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Abstract

   This document presents a key exchange method allowing devices managed
   by a controller (e.g., an SDN management station) to create private
   pair-wise IPsec SAs without IKEv2 or any other direct peer-to-peer
   session establishment messages.  The method can be used when a full
   mesh of IKEv2 sessions between IPsec devices is not appropriate.
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   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
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1.  Introduction

   Network architectures typically have included network devices
   directly communicating using network control protocols such as
   routing and signaling protocols.  Additionally, secured
   communications between these network devices are usually accomplished
   with a key agreement protocol such as IKEv2 [RFC7296], in which the
   network devices directly authenticate each other and agree upon
   security policy and keying material to protect communications between
   themselves.  However, controller-based network architectures
   (sometimes called "Software-Defined Networking") are now being
   defined [RFC7426] [RFC8192] and implemented.  In controller-based
   network architectures, control protocols --including key exchange

https://datatracker.ietf.org/doc/html/rfc7296
https://datatracker.ietf.org/doc/html/rfc7426
https://datatracker.ietf.org/doc/html/rfc8192
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   protocols -- are not implemented directly between the network
   devices.  Software-Defined Networks utilize the controller based
   network design while maximizing the scalability that it provides.
   The result is a significantly different trust model; rather than
   apply a peer-to-peer trust model, the network applies a device-to-
   controller trust model.

   The use of IKEv2 in a device-to-controller trust model is not always
   optimal.  Instead, a new key management method is needed for these
   models.  Appendix B describes situations in which Controller IKE may
   be a better choice than IKEv2.

                              +-------------+
                              |             |
                              | Controller  |
                              |             |
                              +-+----+-----++
                                |    |     |
                +---------------+    |     +--------------+
                |              Control Plane              |
                |                    |                    |
                |                    |                    |
             +--+--+              +--+--+              +--+--+
             |     |              |     |              |     |
             |  A  |              |  B  |              |  C  |
             |     |              |     |              |     |
             +-+-+-+              ++--+-+              +-+-+-+
               | |                 |  |                  | |
               | +-----------------+  +------------------+ |
               +-------------------------------------------+
                             Secured Data Plane

             Figure 1: Controller-based Secured Communications

   Figure 1 shows an example controller based network design.  Three
   network devices (labeled A, B, and C) setup a protected control plane
   connection to a Controller.  The Controller distributes policy to the
   network devices, which enables them to securely communicate in the
   data plane.

   When one considers adding a controller to a key exchange method, it
   is tempting to give it the task of generating and distributing
   session keys directly to network devices.  However, such a design has
   several security considerations.  Because such a controller would
   have all session keys it could become an active participant or a
   passive monitor to the secured communications.  Also, for scalability
   reasons one might consider having a controller distribute session
   keys that are group keys, either a single group key or a set of group
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   keys that devices use to protect communications between them.  This
   document does not specify the use of group session keys.

   Many key exchange methods (such as IKEv2) use a Diffie-Hellman (DH)
   algorithm to derive keys.  When combined with an authentication
   method, the key exchange method allows two network devices to
   generate private pair-wise keys with each other.  This document
   presents a key exchange method making use of the device-to-controller
   trust model, where a controller is used to distribute keying material
   and policy between network devices, also resulting in the devices
   generating private pair-wise keys with each other.  DH public values
   are provided to controllers from IPsec devices, where the controller
   relays the DH public values to authorized peers of that IPsec device
   as defined by a centralized policy.  Network devices then create and
   install private pair-wise IPsec session keys to be used to secure
   communications with their peers.

   Controller-based key exchange methods can be used to create a
   Gateway-to-Gateway VPN [RFC7018] in either a Full-Mesh Topology or
   Dynamic Full-Mesh Topology.

   Although IKEv2 is not used in this approach, the key management
   interfaces between IKEv2 and IPsec defined in RFC 7296 are maintained
   as much as possible.

1.1.  Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

2.  Overview

   In Controller-IKE a controller acts as a trusted third party, which
   relays policy and keying material between IPsec devices.  The
   controller can be a standalone device, or integrated into a
   management station.  Communications between the controller and the
   IPsec devices MUST be authenticated, encrypted, and integrity-
   protected.

   All algorithms are selected by the controller or a management station
   associated with the controller.  The combination of a controller and
   a set of IPsec devices comprises a cooperating group of devices that
   make up a VPN, where each IPsec device is authorized to communicate
   with other IPsec devices in the group.  Controller policy may allow

https://datatracker.ietf.org/doc/html/rfc7018
https://datatracker.ietf.org/doc/html/rfc7296
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
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   an IPsec device to communicate with all other IPsec devices in the
   group, or may restrict it to a subset of those devices.

   DH public values are distributed to the controller from each IPsec
   device and redistributed from the controller to each authorized peer
   IPsec device.  Each IPsec device creates and maintains a DH pair,
   which it uses to communicate with other members of the VPN.  This
   distribution of DH public values (and other related values) is
   intended to be embedded into an existing network device/controller
   protocol.  In particular, Controller-IKE provides a mechanism for
   secure key management and only key management.  It does not provide
   policy information or configuration as that is assumed to be provided
   by the controller.  One such controller protocol
   [I-D.ietf-i2nsf-sdn-ipsec-flow-protection] is being developed at this
   time in the IETF I2NSF working group.  Another controller protocol
   [I-D.sajassi-bess-secure-evpn] is being developed by the IETF BESS
   working group.

