
Network Working Group D. Carrel
Internet-Draft Cisco Systems
Intended status: Standards Track B. Weis
Expires: September 12, 2019 Independent
 March 11, 2019

IPsec Key Exchange using a Controller
draft-carrel-ipsecme-controller-ike-01

Abstract

 This document presents a key exchange method allowing devices managed
 by a controller (e.g., an SDN management station) to create private
 pair-wise IPsec SAs without IKEv2 or any other direct peer-to-peer
 session establishment messages. The method can be used when a full
 mesh of IKEv2 sessions between IPsec devices is not appropriate.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 12, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Carrel & Weis Expires September 12, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft Controller-IKE March 2019

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Requirements Language 4

2. Overview . 4
3. Generating Initial IPsec SAs 5
4. Rekey of IPsec SAs . 7
4.1. Single IPsec Device Rekey 8
4.2. Simultaneous Rekey of IPsec Devices 10

5. IPsec Database Generation 13
5.1. The Security Policy Database (SPD) 13
5.2. Security Association Database (SAD) 13
5.2.1. Generating Keying Material for IPsec SAs 13

5.3. Peer Authorization Database (PAD) 16
6. Policy distributed through the Controller 16
6.1. IPsec policy negotiation 17

7. Security Considerations 18
8. IANA Considerations . 19
9. Acknowledgements . 19
10. References . 19
10.1. Normative References 19
10.2. Informative References 20

Appendix A. Example Controller protocols 21
A.1. Example: I2NSF . 21
A.2. Example: Network Controller 21
A.3. Additional controller protocol considerations 22
A.3.1. Peer-to-peer distribution of IPsec policy 22
A.3.2. Ordering of messages distributed to a controller . . 23

Appendix B. Choosing whether to use IKEv2 or Controller IKE . . 23
Appendix C. Implementation Considerations 25

 Authors' Addresses . 25

1. Introduction

 Network architectures typically have included network devices
 directly communicating using network control protocols such as
 routing and signaling protocols. Additionally, secured
 communications between these network devices are usually accomplished
 with a key agreement protocol such as IKEv2 [RFC7296], in which the
 network devices directly authenticate each other and agree upon
 security policy and keying material to protect communications between
 themselves. However, controller-based network architectures
 (sometimes called "Software-Defined Networking") are now being
 defined [RFC7426] [RFC8192] and implemented. In controller-based
 network architectures, control protocols --including key exchange

https://datatracker.ietf.org/doc/html/rfc7296
https://datatracker.ietf.org/doc/html/rfc7426
https://datatracker.ietf.org/doc/html/rfc8192

Carrel & Weis Expires September 12, 2019 [Page 2]

Internet-Draft Controller-IKE March 2019

 protocols -- are not implemented directly between the network
 devices. Software-Defined Networks utilize the controller based
 network design while maximizing the scalability that it provides.
 The result is a significantly different trust model; rather than
 apply a peer-to-peer trust model, the network applies a device-to-
 controller trust model.

 The use of IKEv2 in a device-to-controller trust model is not always
 optimal. Instead, a new key management method is needed for these
 models. Appendix B describes situations in which Controller IKE may
 be a better choice than IKEv2.

 +-------------+
 | |
 | Controller |
 | |
 +-+----+-----++
 | | |
 +---------------+ | +--------------+
 | Control Plane |
 | | |
 | | |
 +--+--+ +--+--+ +--+--+
 | | | | | |
 | A | | B | | C |
 | | | | | |
 +-+-+-+ ++--+-+ +-+-+-+
 | | | | | |
 | +-----------------+ +------------------+ |
 +---+
 Secured Data Plane

 Figure 1: Controller-based Secured Communications

 Figure 1 shows an example controller based network design. Three
 network devices (labeled A, B, and C) setup a protected control plane
 connection to a Controller. The Controller distributes policy to the
 network devices, which enables them to securely communicate in the
 data plane.

 When one considers adding a controller to a key exchange method, it
 is tempting to give it the task of generating and distributing
 session keys directly to network devices. However, such a design has
 several security considerations. Because such a controller would
 have all session keys it could become an active participant or a
 passive monitor to the secured communications. Also, for scalability
 reasons one might consider having a controller distribute session
 keys that are group keys, either a single group key or a set of group

Carrel & Weis Expires September 12, 2019 [Page 3]

Internet-Draft Controller-IKE March 2019

 keys that devices use to protect communications between them. This
 document does not specify the use of group session keys.

 Many key exchange methods (such as IKEv2) use a Diffie-Hellman (DH)
 algorithm to derive keys. When combined with an authentication
 method, the key exchange method allows two network devices to
 generate private pair-wise keys with each other. This document
 presents a key exchange method making use of the device-to-controller
 trust model, where a controller is used to distribute keying material
 and policy between network devices, also resulting in the devices
 generating private pair-wise keys with each other. DH public values
 are provided to controllers from IPsec devices, where the controller
 relays the DH public values to authorized peers of that IPsec device
 as defined by a centralized policy. Network devices then create and
 install private pair-wise IPsec session keys to be used to secure
 communications with their peers.

 Controller-based key exchange methods can be used to create a
 Gateway-to-Gateway VPN [RFC7018] in either a Full-Mesh Topology or
 Dynamic Full-Mesh Topology.

 Although IKEv2 is not used in this approach, the key management
 interfaces between IKEv2 and IPsec defined in RFC 7296 are maintained
 as much as possible.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. Overview

 In Controller-IKE a controller acts as a trusted third party, which
 relays policy and keying material between IPsec devices. The
 controller can be a standalone device, or integrated into a
 management station. Communications between the controller and the
 IPsec devices MUST be authenticated, encrypted, and integrity-
 protected.

 All algorithms are selected by the controller or a management station
 associated with the controller. The combination of a controller and
 a set of IPsec devices comprises a cooperating group of devices that
 make up a VPN, where each IPsec device is authorized to communicate
 with other IPsec devices in the group. Controller policy may allow

https://datatracker.ietf.org/doc/html/rfc7018
https://datatracker.ietf.org/doc/html/rfc7296
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Carrel & Weis Expires September 12, 2019 [Page 4]

Internet-Draft Controller-IKE March 2019

 an IPsec device to communicate with all other IPsec devices in the
 group, or may restrict it to a subset of those devices.

