity.

 Further to this, because these addresses never appear on the IPv6
 wire in SHANTI, there seems to be no reason in principle why the
 deprecated ::/96 "IPv4-compatible" prefix could not be used for
 further simplicity. However, this has been avoided to respect the
 deprecation.

 If there's an IPv4 NAT with routable address a(n) on the IPv4 path,
 it won't know anything is special, and a(y) will be represented by
 a(n). X, Y and T won't know that the NAT is there. X and T will not
 know if Y has a private [RFC1918] address or if additional port
 translation takes place.

 T must have a large pool of A(t) addresses, and should have a
 complete /64 to itself for maximum flexibility.

 SHIMX is configured with knowledge of a default A(t) to start any new
 exchange with SHIMT, and with knowledge of a(t). SHIMX will catch
 all packets sent to ::ffff:0:0/96 by any ULP in X. When a ULP sends a
 first packet to ::ffff:0:0:a(y)/128, we need to start a SHIM6-like
 process. SHIMX will carry out a message exchange with SHIMT to
 discover the relevant A(t) and P(tx) values. It can then update the
 port number and recompute a transport checksum if needed, rewrite the
 addresses as A(t),A(x), and send the packet on to A(t). Subsequent
 packets in the same flow will not require a shim message exchange.

 Note that the network stack in X will use the ULID ::ffff:0:0:a(t)/
 128 as the source address for checksum purposes. Source address
 selection MUST choose this when the destination address matches

https://datatracker.ietf.org/doc/html/rfc4291
https://datatracker.ietf.org/doc/html/rfc1918

Carpenter Expires May 10, 2008 [Page 6]

Internet-Draft Shimmed IPv4/IPv6 Translation November 2007

 ::ffff:0:0/96. This is why a(t) must be configured in SHIMX.
 Checksum recomputation by SHIMX will only be needed if P(tx) != P(x).
 The NAT-like code for this will require data sharing between the
 transport protocols and SHIMX.

 T needs to select a specific A(t) and P(tx) for each new flow, and
 exchange SHIM6-like messages with X, to tell SHIMX the values of A(t)
 and P(tx) . This should create enough state in both shims to know
 what to do with outbound and return packets. If T has a full /64 to
 work with, it can create a new A(t) for each new X or even for each
 new flow if that turns out to be needed.

 Note that unlike SHIM6, SHANTI must perform the shim exchange before
 sending the first packet of an outbound traffic flow from X. This is
 because SHIMX must learn if P(tx) is unequal to P(x). A consequence
 of this is that SHIMX should buffer packets of a new outbound flow
 until it has completed its shim exchange with T. For this to scale,
 it is important that the translator has adequate capacity for the
 number of IPv6 hosts it serves, and adequate network connectivity to
 them, so as to minimize buffering requirements.

 When a data packet reaches T from X, there will already be shim state
 established. The shim will pass the packet on to SIIT for
 translation and IPv4 transmission.

 Once the shim state is established, the ULPs in both X and Y will
 work as normal. Since T uses a specific A(t) for each X, and the
 shim at X is aware of that A(t), all port numbers are available in
 each direction on the IPv6 side. Port mapping, if required, will
 only affect the IPv4 side of T. Also, SHIMX is aware that the ULP in
 Y believes it is using the address pair {a(t), a(y)} and the ports
 {P(tx), P(y)}. Thus, address and port dependent fix-ups can be
 performed, if needed, by SHIMX. This means that TCP and UDP
 checksums do not need to be fixed up by T. This has scaling
 advantages compared to NAT-PT.

 Additionally, with this knowledge being available in the host rather
 than being hidden in the translator as in NAT-PT, it is in principle
 possible for any address and port dependencies in the ULP to be fixed
 up in the host itself, precluding the need for Application Level
 Gateways (ALGs). Although this would introduce a layer violation, it
 is in principle a more robust design than associating ALGs with a
 "stateless" translator. In particular, it means that new
 applications on the IPv6 host do not require new ALG code in the
 translator, removing a strong dependency in deployment scenarios.