3.  Generating Initial IPsec SAs

   When an IPsec device begins operation, it generates a DH pair, using
   an algorithm defined in the IKEv2 Diffie-Hellman Group Transform IDs
   [IKEV2-IANA].  If the device does not have any active peers it simply
   distributes its DH public value to the Controller, along with a nonce
   to be used during SA creation.  Whenever a DH pair is created, a new
   nonce MUST also be created.  Whenever DH public values are
   transmitted, they are transmitted with the corresponding nonce.
   Whenever a DH private or DH public value is used, it is used along
   with the corresponding nonce.  However, in the diagrams and
   descriptions below, the nonces are often left out for the sake of
   clarity.

   Upon receiving a peer's DH public value and nonce, the receiver
   creates IPsec SAs (as described in Section 5.2).  For each peer, a
   pair of IPsec SAs are created by combining the IPsec device's own DH
   private value with the DH public number received from the Controller.
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                      +---+    +----------+     +---+
                      | A |    |Controller|     | B |
                      +-+-+    +-----+----+     +-+-+
           +----------+ |            |            |
           |Generate  | |            |            | +----------+
           |DH pair a1| |            |            | |Generate  |
           +----------+ |  a1-pub    |            | |DH pair b1|
                        +----------> |    b1-pub  | +----------+
                        |            | <----------+
                        |            |            |
                        |            |  a1-pub    |
                        |    b1-pub  +----------> | +-----------+
          +-----------+ | <----------+            | |Create SA: |
          |Create SAs:| |            |            | |  Tx(b1-a1)|
          |  Tx(a1-b1)| |            |            | |  Rx(a1-b1)|
          |  Rx(b1-a1)| |            |            | +-----------+
          +-----------+ |            |            |
                        |            |            |
                        | IPsec ESP Tx(a1-b1)     |
                        +-----------------------> |
                        |            |            |
                        |     IPsec ESP Tx(b1-a1) |
                        | <-----------------------+
                        |            |            |
                        +            +            +

        Figure 2: Generation of Initial IPsec SAs between two peers

   Figure 2 shows IPsec SA generation between a pair of IPsec devices.
   Two IPsec devices (A and B shown in Figure 1) join the network.  Each
   creates it's own DH pair (labelled "a1" on A and "b1" on B), and
   distributes the DH public value (labelled a1-pub and b1-pub) to the
   Controller.  The controller forwards the DH public value to all
   authorized peers, although for simplicity of exposition the figure
   only shows the two IPsec devices.

   When each device receives the peer's DH public value, a pair of IPsec
   SAs are generated: one outbound and one inbound.  As shown in the
   figure, A generates an outbound SA labeled Tx(a1-b1), representing
   that it has been generated using A's DH pair labeled a1 and B's DH
   pair labeled b1.  B generates the same IPsec SA as an inbound SA,
   which is labeled Rx(a1-b1).  Similarly, A generates an inbound IPsec
   SA labelled Rx(b1-a1), which is the same IPsec SA on B labelled
   Tx(b1-a1).

   This process repeats on both A and B as they discover other IPsec
   devices with which they are authorized to communicate.
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4.  Rekey of IPsec SAs

   Any IPsec device may initiate a rekey at any time.  Common reasons to
   perform a rekey include a local time or volume based policy, or may
   be the result of a cipher counter mode Initialization Vector (IV)
   counter nearing its final value.  The rekey process is performed
   individually for each remote peer.  If rekeying is performed with
   multiple peers simultaneously, then the decision process and rules
   described in this rekey are performed independently for each peer.

   A decision process choosing an outbound IPsec SA is followed when
   certain events occur, as described in the rules below.  The same
   decision process is followed regardless of whether the device is
   performing a rekey or responding to a peer's rekey.  The decision
   process is:

   1.  Determine the outbound SAs with the remote peer's most recently
       distributed DH public value.

   2.  Determine which of those outbound SAs are "live".  A "live"
       outbound SA is one built from a DH value from the local peer for
       which it has observed inbound traffic using any SA based on the
       same local DH pair.  This proves that the remote peer is prepared
       to receive traffic protected by that DH pair.

   3.  Choose the "live" outbound SA built from the local peer's most
       recent DH public value.

   A rekey operation follows these four basic rules.

   Rule 1  When an IPsec device needs to perform a rekey with a remote
      peer, it creates a new pair of IPsec SAs by combining the new DH
      private value with the peer's DH public values.  If the remote
      peer is also in the midst of a rollover and its DH public value
      has already been received, then this may result in creating two
      sets of SAs: one pair with the remote peer's old DH public value,
      and one pair with the remote peer's new DH public value.

   Rule 2  When an IPsec device receives a new remote peer's DH public
      value from the controller it creates and installs a new pair of
      IPsec SAs by combining the remote peer's new DH public value with
      its own current local DH private values.  If both devices are in
      the midst of a rollover, this may result in creating two sets of
      SAs with the remote peer's new DH public value: one with the local
      old DH private value, and one with the local new DH private value.
      The outbound SA decision process is performed.
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   Rule 3  The first IPsec packet received by a rekeying IPsec device on
      an inbound SA using its new DH pair causes it to perform the
      outbound SA decision process.  It may also shorten the lifetime of
      IPsec SAs using its own old DH pair that are shared with this
      peer, as they are no longer in use (other than the inbound SA
      might receive packets in transit).