 DH public values are distributed to the controller from each IPsec
 device and redistributed from the controller to each authorized peer
 IPsec device. Each IPsec device creates and maintains a DH pair,
 which it uses to communicate with other members of the VPN. This
 distribution of DH public values (and other related values) is
 intended to be embedded into an existing network device/controller
 protocol. In particular, Controller-IKE provides a mechanism for
 secure key management and only key management. It does not provide
 policy information or configuration as that is assumed to be provided
 by the controller. One such controller protocol
 [I-D.ietf-i2nsf-sdn-ipsec-flow-protection] is being developed at this
 time in the IETF I2NSF working group. Another controller protocol
 [I-D.sajassi-bess-secure-evpn] is being developed by the IETF BESS
 working group.

3. Generating Initial IPsec SAs

 When an IPsec device begins operation, it generates a DH pair, using
 an algorithm defined in the IKEv2 Diffie-Hellman Group Transform IDs
 [IKEV2-IANA]. If the device does not have any active peers it simply
 distributes its DH public value to the Controller, along with a nonce
 to be used during SA creation. Whenever a DH pair is created, a new
 nonce MUST also be created. Whenever DH public values are
 transmitted, they are transmitted with the corresponding nonce.
 Whenever a DH private or DH public value is used, it is used along
 with the corresponding nonce. However, in the diagrams and
 descriptions below, the nonces are often left out for the sake of
 clarity.

 Upon receiving a peer's DH public value and nonce, the receiver
 creates IPsec SAs (as described in Section 5.2). For each peer, a
 pair of IPsec SAs are created by combining the IPsec device's own DH
 private value with the DH public number received from the Controller.

Carrel & Weis Expires September 12, 2019 [Page 5]

Internet-Draft Controller-IKE March 2019

 +---+ +----------+ +---+
 | A | |Controller| | B |
 +-+-+ +-----+----+ +-+-+
 +----------+ | | |
 |Generate | | | | +----------+
 |DH pair a1| | | | |Generate |
 +----------+ | a1-pub | | |DH pair b1|
 +----------> | b1-pub | +----------+
 | | <----------+
 | | |
 | | a1-pub |
 | b1-pub +----------> | +-----------+
 +-----------+ | <----------+ | |Create SA: |
 |Create SAs:| | | | | Tx(b1-a1)|
 | Tx(a1-b1)| | | | | Rx(a1-b1)|
 | Rx(b1-a1)| | | | +-----------+
 +-----------+ | | |
 | | |
 | IPsec ESP Tx(a1-b1) |
 +-----------------------> |
 | | |
 | IPsec ESP Tx(b1-a1) |
 | <-----------------------+
 | | |
 + + +

 Figure 2: Generation of Initial IPsec SAs between two peers

 Figure 2 shows IPsec SA generation between a pair of IPsec devices.
 Two IPsec devices (A and B shown in Figure 1) join the network. Each
 creates it's own DH pair (labelled "a1" on A and "b1" on B), and
 distributes the DH public value (labelled a1-pub and b1-pub) to the
 Controller. The controller forwards the DH public value to all
 authorized peers, although for simplicity of exposition the figure
 only shows the two IPsec devices.

 When each device receives the peer's DH public value, a pair of IPsec
 SAs are generated: one outbound and one inbound. As shown in the
 figure, A generates an outbound SA labeled Tx(a1-b1), representing
 that it has been generated using A's DH pair labeled a1 and B's DH
 pair labeled b1. B generates the same IPsec SA as an inbound SA,
 which is labeled Rx(a1-b1). Similarly, A generates an inbound IPsec
 SA labelled Rx(b1-a1), which is the same IPsec SA on B labelled
 Tx(b1-a1).

 This process repeats on both A and B as they discover other IPsec
 devices with which they are authorized to communicate.

Carrel & Weis Expires September 12, 2019 [Page 6]

Internet-Draft Controller-IKE March 2019

4. Rekey of IPsec SAs

 Any IPsec device may initiate a rekey at any time. Common reasons to
 perform a rekey include a local time or volume based policy, or may
 be the result of a cipher counter mode Initialization Vector (IV)
 counter nearing its final value. The rekey process is performed
 individually for each remote peer. If rekeying is performed with
 multiple peers simultaneously, then the decision process and rules
 described in this rekey are performed independently for each peer.

 A decision process choosing an outbound IPsec SA is followed when
 certain events occur, as described in the rules below. The same
 decision process is followed regardless of whether the device is
 performing a rekey or responding to a peer's rekey. The decision
 process is:

 1. Determine the outbound SAs with the remote peer's most recently
 distributed DH public value.

 2. Determine which of those outbound SAs are "live". A "live"
 outbound SA is one built from a DH value from the local peer for
 which it has observed inbound traffic using any SA based on the
 same local DH pair. This proves that the remote peer is prepared
 to receive traffic protected by that DH pair.

 3. Choose the "live" outbound SA built from the local peer's most
 recent DH public value.

 A rekey operation follows these four basic rules.

 Rule 1 When an IPsec device needs to perform a rekey with a remote
 peer, it creates a new pair of IPsec SAs by combining the new DH
 private value with the peer's DH public values. If the remote
 peer is also in the midst of a rollover and its DH public value
 has already been received, then this may result in creating two
 sets of SAs: one pair with the remote peer's old DH public value,
 and one pair with the remote peer's new DH public value.

 Rule 2 When an IPsec device receives a new remote peer's DH public
 value from the controller it creates and installs a new pair of
 IPsec SAs by combining the remote peer's new DH public value with
 its own current local DH private values. If both devices are in
 the midst of a rollover, this may result in creating two sets of
 SAs with the remote peer's new DH public value: one with the local
 old DH private value, and one with the local new DH private value.
 The outbound SA decision process is performed.

Carrel & Weis Expires September 12, 2019 [Page 7]

Internet-Draft Controller-IKE March 2019

 Rule 3 The first IPsec packet received by a rekeying IPsec device on
 an inbound SA using its new DH pair causes it to perform the
 outbound SA decision process. It may also shorten the lifetime of
 IPsec SAs using its own old DH pair that are shared with this
 peer, as they are no longer in use (other than the inbound SA
 might receive packets in transit).

 Rule 4 The first IPsec packet received from a remote rekeying IPsec
 device using the remote peer's new DH pair allows the IPsec device
 to shorten the lifetime of IPsec SAs shared with this peer using
 unused remote DH pairs.

 Two examples follow: a single IPsec device performing a rekey with
 its peers, and two IPsec devices performing a simultaneous rekey.
 The same rekey operations described above are exhibited in both
 cases.