Carpenter Expires May 10, 2008 [Page 7]

Internet-Draft Shimmed IPv4/IPv6 Translation November 2007

3. General walkthroughs

 Consider first an IPv6 client attempting to contact an IPv4 server
 via this mechanism. The main steps that must occur are:

 1. ULP in X obtains Y's IPv4-mapped address ::ffff:0:0:a(y)/128.
 See DNS discussion below.
 2. ULP sends unsolicited packet to that address.
 3. SHIMX recognises the packet as needing attention.
 4. SHIMX creates local state for a(y), P(x), and buffers the
 packet. Also, it creates a packet to send to T. This is a
 packet containing nothing but a shim header indicating that a
 first packet is ready from A(x):P(x) to a(y):P(y).
 5. SHIMT receives this shim header and checks for existing state
 for {A(x):P(x),a(y):P(y)}.
 6. If no such state exists, assign an A(t) value from the pool, and
 create state. Includes the ports. If P(x) is already in use by
 T, assign a P(tx). Otherwise, P(tx)=P(x).
 7. SHIMT creates a packet to return to X. This is a packet
 containing nothing but a shim header indicating the assigned
 A(t) and P(tx).
 8. SHIMX records this additional state, including P(tx) as the
 translated port.
 9. SHIMX now applies the following process to buffered and future
 packets sent from ::ffff:0:0:a(t), port P(x) to ::ffff:0:0:a(y),
 port P(y).
 1. If P(tx) != P(x), recompute transport checksum as for
 addresses DA=::ffff:0:0:a(y), SA=::ffff:0:0:a(t) and ports
 DP=P(y), SP=P(tx).
 2. Rewrite destination address as A(t).
 3. Rewrite source address as A(x).
 4. Rewrite destination port as P(tx).
 5. Send packet.
 10. SHIMT rewrites the addresses as DA=::ffff:0:0:a(y), SA=::ffff:0:
 0:a(t), and hands the packet off to SIIT.
 11. SIIT translates the packet to IPv4 and sends it on (destination
 = a(y), source = a(t)).
 12. When an IPv4 return packet comes into SIIT, SIIT translates the
 packet to IPv6 and hands it to SHIMT.
 13. The shim performs port demultiplexing on the destination port
 (which will be P(tx)) to identify the A(x) involved.
 14. The shim rewrites the addresses as A(x), A(t) and sends the
 packet on to A(x).
 15. The shim at X receives the packet, rewrites the header to
 restore the original ULIDs and P(x), and sends the packet on up
 the stack.

 Now consider an IPv4 client attempting to contact an IPv6 server via

Carpenter Expires May 10, 2008 [Page 8]

Internet-Draft Shimmed IPv4/IPv6 Translation November 2007

 T. The main steps that must occur are:

 1. T must be pre-configured to admit traffic for P(x) and forward it
 to A(x). This is a normal port-forwarding issue, to be solved as
 for NATs or perhaps as proposed in [I-D.woodyatt-ald]. It cannot
 be performed without pre-existing state. Assuming T has only one
 a(t), a given P(x) can only have one IPv6 listener.
 2. ULP in Y obtains an IPv4 address for T (believing it to be the
 actual server X).
 3. Y sends an unsolicited packet from a(y) to a(t), port P(x).
 4. It is passed to SIIT in T, translated to IPv6 format, and passed
 on to SHIMT.
 5. SHIMT performs port demultiplexing and determines that the packet
 is destined for A(x). It creates state if none exists.
 6. SHIMT inserts a shim header that will tell X the translation in
 effect, translates the addresses, and sends the packet from A(t)
 to A(x).
 7. SHIMX receives the packet, and translates the addresses to
 ::ffff:0:0:a(t)/128 and ::ffff:0:0:a(y)/128. This should
 checksum OK. SHIMX creates state if none exists.
 8. The packet is delivered to the ULP, minus the shim header.

 Subsequent packets will flow as in the previous case.

 Shim state will be torn down (deleted) using inactivity timers, as
 for SHIM6 and typical NATs.

4. Placement of the shim

 In SHIM6 the shim is logically placed below both the transport and
 IPsec layers, so that their checksums do not need recalculation. In
 SHANTI, the transport layer checksum does need to be recalculated by
 the shim, rather in the manner that a NAT behaves. However, this
 cannot be done for cryptographic checksums for obvious reasons. The
 shim should perhaps be regarded as logically below transport, but a
 better implementation would be for each transport layer to invoke the
 shim in-line prior to executing its checksum calculation.