   Rule 4  The first IPsec packet received from a remote rekeying IPsec
      device using the remote peer's new DH pair allows the IPsec device
      to shorten the lifetime of IPsec SAs shared with this peer using
      unused remote DH pairs.

   Two examples follow: a single IPsec device performing a rekey with
   its peers, and two IPsec devices performing a simultaneous rekey.
   The same rekey operations described above are exhibited in both
   cases.

4.1.  Single IPsec Device Rekey

   When a single IPsec device begins a rekey, it first generates a new
   DH pair and generates new IPsec SA pairs for each peer with which it
   is communicating.  It does this by combining the new DH private value
   with each peer's existing DH public value.  Only when the new IPsec
   SAs have been installed and the device is prepared to receive on
   those new SAs does it then distribute the new DH public value to the
   Controller, which forwards the new DH public value to its authorized
   peers.  The rekeying IPsec device continues to transmit on the old
   SAs for each peer until it observes that peer begin to transmit on
   the new SAs.
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                      +---+    +----------+     +---+
                      | A |    |Controller|     | B |
                      +-+-+    +-----+----+     +-+-+
           +----------+ |            |            |
           |Generate  | |            |            |
           |DH pair a2| |            |            |
           +----------+ |            |            |
       +--------------+ |            |            |
       |Rule 1        | |            |            |
       | Create SAs   | |            |            |
       |  Tx(a2-b1)   | |            |            |
       |  Rx(b1-a2)   | |            |            |
       | Use Tx(a1-b1)| |  a2-pub    |            |
       +--------------+ +----------> |            |
                        |            |            |
                        | IPsec ESP Tx(a1-b1)     |
                        +-----------------------> |
                        |     IPsec ESP Tx(b1-a1) |
                        | <-----------------------+
                        |            |            |
                        |            |  a2-pub    |
                        |            +----------> | +--------------+
                        |            |            | |Rule 2        |
                        |            |            | | Create SAs   |
                        |            |            | |  Tx(b1-a2)   |
                        |            |            | |  Rx(a2-b1)   |
                        |     IPsec ESP Tx(b1-a2) | | Use Tx(b1-a2)|
       +--------------+ | <-----------------------+ +--------------+
       |Rule 3        | |            |            |
       | Use Tx(a2-b1)| |            |            |
       | Shorten life | |            |            |
       |  Tx(a1-b1)   | | IPsec ESP Tx(a2-b1)     |
       |  Rx(b1-a1)   | +---------------------->  | +--------------+
       +--------------+ |            |            | |Rule 4        |
                        |            |            | | Shorten life |
                        |            |            | |  Tx(b1-a1)   |
                        |            |            | |  Rx(a1-b1)   |
                        |            |            | +--------------+
                        +            +            +

             Figure 3: Single IPsec Device Rekey Protocol Flow

   In Figure 3, device A is shown as performing a rekey, and it creates
   a DH pair labelled "a2".  The following steps are followed.

   1.  Rule 1 requires creating new IPsec SAs for each peer.  In this
       example, A creates a new outbound IPsec SA to communicate with B
       labelled Tx(a2-b1), and a new inbound IPsec SA labelled
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       Rx(b1-a2).  A continues to transmit on Tx(a1-b1) (generated as
       shown in Figure 2).

   2.  A distributes the new public value (a2-pub) to the Controller who
       forwards it to A's authorized peers, which includes B.  During
       this time, both A and B continue to use the initial IPsec SAs
       setup between them using a1 and b1.

   3.  When B receives a2 from the controller, B follows Rule 2 by
       creating Tx(b1-a2), Rx(a2-b1).  B also follows the outbound SA
       decision process, which causes it to change its outbound IPsec SA
       to A to Tx(b1-a2).

   4.  When A receives a packet protected by Rx(b1-a2), it follows Rule
       3 and performs the outbound SA decision process.  This causes it
       to change its outbound IPsec SA to Use Tx(a2-b1).  It also
       optionally shortens the lifetime of the old IPsec SAs shared with
       this peer.

   5.  When B receives a packet protected by Tx(a2-b1), it follows Rule
       4, in which it may shorten the lifetime of the old IPsec SAs
       shared with this peer using DH pairs that are no longer in use.

   At the end of the rekey, both A and B retain a single DH pair, and a
   single set of IPsec SAs between them.