4.1. Single IPsec Device Rekey

 When a single IPsec device begins a rekey, it first generates a new
 DH pair and generates new IPsec SA pairs for each peer with which it
 is communicating. It does this by combining the new DH private value
 with each peer's existing DH public value. Only when the new IPsec
 SAs have been installed and the device is prepared to receive on
 those new SAs does it then distribute the new DH public value to the
 Controller, which forwards the new DH public value to its authorized
 peers. The rekeying IPsec device continues to transmit on the old
 SAs for each peer until it observes that peer begin to transmit on
 the new SAs.

Carrel & Weis Expires September 12, 2019 [Page 8]

Internet-Draft Controller-IKE March 2019

 +---+ +----------+ +---+
 | A | |Controller| | B |
 +-+-+ +-----+----+ +-+-+
 +----------+ | | |
 |Generate | | | |
 |DH pair a2| | | |
 +----------+ | | |
 +--------------+ | | |
 |Rule 1 | | | |
 | Create SAs | | | |
 | Tx(a2-b1) | | | |
 | Rx(b1-a2) | | | |
 | Use Tx(a1-b1)| | a2-pub | |
 +--------------+ +----------> | |
 | | |
 | IPsec ESP Tx(a1-b1) |
 +-----------------------> |
 | IPsec ESP Tx(b1-a1) |
 | <-----------------------+
 | | |
 | | a2-pub |
 | +----------> | +--------------+
 | | | |Rule 2 |
 | | | | Create SAs |
 | | | | Tx(b1-a2) |
 | | | | Rx(a2-b1) |
 | IPsec ESP Tx(b1-a2) | | Use Tx(b1-a2)|
 +--------------+ | <-----------------------+ +--------------+
 |Rule 3 | | | |
 | Use Tx(a2-b1)| | | |
 | Shorten life | | | |
 | Tx(a1-b1) | | IPsec ESP Tx(a2-b1) |
 | Rx(b1-a1) | +----------------------> | +--------------+
 +--------------+ | | | |Rule 4 |
 | | | | Shorten life |
 | | | | Tx(b1-a1) |
 | | | | Rx(a1-b1) |
 | | | +--------------+
 + + +

 Figure 3: Single IPsec Device Rekey Protocol Flow

 In Figure 3, device A is shown as performing a rekey, and it creates
 a DH pair labelled "a2". The following steps are followed.

 1. Rule 1 requires creating new IPsec SAs for each peer. In this
 example, A creates a new outbound IPsec SA to communicate with B
 labelled Tx(a2-b1), and a new inbound IPsec SA labelled

Carrel & Weis Expires September 12, 2019 [Page 9]

Internet-Draft Controller-IKE March 2019

 Rx(b1-a2). A continues to transmit on Tx(a1-b1) (generated as
 shown in Figure 2).

 2. A distributes the new public value (a2-pub) to the Controller who
 forwards it to A's authorized peers, which includes B. During
 this time, both A and B continue to use the initial IPsec SAs
 setup between them using a1 and b1.

 3. When B receives a2 from the controller, B follows Rule 2 by
 creating Tx(b1-a2), Rx(a2-b1). B also follows the outbound SA
 decision process, which causes it to change its outbound IPsec SA
 to A to Tx(b1-a2).

 4. When A receives a packet protected by Rx(b1-a2), it follows Rule
 3 and performs the outbound SA decision process. This causes it
 to change its outbound IPsec SA to Use Tx(a2-b1). It also
 optionally shortens the lifetime of the old IPsec SAs shared with
 this peer.

 5. When B receives a packet protected by Tx(a2-b1), it follows Rule
 4, in which it may shorten the lifetime of the old IPsec SAs
 shared with this peer using DH pairs that are no longer in use.

 At the end of the rekey, both A and B retain a single DH pair, and a
 single set of IPsec SAs between them.

4.2. Simultaneous Rekey of IPsec Devices

 When two or more IPsec device simultaneously begin a rekey, they each
 follow the rekeying method described in the previous section. Every
 rekeying IPsec device generates a new DH pair and generates new IPsec
 SA pairs for each peer with which it is communicating by combining
 their new DH private value with each peer's existing DH public value.
 When this completes on a particular IPsec device, it distributes the
 new DH public value to the Controller, which forwards it to its
 authorized peers. Each continues to transmit on the existing SAs for
 each peer until it observes that peer transmitting on the new SAs.
 During a simultaneous rekey up to four pairs of IPsec SAs may be
 temporarily created, but the four rules ensure that they converge on
 a single new set of IPsec SAs.

Carrel & Weis Expires September 12, 2019 [Page 10]

Internet-Draft Controller-IKE March 2019

 +---+ +----------+ +---+
 | A | |Controller| | B |
 +-+-+ +-----+----+ +-+-+
 +---------------------+ | | | +--------------+
 |Generate DH pair a2 | | | | |Gen DH pair b2|
 +---------------------+ | | | +--------------+
 +---------------------+ | | | +--------------+
Rule 1					Rule 1
Create SAs					Create SAs
Tx(a2-b1),Rx(b1-a2)					Tx(b2-a1)
Use Tx(a1-b1)		a2-pub			Rx(a1-b2)
 +---------------------+ +----------> | b2-pub | | Use Tx(b1-a1)|
 | | <----------+ +--------------+
 | IPsec ESP Tx(a1-b1) |
 +-----------------------> |
 | IPsec ESP Tx(b1-a1) |
 | <-----------------------+
 | | a2-pub |
 | b2-pub +----------> | +--------------+
 +---------------------+ | <----------+ | |Rule 2 |
Rule 2					Create SAs
Create SAs					Tx(b1-a2)
Tx(a1-b2),Rx(b2-a1)					Rx(a2-b1)
Tx(a2-b2),Rx(b2-a2)					Tx(b2-a2)
Use Tx(a1-b2)					Rx(a2-b2)
 +---------------------+ | IPsec ESP Tx(b1-a2) | | Use Tx(b1-a2)|
 | <-----------------------+ +--------------+
 | IPsec ESP Tx(a1-b2) |
 +---------------------+ +-----------------------> | +--------------+
Rule 3					Rule 3
Use Tx(a2-b2)					Use Tx(b2-a2)
Shorten life					Shorten life
Tx(a1-b1),Rx(b1-a1)					Tx(b1-a1)
Tx(a1-b2),Rx(b2-a1)					Rx(a1-b1)
 +---------------------+ | IPsec ESP Tx(a2-b2) | | Tx(b1-a2) |
 +----------------------> | | Rx(a2-b1) |
 | IPsec ESP Tx(b2-a2) | +--------------+
 +---------------------+ <-----------------------+ +--------------+
Rule 4					Rule 4
Shorten life					Shorten life
Tx(a2-b1),Rx(b1-a2)					Tx(b1-a2)
 +---------------------+ | | | | Rx(a2-b1) |
 + + + +--------------+