5. DNS

 It is required that the IPv6 hosts "behind" a SHANTI translator
 either have a resolver that maps A records into AAAA records expanded
 with ::ffff:0:0/96, or a DNS server that actually stores such
 records, or performs this transformation on the fly. On the
 assumption that hosts behind a translator will need to be configured
 in any case, in order to activate the shim, a mapping resolver seems

Carpenter Expires May 10, 2008 [Page 9]

Internet-Draft Shimmed IPv4/IPv6 Translation November 2007

 likely to be the most robust choice, applying the fate-sharing
 principle. It would also work in a network with a mixture of SHANTI
 and dual-stack hosts. The former would see A records mapped as AAAA,
 and the latter would see native A records.

 This illustrates that SHANTI is an all-or-nothing approach. It
 doesn't seem plausible to activate SHANTI on a dual stack host since
 DNS entries are either mapped, or they aren't. But why would it be
 needed?

 "Outside" the translator, SHANTI hosts must be represented by an A
 record with the address of their translator. Specifically, the
 host's FQDN will have one or more AAAA records with its IPv6
 address(es) and an A record with its translator's address. A dynamic
 DNS-ALG is not needed.

6. ICMP

 In general, ICMP translation in both directions will proceed as
 defined in SIIT.

 The pool of IPv4 addresses concerned (section 3.5 of [RFC2765]) will
 contain only a(t), and SHIMT will have to perform port demultiplexing
 in order to dispatch ICMP messages translated from IPv4 to the
 correct A(x). SHIMX will have to perform address or checksum
 rewriting as for other packets. (More details TBD).

7. Unresolved issues

 This section comments on issues raised in [RFC4966] with regard to
 whether they are mitigated or resolved by the present specification.
 The relevant section headings from RFC 4966 are included for
 reference.

 2.1. Issues with Protocols Embedding IP Addresses

 In SHANTI, these can in principle be resolved within the IPv6
 host, with no dependency on an up-to-date translator. This does
 require the protocol implementation in the IPv6 host to be SHANTI-
 aware. Also see issue 5 below.

 2.2. NAPT-PT Redirection Issues

 This concerns protocols where the port number is absent or
 encrypted, so port de-multiplexing is impossible. SHANTI cannot
 solve this problem; it is intrinsic in sharing one IPv4 address

https://datatracker.ietf.org/doc/html/rfc2765#section-3.5
https://datatracker.ietf.org/doc/html/rfc4966
https://datatracker.ietf.org/doc/html/rfc4966

Carpenter Expires May 10, 2008 [Page 10]

Internet-Draft Shimmed IPv4/IPv6 Translation November 2007

 among many IPv6 hosts. However, since it's an intrinsic problem
 of the NAPT model, SHANTI doesn't create this problem either; IPv4
 hosts already have to live with it.

 2.3. NAT-PT Binding State Decay

 This concerns protocols whose idle times may exceed any reasonable
 tear-down timer, leading to a risk of P(tx) being reassigned while
 still in use. This risk should be mitigated in SHANTI, since the
 tear-down can be synchronized between SHIMX and SHIMT. It would
 even be theoretically possible for SHIMX to probe the application.

 2.4. Loss of Information through Incompatible Semantics

 This concerns inevitable loss of information such as the IPv6 Flow
 Label. SHANTI cannot solve this problem; it is intrinsic, as
 observed in [RFC1671] section B1.

 2.5. NAT-PT and Fragmentation

 Put simply, fragments can't be port-demultiplexed without
 reassembly. SHANTI cannot solve this problem; it is intrinsic in
 sharing one IPv4 address among many IPv6 hosts. Only applications
 that probe for the available MTU size can overcome this issue.
 However, since it's an intrinsic problem of the NAPT model, SHANTI
 doesn't create this problem either; IPv4 hosts already have to
 live with it.

 2.6. NAT-PT Interaction with SCTP and Multihoming

 SCTP includes alternative addresses in its messages. This is
 solved as in issue 2.1 above. SHANTI would remain a single point
 of failure for SCTP.

 2.7. NAT-PT as a Proxy Correspondent Node for MIPv6

 The problem is that MIPv6 route optimization cannot possibly be
 supported on the IPv4 network. This is intrinsic, but in SHANTI
 it would be possible for SHIMX to suppress messages and headers
 relating to changes of care-of addresses, including reverse
 routing checks, at their source, if they are sent to the ::FFFF:0:
 0/96 prefix.