4.2.  Simultaneous Rekey of IPsec Devices

   When two or more IPsec device simultaneously begin a rekey, they each
   follow the rekeying method described in the previous section.  Every
   rekeying IPsec device generates a new DH pair and generates new IPsec
   SA pairs for each peer with which it is communicating by combining
   their new DH private value with each peer's existing DH public value.
   When this completes on a particular IPsec device, it distributes the
   new DH public value to the Controller, which forwards it to its
   authorized peers.  Each continues to transmit on the existing SAs for
   each peer until it observes that peer transmitting on the new SAs.
   During a simultaneous rekey up to four pairs of IPsec SAs may be
   temporarily created, but the four rules ensure that they converge on
   a single new set of IPsec SAs.
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                         +---+    +----------+     +---+
                         | A |    |Controller|     | B |
                         +-+-+    +-----+----+     +-+-+
   +---------------------+ |            |            | +--------------+
   |Generate DH pair a2  | |            |            | |Gen DH pair b2|
   +---------------------+ |            |            | +--------------+
   +---------------------+ |            |            | +--------------+
   |Rule 1               | |            |            | |Rule 1        |
   | Create SAs          | |            |            | | Create SAs   |
   |  Tx(a2-b1),Rx(b1-a2)| |            |            | |  Tx(b2-a1)   |
   | Use Tx(a1-b1)       | |  a2-pub    |            | |  Rx(a1-b2)   |
   +---------------------+ +----------> |    b2-pub  | | Use Tx(b1-a1)|
                           |            | <----------+ +--------------+
                           | IPsec ESP Tx(a1-b1)     |
                           +-----------------------> |
                           |     IPsec ESP Tx(b1-a1) |
                           | <-----------------------+
                           |            |  a2-pub    |
                           |  b2-pub    +----------> | +--------------+
   +---------------------+ | <----------+            | |Rule 2        |
   |Rule 2               | |            |            | | Create SAs   |
   | Create SAs          | |            |            | |  Tx(b1-a2)   |
   |  Tx(a1-b2),Rx(b2-a1)| |            |            | |  Rx(a2-b1)   |
   |  Tx(a2-b2),Rx(b2-a2)| |            |            | |  Tx(b2-a2)   |
   | Use Tx(a1-b2)       | |            |            | |  Rx(a2-b2)   |
   +---------------------+ |     IPsec ESP Tx(b1-a2) | | Use Tx(b1-a2)|
                           | <-----------------------+ +--------------+
                           | IPsec ESP Tx(a1-b2)     |
   +---------------------+ +-----------------------> | +--------------+
   |Rule 3               | |            |            | |Rule 3        |
   | Use Tx(a2-b2)       | |            |            | | Use Tx(b2-a2)|
   | Shorten life        | |            |            | | Shorten life |
   |  Tx(a1-b1),Rx(b1-a1)| |            |            | |  Tx(b1-a1)   |
   |  Tx(a1-b2),Rx(b2-a1)| |            |            | |  Rx(a1-b1)   |
   +---------------------+ | IPsec ESP Tx(a2-b2)     | |  Tx(b1-a2)   |
                           +---------------------->  | |  Rx(a2-b1)   |
                           |    IPsec ESP Tx(b2-a2)  | +--------------+
   +---------------------+  <-----------------------+  +--------------+
   | Rule 4              | |            |            | |Rule 4        |
   | Shorten life        | |            |            | | Shorten life |
   |  Tx(a2-b1),Rx(b1-a2)| |            |            | |  Tx(b1-a2)   |
   +---------------------+ |            |            | |  Rx(a2-b1)   |
                           +            +            + +--------------+

          Figure 4: Simultaneous IPsec Device Rekey Protocol Flow

   In Figure 4, device A and device B are both shown as performing a
   rekey.  Their initial state corresponds to the final state shown in
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   Figure 2 (i.e., they are communicating using a single pair of IPsec
   SAs created from DH pairs "a1" and "b1".

   1.  A and B follow Rule 1, which includes creating new IPsec SAs for
       each peer.  In this example, A creates a new outbound IPsec SA to
       communicate with B labelled Tx(a2-b1), and a new inbound IPsec SA
       labelled Rx(b1-a2).  B creates a new outbound IPsec SA to
       communicate with B labelled Tx(a1-b2), and a new inbound IPsec SA
       labelled Rx(b2-a1).  A and B continue to transmit on IPsec SAs
       previously created from DH pairs "a1" and "b1".

   2.  A distributes the new public value (a2-pub) to the Controller who
       forwards it to A's authorized peers, which includes B.  B also
       distributes the new public value (b2-pub) to the Controller who
       forwards it to B's authorized peers, which includes A.

   3.  When A and B receive each other's new peer DH public value from
       the controller they follows Rule 2.  But because now there are
       four DH values that could be in used between A and B, they must
       be prepared to use IPsec SAs using each permutation of DH values:
       a1-b1, a1-b2, a2-b1, a2-b2.  Prior to implementing Rule 2, each
       has already created sets of IPsec SAs matching two of the
       permutations, so just two more sets must be generated during Rule
       2.

       *  One pair is created using the IPsec device's old DH pair with
          the peer's new DH pair.  This is necessary, because the peer
          may transmit on this pair.

       *  One pair is created using the IPsec device's new DH pair with
          the peer's new DH pair.  This is the set of IPsec SAs that
          will be used at the end of the rekey process.

       Each peer begins transmitting on an IPsec SA that combines the
       remote peer's new DH pair and its own old DH pair, which is the
       most recent "live" SA on which it can transmit.  I.e., A begins
       transmitting on Tx(a1-b2) and B begins transmitting on Tx(b1-a2).