 Figure 4: Simultaneous IPsec Device Rekey Protocol Flow

 In Figure 4, device A and device B are both shown as performing a
 rekey. Their initial state corresponds to the final state shown in

Carrel & Weis Expires September 12, 2019 [Page 11]

Internet-Draft Controller-IKE March 2019

 Figure 2 (i.e., they are communicating using a single pair of IPsec
 SAs created from DH pairs "a1" and "b1".

 1. A and B follow Rule 1, which includes creating new IPsec SAs for
 each peer. In this example, A creates a new outbound IPsec SA to
 communicate with B labelled Tx(a2-b1), and a new inbound IPsec SA
 labelled Rx(b1-a2). B creates a new outbound IPsec SA to
 communicate with B labelled Tx(a1-b2), and a new inbound IPsec SA
 labelled Rx(b2-a1). A and B continue to transmit on IPsec SAs
 previously created from DH pairs "a1" and "b1".

 2. A distributes the new public value (a2-pub) to the Controller who
 forwards it to A's authorized peers, which includes B. B also
 distributes the new public value (b2-pub) to the Controller who
 forwards it to B's authorized peers, which includes A.

 3. When A and B receive each other's new peer DH public value from
 the controller they follows Rule 2. But because now there are
 four DH values that could be in used between A and B, they must
 be prepared to use IPsec SAs using each permutation of DH values:
 a1-b1, a1-b2, a2-b1, a2-b2. Prior to implementing Rule 2, each
 has already created sets of IPsec SAs matching two of the
 permutations, so just two more sets must be generated during Rule
 2.

 * One pair is created using the IPsec device's old DH pair with
 the peer's new DH pair. This is necessary, because the peer
 may transmit on this pair.

 * One pair is created using the IPsec device's new DH pair with
 the peer's new DH pair. This is the set of IPsec SAs that
 will be used at the end of the rekey process.

 Each peer begins transmitting on an IPsec SA that combines the
 remote peer's new DH pair and its own old DH pair, which is the
 most recent "live" SA on which it can transmit. I.e., A begins
 transmitting on Tx(a1-b2) and B begins transmitting on Tx(b1-a2).

 4. When A receives a packet protected by Rx(b1-a2), it understands
 that the remote peer has received its new DH public value. A
 also understands that because of Rule 2 that B must have created
 IPsec SAs using a2-b2. This allows A to follow Rule 3 and change
 its outbound IPsec SA to Use Tx(a2-b2). Similarly, when B
 receives a packet protected by Rx(a1-b2), B recognizes that it
 can also begin to transmit using Tx(b2-a2). Note that it also
 possible that A will receive a packet protected by Rx(b2-a2) or B
 will receive a packet protected by Rx(a2-b2), and then knows it
 can transmit on an IPsec SA using both of the new DH pairs.

Carrel & Weis Expires September 12, 2019 [Page 12]

Internet-Draft Controller-IKE March 2019

 5. Also in Rule 3, Both A and B optionally shorten the lifetime of
 older IPsec SAs shared with this peer derived from unused DH
 pairs to be cleaned up. A shortens the lifetime of SAs based on
 a1. B shortens the lifetime of SAs based on b1.

 6. When A and B receive a packet protected by the remote peer's
 latest DH pair, they shortens the lifetime of SAs based on the
 remote peer's unused DH pair.

5. IPsec Database Generation

 The PAD, SPD, and SAD all need to be setup as defined in the IPsec
 Security Architecture [RFC4301].

5.1. The Security Policy Database (SPD)

 The SPD is implemented using methods outside the scope of this
 document. The SPD describes the type of traffic that will be
 protected between IPsec devices and the policy (e.g., ciphers) used
 to create SAs.

5.2. Security Association Database (SAD)

 The SAD is constructed from IPsec policy (e.g., ciphers) obtained
 (depending on the controller protocol method) either from the
 controller or distributed by a peer (see Section 6).

 Keying Material is generated following the method defined in IKEv2,
 and depends on SPIs, nonces, and the Diffie-Hellman shared secret.

 The following sections describe how the necessary values are
 determined.

5.2.1. Generating Keying Material for IPsec SAs

5.2.1.1. g^ir

 A DH public value is distributed from the peer.

 A DH shared secret (g^ir) is computed using the peer's public value,
 and the device's private value. The DH group to be used must be
 known by the device. Options include distribution by an SDN
 controller, or distribution by the peer with the DH public value (see

Section 6).

https://datatracker.ietf.org/doc/html/rfc4301

Carrel & Weis Expires September 12, 2019 [Page 13]

Internet-Draft Controller-IKE March 2019

5.2.1.2. Nonces

 Nonces are distributed with a DH public value, and are used only with
 that value. It is RECOMMENDED that nonces are generated as described
 in Section 2.10 of [RFC7296].

 IKEv2 Key derivation specifies an initiator's nonce (Ni) and a
 responder's nonce (Nr). While neither peer is truly initiating a
 session), in order to fit the IKE key material models the roles must
 be assigned. The initiator is chosen as the peer with the larger
 nonce and the responder is the peer with the smaller. This does mean
 that the roles can change for each rekey and for each SA within a
 rekey.

5.2.1.3. SPIs

 SPI values that are unique to each generation of keying material need
 to be determined. While each peer could distribute its own inbound
 SA value, the SPI value would be used by many peers. Although this
 is not a problem for an SA lookup (lookup can include the source and
 destination IP addresses), experience has shown that this is sub-
 optimal for some hardware SA lookup algorithms. Instead, this
 specification proposes generating values that are unpredictable and
 indistinguishable from randomly-generated SPI values.

 SPI values are generated using the IKEv2 prf+ function, where nonces
 are used as the input to the prf. This produces a statistically
 random SPI value that should be unique. However, with a 32 bit value
 there is still a very small, but non-zero, chance of SPIs repeating
 for a given pair of peers. To prevent this and ensure uniqueness in
 the operational window, we also use the lower 2 bits from each peer's
 rekey counter.