 2.8. NAT-PT and Multicast

 SHANTI does not handle multicast translation.

https://datatracker.ietf.org/doc/html/rfc1671

Carpenter Expires May 10, 2008 [Page 11]

Internet-Draft Shimmed IPv4/IPv6 Translation November 2007

 Issues 3.1 through 4.5 are partly or completely related to NAT-
 PT's requirement for a DNS-ALG. SHANTI does require DNS entries
 for IPv4 hosts to be presented to the ULP as AAAA records, but
 this does not require a dynamic DNS-ALG to be colocated with the
 SHANTI translator (see Section 5). Thus, these issues are
 intrinsically mitigated by SHANTI.

 3.1. Network Topology Constraints Implied by NAT-PT

 Not relevant to SHANTI.

 3.2. Scalability and Single Point of Failure Concerns

 Compared to NAT-PT, a SHANTI translator has a simpler job since
 checksum calculations are left to the IPv6 host, and DNS-ALG is
 not needed. Scalability of performance is therefore less of a
 concern. SHANTI remains a single point of failure, unless a load
 sharing feature with failover is added. These issues are
 intrinsic to any translator scenario.

 3.3. Issues with Lack of Address Persistence

 In the absence of DNS-ALG, this appears to be identical to issue
 2.3 above.

 3.4. DoS Attacks on Memory and Address/Port Pools

 In the absence of DNS-ALG, this appears to be a "standard" DoS
 threat to which almost any protocol is exposed. See Section 8.

 4.1. Address Selection Issues when Communicating with Dual-Stack
 End-Hosts

 In the absence of DNS-ALG, there should be no problem in
 configuring IPv6 hosts to prefer native IPv6 addresses to IPv4-
 mapped addresses. Also, the resolver code (Section 5) could be
 designed to always return IPv4-mapped addresses last in the
 response to getaddrinfo().

 4.2. Non-Global Validity of Translated RR Records

 If an IPv4-mapped address known by host X in the above scenario is
 passed on to any other IPv6 host equipped with SHANTI, it will
 work, assuming that the IPv4 address is globally unique. If it's
 a private [RFC1918] address, it may fail, but that is intrinsic to
 private IPv4 addressing. Otherwise, in the absence of DNS-ALG,
 this issue is not applicable to SHANTI.

https://datatracker.ietf.org/doc/html/rfc1918

Carpenter Expires May 10, 2008 [Page 12]

Internet-Draft Shimmed IPv4/IPv6 Translation November 2007

 4.3. Inappropriate Translation of Responses to A Queries

 In the absence of DNS-ALG, this is not applicable to SHANTI.

 4.4. DNS-ALG and Multi-Addressed Nodes

 In the absence of DNS-ALG, this is not applicable to SHANTI.

 4.5. Limitations on Deployment of DNS Security Capabilities

 In the absence of DNS-ALG, this is not applicable to SHANTI.

 5. Impact on IPv6 Application Development

 This is closely related to issue 2.1. As noted above, a SHANTI
 host is aware of the translation in effect. SHANTI will work "out
 of the box" for any application that runs through a traditional
 NAT or NAPT without problems *and* has been upgraded to AF_INET6
 sockets. In other cases, the shimmed IPv6 stack can make an
 application aware of the both the ULIDs in use and of the
 translated port number, perhaps via socket options. Although
 modifying application code to take this into account may appear
 complex, application developers might prefer this to today's
 obscure failure modes caused by IPv4 NAPT or NAT-PT.

 In conclusion, it seems that SHANTI overcomes or mitigates many of
 the issues noted with NAT-PT. Those that remain appear to be
 intrinsic to any translation scenario.

8. Security Considerations

 As for NAT-PT, there is no obvious way to carry network layer IPsec
 across a SHANTI translator. There seems to be no reason IKE
 [RFC4306] cannot run in a SHANTI scenario, using its port agility
 intended for NAT tolerance. But that in itself isn't very useful.
 It seems likely that security solutions running above the transport
 layer will be required in order to protect a SHANTI session.