   4.  When A receives a packet protected by Rx(b1-a2), it understands
       that the remote peer has received its new DH public value.  A
       also understands that because of Rule 2 that B must have created
       IPsec SAs using a2-b2.  This allows A to follow Rule 3 and change
       its outbound IPsec SA to Use Tx(a2-b2).  Similarly, when B
       receives a packet protected by Rx(a1-b2), B recognizes that it
       can also begin to transmit using Tx(b2-a2).  Note that it also
       possible that A will receive a packet protected by Rx(b2-a2) or B
       will receive a packet protected by Rx(a2-b2), and then knows it
       can transmit on an IPsec SA using both of the new DH pairs.
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   5.  Also in Rule 3, Both A and B optionally shorten the lifetime of
       older IPsec SAs shared with this peer derived from unused DH
       pairs to be cleaned up.  A shortens the lifetime of SAs based on
       a1.  B shortens the lifetime of SAs based on b1.

   6.  When A and B receive a packet protected by the remote peer's
       latest DH pair, they shortens the lifetime of SAs based on the
       remote peer's unused DH pair.

5.  IPsec Database Generation

   The PAD, SPD, and SAD all need to be setup as defined in the IPsec
   Security Architecture [RFC4301].

5.1.  The Security Policy Database (SPD)

   The SPD is implemented using methods outside the scope of this
   document.  The SPD describes the type of traffic that will be
   protected between IPsec devices and the policy (e.g., ciphers) used
   to create SAs.

5.2.  Security Association Database (SAD)

   The SAD is constructed from IPsec policy (e.g., ciphers) obtained
   (depending on the controller protocol method) either from the
   controller or distributed by a peer (see Section 6).

   Keying Material is generated following the method defined in IKEv2,
   and depends on SPIs, nonces, and the Diffie-Hellman shared secret.

   The following sections describe how the necessary values are
   determined.

5.2.1.  Generating Keying Material for IPsec SAs

5.2.1.1.  g^ir

   A DH public value is distributed from the peer.

   A DH shared secret (g^ir) is computed using the peer's public value,
   and the device's private value.  The DH group to be used must be
   known by the device.  Options include distribution by an SDN
   controller, or distribution by the peer with the DH public value (see

Section 6).

https://datatracker.ietf.org/doc/html/rfc4301
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5.2.1.2.  Nonces

   Nonces are distributed with a DH public value, and are used only with
   that value.  It is RECOMMENDED that nonces are generated as described
   in Section 2.10 of [RFC7296].

   IKEv2 Key derivation specifies an initiator's nonce (Ni) and a
   responder's nonce (Nr).  While neither peer is truly initiating a
   session), in order to fit the IKE key material models the roles must
   be assigned.  The initiator is chosen as the peer with the larger
   nonce and the responder is the peer with the smaller.  This does mean
   that the roles can change for each rekey and for each SA within a
   rekey.

5.2.1.3.  SPIs

   SPI values that are unique to each generation of keying material need
   to be determined.  While each peer could distribute its own inbound
   SA value, the SPI value would be used by many peers.  Although this
   is not a problem for an SA lookup (lookup can include the source and
   destination IP addresses), experience has shown that this is sub-
   optimal for some hardware SA lookup algorithms.  Instead, this
   specification proposes generating values that are unpredictable and
   indistinguishable from randomly-generated SPI values.

   SPI values are generated using the IKEv2 prf+ function, where nonces
   are used as the input to the prf.  This produces a statistically
   random SPI value that should be unique.  However, with a 32 bit value
   there is still a very small, but non-zero, chance of SPIs repeating
   for a given pair of peers.  To prevent this and ensure uniqueness in
   the operational window, we also use the lower 2 bits from each peer's
   rekey counter.

   First the SPIs are taken from the prf+ function as 32 bit values and
   assigned based on which peer is taking the role of initiator and
   which is taking the role of responder.  The p_SPI_i is taken by the
   device providing Ni, where p_SPI_r is taken by the other device.

     {p_SPI_i | p_SPI_r } = prf+(Ni | Nr, "SPI generation")

   Next p_SPI_i and p_SPI_r are mapped from initiator and responder
   roles to local and remote roles based on the choice of Ni and Nr in
   5.2.1.2 and are renamed to p_SPI_local and p_SPI_remote.

   Then, 2 2-bit Rotation Numbers (RN) are generated from the 2 least
   significant bits (LSB) of the 2 rekey counter values (see Section 6).
   These 4 bits replace the least significant bits of p_SPI_local and
   p_SPI_remote with the local RN bits taking the least significant

https://datatracker.ietf.org/doc/html/rfc7296#section-2.10
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   position in p_SPI_local and the remote RN bits taking the least
   significant position in p_SPI_remote.  This shown in the following
   two diagrams with RN_local shown as R_l and RN_remote shown as R_r.

     (MSB)                                                       (LSB)
      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              p_SPI_local bits from prf+               |R_r|R_l|
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     (MSB)                                                       (LSB)
      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |              p_SPI_remote bits from prf+              |R_l|R_r|
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   The reason for changing terminology from initiator/responder to
   local/remote is because the roles of initiator/responder can change
   in every rekey.  The order of RN_local and RN_remote needs to remain
   constant.  If that order was based on initiator/responder, there's a
   risk that if the initiator and responder roles changed and the two
   peers re-keyed on different frequencies, they could end up with
   identical RN values.

   In some circumstances additional values may also need to be added to
   the prf for peers to ensure that they have implemented the same
   policy.  Appendix A.3.1 includes a discussion of when this might be
   needed.  In these cases, only the prf+ inputs are modified and the
   Rotation Numbers MUST still be added as above.