 First the SPIs are taken from the prf+ function as 32 bit values and
 assigned based on which peer is taking the role of initiator and
 which is taking the role of responder. The p_SPI_i is taken by the
 device providing Ni, where p_SPI_r is taken by the other device.

 {p_SPI_i | p_SPI_r } = prf+(Ni | Nr, "SPI generation")

 Next p_SPI_i and p_SPI_r are mapped from initiator and responder
 roles to local and remote roles based on the choice of Ni and Nr in
 5.2.1.2 and are renamed to p_SPI_local and p_SPI_remote.

 Then, 2 2-bit Rotation Numbers (RN) are generated from the 2 least
 significant bits (LSB) of the 2 rekey counter values (see Section 6).
 These 4 bits replace the least significant bits of p_SPI_local and
 p_SPI_remote with the local RN bits taking the least significant

https://datatracker.ietf.org/doc/html/rfc7296#section-2.10

Carrel & Weis Expires September 12, 2019 [Page 14]

Internet-Draft Controller-IKE March 2019

 position in p_SPI_local and the remote RN bits taking the least
 significant position in p_SPI_remote. This shown in the following
 two diagrams with RN_local shown as R_l and RN_remote shown as R_r.

 (MSB) (LSB)
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | p_SPI_local bits from prf+ |R_r|R_l|
 +-+
 (MSB) (LSB)
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | p_SPI_remote bits from prf+ |R_l|R_r|
 +-+

 The reason for changing terminology from initiator/responder to
 local/remote is because the roles of initiator/responder can change
 in every rekey. The order of RN_local and RN_remote needs to remain
 constant. If that order was based on initiator/responder, there's a
 risk that if the initiator and responder roles changed and the two
 peers re-keyed on different frequencies, they could end up with
 identical RN values.

 In some circumstances additional values may also need to be added to
 the prf for peers to ensure that they have implemented the same
 policy. Appendix A.3.1 includes a discussion of when this might be
 needed. In these cases, only the prf+ inputs are modified and the
 Rotation Numbers MUST still be added as above.

 Because a device is not choosing its inbound SPI, its SA lookup
 process needs to be aware that duplicates could occur across
 different peers. In that case, the inbound SA Lookup SHOULD include
 a source IP address in addition to the SPI value (see Section 4.1 of
 [RFC4301]).

5.2.1.4. IPsec key generation

 As described in previous sections, a DH public value and a nonce are
 distributed by peers. These are used to generate IPsec keys
 following the method defined in the IKEv2. SKEYSEED is generated
 following Section 2.14 of [RFC7296]:

 SKEYSEED = prf(Ni | Nr, g^ir)

https://datatracker.ietf.org/doc/html/rfc4301#section-4.1
https://datatracker.ietf.org/doc/html/rfc4301#section-4.1
https://datatracker.ietf.org/doc/html/rfc7296#section-2.14

Carrel & Weis Expires September 12, 2019 [Page 15]

Internet-Draft Controller-IKE March 2019

 KEYMAT can be similarly derived as defined by IKEv2 (Section 2.17 of
 [RFC7296]), although only SK_d is required to be generated (shown in

Section 2.14 of [RFC7296]).

 SK_d = prf+ (SKEYSEED, Ni | Nr | SPIi | SPIr)

 KEYMAT = prf+(SK_d, Ni | Nr)

 However, with the simplification where only SK_d is generated, it can
 be observed that the derivation of SK_d could be skipped entirely,
 and an optimized derivation of KEYMAT could be as follows:

 KEYMAT = prf+ (SKEYSEED, Ni | Nr | SPIi | SPIr)

 Note: A single specification for generating KEYMAT will be determined
 in a future version of this document.

5.3. Peer Authorization Database (PAD)

 The PAD identifies authorized peers. PAD entries are either
 statically configured, or may be dynamically updated by the
 controller.

 The PAD omits authentication data for each peer, because it has
 delegated authentication and authorization to the controller.

 The controller protocol MUST be able to describe an identity that a
 receiver can match against its local PAD database, to ensure that the
 peer is an authorized peer.

6. Policy distributed through the Controller

 An IPsec device distributes to a controller a DH public value and the
 associated information and policy needed to create IPsec SAs in a
 Device Information Message (DIM). The controller then distributes
 the DIM to all authorized peers of that device. The following data
 elements MUST be embedded in a DIM message:

 o DH public number (used for key computation)

 o Nonce (used for key computation and SPI generation)

 o Peer identity (used to identify a peer in the PAD)

 o An Indication whether this is the initial distributed policy

 o A rekey counter, which increases for each unique DIM sent

https://datatracker.ietf.org/doc/html/rfc7296#section-2.17
https://datatracker.ietf.org/doc/html/rfc7296#section-2.17
https://datatracker.ietf.org/doc/html/rfc7296#section-2.14

Carrel & Weis Expires September 12, 2019 [Page 16]

Internet-Draft Controller-IKE March 2019

 In cases where a single fixed IPsec policy has been pre-distributed,
 it is not necessary for the peer to send or receive that policy in a
 DIM. However, in cases where an IPsec device needs to indicate the
 policy it is willing to use, the following data elements SHOULD be
 included in a DIM:

 o An IPsec policy or policies

 o A lifetime bounding the use of the DH public number. When this DH
 public number is used to create an IPsec SA, the shortest lifetime
 is used as an SA lifetime for the pair of generated IPsec SAs.
 When the lifetime expires, the local version of the DIM and IPsec
 SAs generated from it MUST be deleted.

Appendix A suggests different ways that this policy may be included
 in a controller protocol. This document does not define a normative
 protocol format, because the DIM very likely needs to be integrated
 into an existing controller protocol rather than be an independent
 key management protocol. However, the controller protocol MUST
 provide a strong authentication between the device and the
 controller, and integrity of the messages MUST be provided.
 Confidentiality of the messages SHOULD also be provided. It is
 important that the controller protocol be protected with algorithms
 that are at least as strong as the algorithms used to protect the
 IPsec packets.