 The use of a shim layer in SHANTI will raise some of the security
 issues considered for SHIM6 . More analysis of the potential
 spoofing and denial of service threats is needed to determine whether
 a cryptographic solution is needed, or if there is a straightforward
 way to prevent attackers taking over a session by impersonating the
 shim. It may be possible to find a simple method of arranging a
 shared secret between X and T, such that an elementary hash can be
 used to authenticate the shim headers.

https://datatracker.ietf.org/doc/html/rfc4306

Carpenter Expires May 10, 2008 [Page 13]

Internet-Draft Shimmed IPv4/IPv6 Translation November 2007

9. IANA Considerations

 This document has not yet been exhaustively checked for possible
 action by the IANA.

10. Acknowledgements

 Vital comments on a very primitive version of this proposal were made
 by Marcelo Bagnulo Braun and Iljitsch van Beijnum. Contributions and
 comments by David Miles and others are gratefully acknowledged.

 This document was produced using the xml2rfc tool [RFC2629].

11. Change log [RFC Editor: please remove this section]

draft-carpenter-shanti-01: added dedication, clarifications, bug
 fixes, added RFC4966 analysis, 2007-11-08

draft-carpenter-shanti-00: original version, 2007-10-28

12. References

12.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2765] Nordmark, E., "Stateless IP/ICMP Translation Algorithm
 (SIIT)", RFC 2765, February 2000.

 [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 4291, February 2006.

12.2. Informative References

 [I-D.ietf-shim6-proto]
 Bagnulo, M. and E. Nordmark, "Shim6: Level 3 Multihoming
 Shim Protocol for IPv6", draft-ietf-shim6-proto-09 (work
 in progress), November 2007.

 [I-D.woodyatt-ald]
 Woodyatt, J., "Application Listener Discovery (ALD) for
 IPv6", draft-woodyatt-ald-01 (work in progress),
 June 2007.

https://datatracker.ietf.org/doc/html/rfc2629
https://datatracker.ietf.org/doc/html/draft-carpenter-shanti-01
https://datatracker.ietf.org/doc/html/rfc4966
https://datatracker.ietf.org/doc/html/draft-carpenter-shanti-00
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2765
https://datatracker.ietf.org/doc/html/rfc4291
https://datatracker.ietf.org/doc/html/draft-ietf-shim6-proto-09
https://datatracker.ietf.org/doc/html/draft-woodyatt-ald-01

Carpenter Expires May 10, 2008 [Page 14]

Internet-Draft Shimmed IPv4/IPv6 Translation November 2007

 [RFC1671] Carpenter, B., "IPng White Paper on Transition and Other
 Considerations", RFC 1671, August 1994.

 [RFC1918] Rekhter, Y., Moskowitz, R., Karrenberg, D., Groot, G., and
 E. Lear, "Address Allocation for Private Internets",

BCP 5, RFC 1918, February 1996.

 [RFC2629] Rose, M., "Writing I-Ds and RFCs using XML", RFC 2629,
 June 1999.

 [RFC2766] Tsirtsis, G. and P. Srisuresh, "Network Address
 Translation - Protocol Translation (NAT-PT)", RFC 2766,
 February 2000.

 [RFC4306] Kaufman, C., "Internet Key Exchange (IKEv2) Protocol",
RFC 4306, December 2005.

 [RFC4966] Aoun, C. and E. Davies, "Reasons to Move the Network
 Address Translator - Protocol Translator (NAT-PT) to
 Historic Status", RFC 4966, July 2007.

Author's Address

 Brian Carpenter
 Department of Computer Science
 University of Auckland
 PB 92019
 Auckland, 1142
 New Zealand

 Email: brian.e.carpenter@gmail.com

https://datatracker.ietf.org/doc/html/rfc1671
https://datatracker.ietf.org/doc/html/bcp5
https://datatracker.ietf.org/doc/html/rfc1918
https://datatracker.ietf.org/doc/html/rfc2629
https://datatracker.ietf.org/doc/html/rfc2766
https://datatracker.ietf.org/doc/html/rfc4306
https://datatracker.ietf.org/doc/html/rfc4966

Carpenter Expires May 10, 2008 [Page 15]

Internet-Draft Shimmed IPv4/IPv6 Translation November 2007

Full Copyright Statement

 Copyright (C) The IETF Trust (2007).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgment

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Carpenter Expires May 10, 2008 [Page 16]