   Because a device is not choosing its inbound SPI, its SA lookup
   process needs to be aware that duplicates could occur across
   different peers.  In that case, the inbound SA Lookup SHOULD include
   a source IP address in addition to the SPI value (see Section 4.1 of
   [RFC4301]).

5.2.1.4.  IPsec key generation

   As described in previous sections, a DH public value and a nonce are
   distributed by peers.  These are used to generate IPsec keys
   following the method defined in the IKEv2.  SKEYSEED is generated
   following Section 2.14 of [RFC7296]:

     SKEYSEED = prf(Ni | Nr, g^ir)

https://datatracker.ietf.org/doc/html/rfc4301#section-4.1
https://datatracker.ietf.org/doc/html/rfc4301#section-4.1
https://datatracker.ietf.org/doc/html/rfc7296#section-2.14
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   KEYMAT can be similarly derived as defined by IKEv2 (Section 2.17 of
   [RFC7296]), although only SK_d is required to be generated (shown in

Section 2.14 of [RFC7296]).

     SK_d = prf+ (SKEYSEED, Ni | Nr | SPIi | SPIr)

     KEYMAT = prf+(SK_d, Ni | Nr)

   However, with the simplification where only SK_d is generated, it can
   be observed that the derivation of SK_d could be skipped entirely,
   and an optimized derivation of KEYMAT could be as follows:

     KEYMAT = prf+ (SKEYSEED, Ni | Nr | SPIi | SPIr)

   Note: A single specification for generating KEYMAT will be determined
   in a future version of this document.

5.3.  Peer Authorization Database (PAD)

   The PAD identifies authorized peers.  PAD entries are either
   statically configured, or may be dynamically updated by the
   controller.

   The PAD omits authentication data for each peer, because it has
   delegated authentication and authorization to the controller.

   The controller protocol MUST be able to describe an identity that a
   receiver can match against its local PAD database, to ensure that the
   peer is an authorized peer.

6.  Policy distributed through the Controller

   An IPsec device distributes to a controller a DH public value and the
   associated information and policy needed to create IPsec SAs in a
   Device Information Message (DIM).  The controller then distributes
   the DIM to all authorized peers of that device.  The following data
   elements MUST be embedded in a DIM message:

   o  DH public number (used for key computation)

   o  Nonce (used for key computation and SPI generation)

   o  Peer identity (used to identify a peer in the PAD)

   o  An Indication whether this is the initial distributed policy

   o  A rekey counter, which increases for each unique DIM sent

https://datatracker.ietf.org/doc/html/rfc7296#section-2.17
https://datatracker.ietf.org/doc/html/rfc7296#section-2.17
https://datatracker.ietf.org/doc/html/rfc7296#section-2.14
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   In cases where a single fixed IPsec policy has been pre-distributed,
   it is not necessary for the peer to send or receive that policy in a
   DIM.  However, in cases where an IPsec device needs to indicate the
   policy it is willing to use, the following data elements SHOULD be
   included in a DIM:

   o  An IPsec policy or policies

   o  A lifetime bounding the use of the DH public number.  When this DH
      public number is used to create an IPsec SA, the shortest lifetime
      is used as an SA lifetime for the pair of generated IPsec SAs.
      When the lifetime expires, the local version of the DIM and IPsec
      SAs generated from it MUST be deleted.

Appendix A suggests different ways that this policy may be included
   in a controller protocol.  This document does not define a normative
   protocol format, because the DIM very likely needs to be integrated
   into an existing controller protocol rather than be an independent
   key management protocol.  However, the controller protocol MUST
   provide a strong authentication between the device and the
   controller, and integrity of the messages MUST be provided.
   Confidentiality of the messages SHOULD also be provided.  It is
   important that the controller protocol be protected with algorithms
   that are at least as strong as the algorithms used to protect the
   IPsec packets.

6.1.  IPsec policy negotiation

   In many controller based networks, there is a single IPsec policy
   used by all devices and there is no need to redistribute or select
   policy details.  However, in some circumstances, there may be a need
   to have multiple policy options.  This could happen when a controller
   changes the policy and wants to smoothly migrate all devices to the
   new policy.  Or it could happen if a network supports devices with
   different capabilities.  In these cases, devices need to be able to
   choose the correct policy to use for each other device, and must do
   this without sending additional messages and without sending
   individual messages to each peer.  When a device supports multiple
   policies, it MUST include those policies within the DIM.  This is
   done by sending multiple distinct policies, in order of preference,
   where the first policy is the most preferred.  The policy to use is
   selected by taking the receiver's list of policies (i.e., the list
   advertised by the device that generates Nr), starting with the first
   policy, compare against the initiator's (device that generates Ni)
   list, and choosing the first one found in common.  The method
   conforms to the IKEv2 Cryptographic Algorithm Negotiation described
   in Section 2.7 of [RFC7296].  (However, see additional discussion
   when IKEv2 payloads are used in Appendix A.3.1).

https://datatracker.ietf.org/doc/html/rfc7296#section-2.7
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   If there is no match, this indicates a controller configuration
   error.  These devices MUST NOT establish new SAs until a DIM is
   received that does produce a match.