6.1. IPsec policy negotiation

 In many controller based networks, there is a single IPsec policy
 used by all devices and there is no need to redistribute or select
 policy details. However, in some circumstances, there may be a need
 to have multiple policy options. This could happen when a controller
 changes the policy and wants to smoothly migrate all devices to the
 new policy. Or it could happen if a network supports devices with
 different capabilities. In these cases, devices need to be able to
 choose the correct policy to use for each other device, and must do
 this without sending additional messages and without sending
 individual messages to each peer. When a device supports multiple
 policies, it MUST include those policies within the DIM. This is
 done by sending multiple distinct policies, in order of preference,
 where the first policy is the most preferred. The policy to use is
 selected by taking the receiver's list of policies (i.e., the list
 advertised by the device that generates Nr), starting with the first
 policy, compare against the initiator's (device that generates Ni)
 list, and choosing the first one found in common. The method
 conforms to the IKEv2 Cryptographic Algorithm Negotiation described
 in Section 2.7 of [RFC7296]. (However, see additional discussion
 when IKEv2 payloads are used in Appendix A.3.1).

https://datatracker.ietf.org/doc/html/rfc7296#section-2.7

Carrel & Weis Expires September 12, 2019 [Page 17]

Internet-Draft Controller-IKE March 2019

 If there is no match, this indicates a controller configuration
 error. These devices MUST NOT establish new SAs until a DIM is
 received that does produce a match.

 When a device supports more than one DH group, then a unique DH
 public number MUST be specified for each in order of preference. The
 selection of which DH group to use follows the same logic as Policy
 selection, using the receiver's list order until a match is found in
 the initiator's list.

7. Security Considerations

 This document proposes that a device re-use an ephemeral Diffie-
 Hellman exponential with multiple peers. There are some known
 potential vulnerabilities to this approach, which can be mitigated by
 the device first validating a peer's public value to be a safe public
 value before combining its own private value with it. The tests
 which MUST be performed are described in [RFC6989]. See [REUSE] for
 additional security considerations when reusing ephemeral Diffie-
 Hellman keys.

 A controller acts as a "trusted third party", which asserts that a
 particular Diffie-Hellman public value is associated with a
 particular entity. A device receiving the public key is not required
 to validate the assertion.

 A subverted controller can act as a "man-in-the-middle" between a
 pair of devices. The easiest attack would be for the attacker to
 adjust the routing for the desired traffic through a compromised
 gateway and directly observe the cleartext. It is also possible that
 a subverted controller could provide a device with a Diffie-Hellman
 public value that actually belongs to a compromised gateway rather
 than the intended gateway, but doing so does not seem to be
 necessary. Nonetheless, the attack of a subverted controller can be
 mitigated by having a device sign its Diffie-Hellman public value
 (e.g, as a CMS Signed data object), where the receiver validates the
 digital signature on the object. However, this adds significant
 processing cost to a rekey and does not fit the controller-based
 network architecture model.

 A subverted IPsec device whose DH pair has been compromised would be
 vulnerable to all of its IPsec traffic using that DH pair being
 compromised. Assuming the use of strong DH algorithms (including
 quantum resistant algorithms as they become available), the
 compromise would most likely be due to the device itself being
 compromised. Such a compromised device is also vulnerable to a
 direct plaintext compromise.

https://datatracker.ietf.org/doc/html/rfc6989

Carrel & Weis Expires September 12, 2019 [Page 18]

Internet-Draft Controller-IKE March 2019

 PFS is achieved between rekey periods, as DH pairs are required to be
 generated independently. However, because a device uses the same
 long-term key to generate session key with multiple peers, there is
 no PFS between sessions within the same rekey period. To reduce key
 exposure outside of a rekey period, when a connection is closed each
 endpoint MUST forget not only the keys used by the connection but
 also any information that could be used to recompute those keys.
 However, the DH private key value and the nonce distributed with it
 may be forgotten only once the last IPsec SA that uses the private
 key value is removed from the SAD and there is no chance that a new
 IPsec SA could be setup that requires the private key value.

 If quantum resistance is considered to be an issue, the controller
 can distribute a PSK, which could be used to create the SK_d in the
 manner shown in [I-D.ietf-ipsecme-qr-ikev2].

8. IANA Considerations

 This memo specifies no IANA actions.

9. Acknowledgements

 Graham Bartlett provided many useful comments and suggestions. Rafa
 Marin-Lopez and Gabriel Lopez-Millan provided valuable reviews and
 advice regarding SDN use cases.

10. References

10.1. Normative References

 [IKEV2-IANA]
 IANA, "Internet Key Exchange Version 2 (IKEv2)
 Parameters", February 2016,
 <http://www.iana.org/assignments/ikev2-parameters/

ikev2-parameters.xhtml#ikev2-parameters-8>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4301] Kent, S. and K. Seo, "Security Architecture for the
 Internet Protocol", RFC 4301, DOI 10.17487/RFC4301,
 December 2005, <https://www.rfc-editor.org/info/rfc4301>.

http://www.iana.org/assignments/ikev2-parameters/ikev2-parameters.xhtml#ikev2-parameters-8
http://www.iana.org/assignments/ikev2-parameters/ikev2-parameters.xhtml#ikev2-parameters-8
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc4301
https://www.rfc-editor.org/info/rfc4301

Carrel & Weis Expires September 12, 2019 [Page 19]

Internet-Draft Controller-IKE March 2019

 [RFC6989] Sheffer, Y. and S. Fluhrer, "Additional Diffie-Hellman
 Tests for the Internet Key Exchange Protocol Version 2
 (IKEv2)", RFC 6989, DOI 10.17487/RFC6989, July 2013,
 <https://www.rfc-editor.org/info/rfc6989>.

 [RFC7296] Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T.
 Kivinen, "Internet Key Exchange Protocol Version 2
 (IKEv2)", STD 79, RFC 7296, DOI 10.17487/RFC7296, October
 2014, <https://www.rfc-editor.org/info/rfc7296>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

10.2. Informative References

 [I-D.ietf-i2nsf-sdn-ipsec-flow-protection]
 Lopez, R. and G. Lopez-Millan, "Software-Defined
 Networking (SDN)-based IPsec Flow Protection", draft-ietf-

i2nsf-sdn-ipsec-flow-protection-03 (work in progress),
 October 2018.

 [I-D.ietf-ipsecme-qr-ikev2]
 Fluhrer, S., McGrew, D., Kampanakis, P., and V. Smyslov,
 "Postquantum Preshared Keys for IKEv2", draft-ietf-

ipsecme-qr-ikev2-07 (work in progress), January 2019.