   When a device supports more than one DH group, then a unique DH
   public number MUST be specified for each in order of preference.  The
   selection of which DH group to use follows the same logic as Policy
   selection, using the receiver's list order until a match is found in
   the initiator's list.

7.  Security Considerations

   This document proposes that a device re-use an ephemeral Diffie-
   Hellman exponential with multiple peers.  There are some known
   potential vulnerabilities to this approach, which can be mitigated by
   the device first validating a peer's public value to be a safe public
   value before combining its own private value with it.  The tests
   which MUST be performed are described in [RFC6989].  See [REUSE] for
   additional security considerations when reusing ephemeral Diffie-
   Hellman keys.

   A controller acts as a "trusted third party", which asserts that a
   particular Diffie-Hellman public value is associated with a
   particular entity.  A device receiving the public key is not required
   to validate the assertion.

   A subverted controller can act as a "man-in-the-middle" between a
   pair of devices.  The easiest attack would be for the attacker to
   adjust the routing for the desired traffic through a compromised
   gateway and directly observe the cleartext.  It is also possible that
   a subverted controller could provide a device with a Diffie-Hellman
   public value that actually belongs to a compromised gateway rather
   than the intended gateway, but doing so does not seem to be
   necessary.  Nonetheless, the attack of a subverted controller can be
   mitigated by having a device sign its Diffie-Hellman public value
   (e.g, as a CMS Signed data object), where the receiver validates the
   digital signature on the object.  However, this adds significant
   processing cost to a rekey and does not fit the controller-based
   network architecture model.

   A subverted IPsec device whose DH pair has been compromised would be
   vulnerable to all of its IPsec traffic using that DH pair being
   compromised.  Assuming the use of strong DH algorithms (including
   quantum resistant algorithms as they become available), the
   compromise would most likely be due to the device itself being
   compromised.  Such a compromised device is also vulnerable to a
   direct plaintext compromise.

https://datatracker.ietf.org/doc/html/rfc6989
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   PFS is achieved between rekey periods, as DH pairs are required to be
   generated independently.  However, because a device uses the same
   long-term key to generate session key with multiple peers, there is
   no PFS between sessions within the same rekey period.  To reduce key
   exposure outside of a rekey period, when a connection is closed each
   endpoint MUST forget not only the keys used by the connection but
   also any information that could be used to recompute those keys.
   However, the DH private key value and the nonce distributed with it
   may be forgotten only once the last IPsec SA that uses the private
   key value is removed from the SAD and there is no chance that a new
   IPsec SA could be setup that requires the private key value.

   If quantum resistance is considered to be an issue, the controller
   can distribute a PSK, which could be used to create the SK_d in the
   manner shown in [I-D.ietf-ipsecme-qr-ikev2].

8.  IANA Considerations

   This memo specifies no IANA actions.
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   nonces as well.  For example, when a BGP Route Reflector (RR) is used
   in a network, a new address family (AFI) could distribute the state
   necessary for a controller-based IPsec key exchange.  The BGP session
   between BGP routers and the Route Reflector (RR) would need to at
   least be integrity protected from a man in the middle and SHOULD be
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   the state.  For example, when IPsec devices are synchronized with a
   key management protocol it is often necessary for the protocol to
   indicate when a device has rebooted and thinks that it is contacting
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   keying state that they may still believe is current.
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   by a configuration server then the following minimum required data
   elements can be distributed using the following IKEv2 payloads.

     ID, [N(INITIAL_CONTACT),] KE, Ni

   When initiating a rekey, the IPsec device need only distribute its
   new DH public number due to Rule 1.  Existing peers receiving the new
   DH public number need not be re-told about the previous DH public
   number.  Any new peer that receives and acts upon a "stale"
   controller message (containing the old DH public number) will still
   be able to setup IPsec SAs using the old DH public number, and can
   use them until the new DH public number is received.

A.3.  Additional controller protocol considerations

   If the controller protocol is more complicated, there are some
   additional considerations.

A.3.1.  Peer-to-peer distribution of IPsec policy

   In some cases an IPsec device may have more than one IPsec policy
   under which it is willing to communicate.  This would result in an
   IPsec device using the decision process described in Section 6.1 to
   determine which policy to use between itself and that peer.  An IKEv2
   SA payload could be used to distribute the policies, and the decision
   process could be used to determine which single set of policy is to
   be used.  Note that the same decision process is followed by both
   peers.  It is important that when an SA payload is used, that each
   proposal within the SA payload MUST contain at most a single
   transform for each Transform type (e.g., ENCR and (optionally) ESN
   for combined mode algorithms, ENCR, INTEG, and (optionally) ESN
   otherwise).  This is due to the absence of a direct peer-to-peer
   reply message, which would alert the sender of which proposal was
   chosen.

   1.  Determine the Responder (as defined in Section 5.2.1.2).

   2.  Follow the negotiation rules defined in Section 2.7 of IKEv2
       [RFC7296] (with the restrictions that more than one transform of
       each type MUST NOT be present, and no error notifications are
       returned to the peer).  Each peer will independently compare each
       Proposal in the Responder's SA payload to each Proposal in the
       Initiator's SA payload and choose the first match.

   3.  If there is no match, then this is considered a controller error,
       and the IPsec devices SHOULD report the error to the controller.