 [I-D.sajassi-bess-secure-evpn]
 Sajassi, A., Banerjee, A., Thoria, S., Carrel, D., and B.
 Weis, "Secure EVPN", draft-sajassi-bess-secure-evpn-00
 (work in progress), October 2018.

 [REUSE] Menezes, A. and B. Ustaoglu, "On Reusing Ephemeral Keys In
 Diffie-Hellman Key Agreement Protocols", December 2008,
 <http://www.cacr.math.uwaterloo.ca/techreports/2008/

cacr2008-24.pdf>.

 [RFC7018] Manral, V. and S. Hanna, "Auto-Discovery VPN Problem
 Statement and Requirements", RFC 7018,
 DOI 10.17487/RFC7018, September 2013,
 <https://www.rfc-editor.org/info/rfc7018>.

 [RFC7426] Haleplidis, E., Ed., Pentikousis, K., Ed., Denazis, S.,
 Hadi Salim, J., Meyer, D., and O. Koufopavlou, "Software-
 Defined Networking (SDN): Layers and Architecture
 Terminology", RFC 7426, DOI 10.17487/RFC7426, January
 2015, <https://www.rfc-editor.org/info/rfc7426>.

https://datatracker.ietf.org/doc/html/rfc6989
https://www.rfc-editor.org/info/rfc6989
https://datatracker.ietf.org/doc/html/rfc7296
https://www.rfc-editor.org/info/rfc7296
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/draft-ietf-i2nsf-sdn-ipsec-flow-protection-03
https://datatracker.ietf.org/doc/html/draft-ietf-i2nsf-sdn-ipsec-flow-protection-03
https://datatracker.ietf.org/doc/html/draft-ietf-ipsecme-qr-ikev2-07
https://datatracker.ietf.org/doc/html/draft-ietf-ipsecme-qr-ikev2-07
https://datatracker.ietf.org/doc/html/draft-sajassi-bess-secure-evpn-00
http://www.cacr.math.uwaterloo.ca/techreports/2008/cacr2008-24.pdf
http://www.cacr.math.uwaterloo.ca/techreports/2008/cacr2008-24.pdf
https://datatracker.ietf.org/doc/html/rfc7018
https://www.rfc-editor.org/info/rfc7018
https://datatracker.ietf.org/doc/html/rfc7426
https://www.rfc-editor.org/info/rfc7426

Carrel & Weis Expires September 12, 2019 [Page 20]

Internet-Draft Controller-IKE March 2019

 [RFC8192] Hares, S., Lopez, D., Zarny, M., Jacquenet, C., Kumar, R.,
 and J. Jeong, "Interface to Network Security Functions
 (I2NSF): Problem Statement and Use Cases", RFC 8192,
 DOI 10.17487/RFC8192, July 2017,
 <https://www.rfc-editor.org/info/rfc8192>.

 [RFC8329] Lopez, D., Lopez, E., Dunbar, L., Strassner, J., and R.
 Kumar, "Framework for Interface to Network Security
 Functions", RFC 8329, DOI 10.17487/RFC8329, February 2018,
 <https://www.rfc-editor.org/info/rfc8329>.

Appendix A. Example Controller protocols

 This section contains suggestions of how a Controller protocol might
 distribute policy for the Controller-based IKE.

A.1. Example: I2NSF

 IPsec devices described in this document could be implemented as an
 Network Security Function (NSF) in the I2NSF Framework [RFC8329]. An
 I2NSF Controller or NSF Manager could distribute a DIM as a new type
 of I2NSF Policy Rule. A YANG configuration data model would need to
 be defined for this. This could be a new "Case 3" defined in
 [I-D.ietf-i2nsf-sdn-ipsec-flow-protection].

A.2. Example: Network Controller

 Site-to-site networks (e.g., an L2VPN or L3VPN) often use a network
 controller to share networking state between routers. When those
 routers use IPsec to protect the communications between themselves,
 this same network controller could distribute DH public number and
 nonces as well. For example, when a BGP Route Reflector (RR) is used
 in a network, a new address family (AFI) could distribute the state
 necessary for a controller-based IPsec key exchange. The BGP session
 between BGP routers and the Route Reflector (RR) would need to at
 least be integrity protected from a man in the middle and SHOULD be
 protected for confidentiality to prevent identity leakage.

 The controller protocol MUST provide for adequate synchronization of
 the state. For example, when IPsec devices are synchronized with a
 key management protocol it is often necessary for the protocol to
 indicate when a device has rebooted and thinks that it is contacting
 peers for the first time. This alerts peers to destroy earlier
 keying state that they may still believe is current.

 One possible method for distributing a DIM within a controller
 protocol is to use a set of IKEv2 payloads. For example, when a
 single set of IPsec policy has been distributed to all IPsec devices

https://datatracker.ietf.org/doc/html/rfc8192
https://www.rfc-editor.org/info/rfc8192
https://datatracker.ietf.org/doc/html/rfc8329
https://www.rfc-editor.org/info/rfc8329
https://datatracker.ietf.org/doc/html/rfc8329

Carrel & Weis Expires September 12, 2019 [Page 21]

Internet-Draft Controller-IKE March 2019

 by a configuration server then the following minimum required data
 elements can be distributed using the following IKEv2 payloads.

 ID, [N(INITIAL_CONTACT),] KE, Ni

 When initiating a rekey, the IPsec device need only distribute its
 new DH public number due to Rule 1. Existing peers receiving the new
 DH public number need not be re-told about the previous DH public
 number. Any new peer that receives and acts upon a "stale"
 controller message (containing the old DH public number) will still
 be able to setup IPsec SAs using the old DH public number, and can
 use them until the new DH public number is received.

A.3. Additional controller protocol considerations

 If the controller protocol is more complicated, there are some
 additional considerations.

A.3.1. Peer-to-peer distribution of IPsec policy

 In some cases an IPsec device may have more than one IPsec policy
 under which it is willing to communicate. This would result in an
 IPsec device using the decision process described in Section 6.1 to
 determine which policy to use between itself and that peer. An IKEv2
 SA payload could be used to distribute the policies, and the decision
 process could be used to determine which single set of policy is to
 be used. Note that the same decision process is followed by both
 peers. It is important that when an SA payload is used, that each
 proposal within the SA payload MUST contain at most a single
 transform for each Transform type (e.g., ENCR and (optionally) ESN
 for combined mode algorithms, ENCR, INTEG, and (optionally) ESN
 otherwise). This is due to the absence of a direct peer-to-peer
 reply message, which would alert the sender of which proposal was
 chosen.