   Payloads distributed in the controller protocol could be as follows:

https://datatracker.ietf.org/doc/html/rfc7296
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    ID, [N(INITIAL_CONTACT),] SA, KE, Ni

   where the SA payload contains one or more Proposals, each of this
   includes a transform indicating the Diffie-Hellman group it is
   willing to use (D-H Transform), and IPsec transforms that it is
   willing to use (e.g., ENCR, INTEG, and ESN Transforms).  The KE
   payload includes a DH public number matching the D-H Transform.

   Because there is no direct peer-to-peer IKE messages, there is a need
   for peers to reliably know which Proposal in the SA payload was
   chosen.  That is, if they do not reliably follow the same decision
   process they may end up installing IPsec SAs with incompatible
   policy.  A straightforward method to verify that a peer has chosen
   the same policy is to include the SA Proposal number (SPN) from the
   SA payload in the SPI calculation.

     {p_SPI_i|p_SPI_r} = prf+(Ni | Nr, "SPI generation" | SPNi | SPNr)

   If a device is willing to use more than one DH group, then a single
   SA payload should be distributed, but the included Proposals may
   contain different D-H Transforms.  A KE payload must be included for
   each D-H Group that is offered in the SA payload.

    ID, [N(INITIAL_CONTACT),] [SA,] KE, [KE,] Ni

A.3.2.  Ordering of messages distributed to a controller

   A controller protocol may require a method of determining ordering of
   messages that are distributed, i.e. a Rekey Counter (RC).  It is
   RECOMMENDED that the ordering be defined by a monotonically
   increasing counter value distributed with the IPsec policy.  It is
   further RECOMMENDED that to ensure ordering after a device reboot
   that the counter include a "boot count", which increments after each
   reboot.  For example, the counter could be a 64-bit counter where the
   high order 32 bits are a "boot count", followed by the counter that
   begins at 1 following the increment of the "boot count".

Appendix B.  Choosing whether to use IKEv2 or Controller IKE

   The following list describes the circumstances in which Controller
   IKE may be preferable to IKEv2.  Note that Controller IKE does not
   replace IKEv2, but does provide an alternative for some network
   architectures where it is more optimal.

   Trust Model         Controller IKE is optimal when a device-to-
                       controller trust model is in use.  IKEv2 is a
                       better approach when IPsec devices require a
                       peer-to-peer trust model.
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   Latency             Controller IKE reduces tunnel session setup
                       latency in a device-to-controller trust model.
                       Once controller communications hace commenced, a
                       session can be initiated with any other IPsec
                       device managed by that controller without
                       requiring additional key management messages.
                       This is optimal when a group of IPsec devices are
                       sensitive to latency.

   Load Balancing      In some network architectures a full mesh of
                       IKEv2 sessions can occur without affecting the
                       load of IPsec and IKEv2 processing on any of the
                       communicating IPsec devices, including having
                       protocol state machinery to handle an IPsec peer
                       device that is overloaded and not reliably
                       responding.  But when a set of IPsec devices is
                       very large, this can be problematic.  Also, when
                       an IPsec device is overloaded there may be re-
                       transmissions of IKEv2 messages, which further
                       complicates protocol state.  The simplified
                       control plane of Controller IKE makes load
                       balancing a purely local matter, where the
                       installation of IPsec IPsec SAs takes into
                       consideration only available local resources.
                       And because there are no peer-to-peer key
                       management messages, no re-transmissions occur.

   Complexity          Full attribute negotiation is not needed in a
                       controller environment.  Controllers enforce the
                       SA policy details, moving complexity away from
                       end nodes.  This also reduces the attack surface
                       on the end node.

   Network Shape       In some network topologies a persistent bi-
                       directional link does not exist between all
                       peers.  Sometimes one direction has significantly
                       reduced capabilities or is even non-existent.
                       This can be either temporary or permanent, and
                       sometimes is a purposefully enforced restriction.
                       Provided that both peers can communicate with the
                       controller, Controller IKE allows for the
                       establishment of SAs and rekeying in these
                       scenarios.
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Appendix C.  Implementation Considerations

   The system architecture of many implementations includes a separation
   between a data plane "fastpath" and a "control plane".  The data
   plane performs IPsec encapsulation and decapsulation in the simplest
   and most expedient way possible, where the control plane handles the
   complexity of network protocols including state machines, timers,
   network communication, and managing the data plane.

   A typical IKEv2 implementation on Linux works this way, with IKEv2
   running in user space and IPSec packet processing happening in the
   kernel.  The kernel, or other fast path implementation, provides an
   interface for the control plane to manage it.  This interface
   includes a way to create SAs, delete SAs, and observe statistics for
   SAs.  Controller IKE is designed to be able to work with these same
   interfaces.  For example a user space implementation of Controller
   IKE could work with a Linux kernel implementation of the IPSec data
   plane without needing kernel modifications.  SA creation and deletion
   remains the same.  SA creation occurs with Rules 1 and 2.  SA
   deletion happens with Rules 3 and 4.  Additionally Rules 3 and 4 need
   to observe that traffic has arrived on a particular SA.  This can be
   done by observing packet counts on an SA and seeing when they go from
   zero to any positive number.  Due to the asynchronous nature of
   Controller IKE, Rules 3 and 4 do not require immediate action when
   the first packets arrive, but instead they can be implemented with
   relaxed polling.
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