 1. Determine the Responder (as defined in Section 5.2.1.2).

 2. Follow the negotiation rules defined in Section 2.7 of IKEv2
 [RFC7296] (with the restrictions that more than one transform of
 each type MUST NOT be present, and no error notifications are
 returned to the peer). Each peer will independently compare each
 Proposal in the Responder's SA payload to each Proposal in the
 Initiator's SA payload and choose the first match.

 3. If there is no match, then this is considered a controller error,
 and the IPsec devices SHOULD report the error to the controller.

 Payloads distributed in the controller protocol could be as follows:

https://datatracker.ietf.org/doc/html/rfc7296

Carrel & Weis Expires September 12, 2019 [Page 22]

Internet-Draft Controller-IKE March 2019

 ID, [N(INITIAL_CONTACT),] SA, KE, Ni

 where the SA payload contains one or more Proposals, each of this
 includes a transform indicating the Diffie-Hellman group it is
 willing to use (D-H Transform), and IPsec transforms that it is
 willing to use (e.g., ENCR, INTEG, and ESN Transforms). The KE
 payload includes a DH public number matching the D-H Transform.

 Because there is no direct peer-to-peer IKE messages, there is a need
 for peers to reliably know which Proposal in the SA payload was
 chosen. That is, if they do not reliably follow the same decision
 process they may end up installing IPsec SAs with incompatible
 policy. A straightforward method to verify that a peer has chosen
 the same policy is to include the SA Proposal number (SPN) from the
 SA payload in the SPI calculation.

 {p_SPI_i|p_SPI_r} = prf+(Ni | Nr, "SPI generation" | SPNi | SPNr)

 If a device is willing to use more than one DH group, then a single
 SA payload should be distributed, but the included Proposals may
 contain different D-H Transforms. A KE payload must be included for
 each D-H Group that is offered in the SA payload.

 ID, [N(INITIAL_CONTACT),] [SA,] KE, [KE,] Ni

A.3.2. Ordering of messages distributed to a controller

 A controller protocol may require a method of determining ordering of
 messages that are distributed, i.e. a Rekey Counter (RC). It is
 RECOMMENDED that the ordering be defined by a monotonically
 increasing counter value distributed with the IPsec policy. It is
 further RECOMMENDED that to ensure ordering after a device reboot
 that the counter include a "boot count", which increments after each
 reboot. For example, the counter could be a 64-bit counter where the
 high order 32 bits are a "boot count", followed by the counter that
 begins at 1 following the increment of the "boot count".

Appendix B. Choosing whether to use IKEv2 or Controller IKE

 The following list describes the circumstances in which Controller
 IKE may be preferable to IKEv2. Note that Controller IKE does not
 replace IKEv2, but does provide an alternative for some network
 architectures where it is more optimal.

 Trust Model Controller IKE is optimal when a device-to-
 controller trust model is in use. IKEv2 is a
 better approach when IPsec devices require a
 peer-to-peer trust model.

Carrel & Weis Expires September 12, 2019 [Page 23]

Internet-Draft Controller-IKE March 2019

 Latency Controller IKE reduces tunnel session setup
 latency in a device-to-controller trust model.
 Once controller communications hace commenced, a
 session can be initiated with any other IPsec
 device managed by that controller without
 requiring additional key management messages.
 This is optimal when a group of IPsec devices are
 sensitive to latency.

 Load Balancing In some network architectures a full mesh of
 IKEv2 sessions can occur without affecting the
 load of IPsec and IKEv2 processing on any of the
 communicating IPsec devices, including having
 protocol state machinery to handle an IPsec peer
 device that is overloaded and not reliably
 responding. But when a set of IPsec devices is
 very large, this can be problematic. Also, when
 an IPsec device is overloaded there may be re-
 transmissions of IKEv2 messages, which further
 complicates protocol state. The simplified
 control plane of Controller IKE makes load
 balancing a purely local matter, where the
 installation of IPsec IPsec SAs takes into
 consideration only available local resources.
 And because there are no peer-to-peer key
 management messages, no re-transmissions occur.

 Complexity Full attribute negotiation is not needed in a
 controller environment. Controllers enforce the
 SA policy details, moving complexity away from
 end nodes. This also reduces the attack surface
 on the end node.

 Network Shape In some network topologies a persistent bi-
 directional link does not exist between all
 peers. Sometimes one direction has significantly
 reduced capabilities or is even non-existent.
 This can be either temporary or permanent, and
 sometimes is a purposefully enforced restriction.
 Provided that both peers can communicate with the
 controller, Controller IKE allows for the
 establishment of SAs and rekeying in these
 scenarios.

Carrel & Weis Expires September 12, 2019 [Page 24]

Internet-Draft Controller-IKE March 2019

Appendix C. Implementation Considerations

 The system architecture of many implementations includes a separation
 between a data plane "fastpath" and a "control plane". The data
 plane performs IPsec encapsulation and decapsulation in the simplest
 and most expedient way possible, where the control plane handles the
 complexity of network protocols including state machines, timers,
 network communication, and managing the data plane.

 A typical IKEv2 implementation on Linux works this way, with IKEv2
 running in user space and IPSec packet processing happening in the
 kernel. The kernel, or other fast path implementation, provides an
 interface for the control plane to manage it. This interface
 includes a way to create SAs, delete SAs, and observe statistics for
 SAs. Controller IKE is designed to be able to work with these same
 interfaces. For example a user space implementation of Controller
 IKE could work with a Linux kernel implementation of the IPSec data
 plane without needing kernel modifications. SA creation and deletion
 remains the same. SA creation occurs with Rules 1 and 2. SA
 deletion happens with Rules 3 and 4. Additionally Rules 3 and 4 need
 to observe that traffic has arrived on a particular SA. This can be
 done by observing packet counts on an SA and seeing when they go from
 zero to any positive number. Due to the asynchronous nature of
 Controller IKE, Rules 3 and 4 do not require immediate action when
 the first packets arrive, but instead they can be implemented with
 relaxed polling.

Authors' Addresses

 David Carrel
 Cisco Systems
 170 W. Tasman Drive
 San Jose, California 95134-1706
 USA

 Phone: +1-408-525-7852
 Email: carrel@cisco.com

 Brian Weis
 Independent
 USA

 Email: bew.stds@gmail.com

Carrel & Weis Expires September 12, 2019 [Page 25]

