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Abstract

   This draft aims at being a base reference documentation for HTTP-CoAP
   proxy implementors.  It details deployment options, discusses
   possible approaches for URI mapping, and provides useful
   considerations related to protocol translation.

Status of this Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on September 13, 2012.
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   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
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1.  Introduction

   RESTful protocols, such as HTTP [RFC2616] and CoAP
   [I-D.ietf-core-coap], can interoperate through an intermediary proxy
   which performs cross-protocol mapping.

   A reference about the mapping process is provided in Section 8 of
   [I-D.ietf-core-coap].  However, depending on the involved
   application, deployment scenario, or network topology, such mapping
   could be realized using a wide range of intermediaries.

   Moreover, the process of implementing such a proxy could be complex,
   and details regarding its internal procedures and design choices
   deserve further discussion, which is provided in this document.

   This draft is organized as follows:

   o  Section 2 describes terminology to identify different mapping
      approaches and the related proxy deployments;

   o  Section 3 discusses impact of the mapping on URI and describes
      notable options;

   o  Section 4 and Section 5 respectively analyze the mapping from HTTP
      to CoAP and viceversa;

   o  Section 6 discusses possible security impact related to the
      mapping.

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

2.  Terminology

   A device providing cross-protocol HTTP-CoAP mapping is called an
   HTTP-CoAP cross-protocol proxy (HC proxy).

   At least two different kinds of HC proxies exist:

   o  One-way cross-protocol proxy (1-way proxy): This proxy translates
      from a client of a protocol to a server of another protocol but
      not vice-versa.

   o  Two-way (or bidirectional) cross-protocol proxy (2-way proxy):
      This proxy translates from a client of both protocols to a server
      supporting one protocol.

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2119
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   1-way and 2-way HC proxies are realized using the following general
   types of proxies:

   Forward proxy (F):  Is a proxy known by the client (either CoAP or
      HTTP) used to access a specific cross-protocol server
      (respectively HTTP or CoAP).  Main feature: server(s) do not
      require to be known in advance by the proxy (ZSC: Zero Server
      Configuration).

   Reverse proxy (R):  Is a proxy known by the client to be the server,
      however for a subset of resources it works as a proxy, by knowing
      the real server(s) serving each resource.  When a cross-protocol
      resource is accessed by a client, the request will be silently
      forwarded by the reverse proxy to the real server (running a
      different protocol).  If a response is received by the reverse
      proxy, it will be mapped, if possible, to the original protocol
      and sent back to the client.  Main feature: client(s) do not
      require to know in advance the proxy (ZCC: Zero Client
      Configuration).

   Interception proxy (I):  This proxy [RFC3040] can intercept any
      origin protocol request (HTTP or CoAP) and map it to the
      destination protocol, without any kind of knowledge about the
      client or server involved in the exchange.  Main feature:
      client(s) and server(s) do not require to know or be known in
      advance by the proxy (ZCC and ZSC).

   A server-side (SS) proxy is placed in the same network domain of the
   server; Conversely a client-side (CS) is in the same network domain
   of the client.  Differently from these two cases, the proxy is said
   to be External (E).

3.  Cross-protocol resource identification using URIs

   A Uniform Resource Identifier (URI) provides a simple and extensible
   means for identifying a resource.  It enables uniform identification
   of resources via a separately defined extensible set of naming
   schemes [RFC3986].

   URIs are formed of at least three components: scheme, authority and
   path.  The scheme is the first part of the URI, and it often
   corresponds to the protocol used to access the resource.  However, as
   noted in Section 1.2.2 of [RFC3986] the scheme does not imply that a
   particular protocol is used to access the resource.

   Clients using URIs to identify target resources (e.g.  HTTP web
   browsers) may support only a limited set of schemes (i.e. 'http',

https://datatracker.ietf.org/doc/html/rfc3040
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986#section-1.2.2


Castellani, et al.     Expires September 13, 2012               [Page 5]



Internet-Draft              HTTP-CoAP mapping                 March 2012

   'https').  If such clients need to interoperate with resources
   identified by an unsupported scheme (e.g. 'coap'), the existence of a
   URI using a scheme supported by the client is required for
   interoperability.

   Both CoAP and HTTP implement the REST paradigm, so, in principle, the
   same resource can be made available in each protocol if protocol
   translation is applied.

   In general two different procedures can be used by a client to access
   cross-protocol resources:

   Protocol-aware access:  Happens when a client knows the other
      protocol domain and accesses the cross-protocol resource using its
      URI by using an HC proxy.  Example: An HTTP client accesses a CoAP
      resource by addressing it using the 'coap' scheme inside the HTTP
      request (actual protocol translation is provided by the proxy).
      Both HTTP and CoAP allow using different schemes in requests to
      proxies: (i) see Section 4.1.2 of [I-D.ietf-httpbis-p1-messaging],
      and (ii) Section 5.10.3 of [I-D.ietf-core-coap].

   Protocol-agnostic access:  The client accesses the cross-protocol
      resource using an URI with a scheme supported by the client (e.g.
      uses 'http' scheme to access a CoAP resource), URI and protocol
      translation is provided by a cross-protocol proxy.  In order to
      use this method a URI identifying an equivalent resource MUST
      exist, and SHOULD be provided by the cross-protocol proxy.

   URI mapping is NOT required when using protocol-aware access, the
   following section is focused on URI mapping techniques for protocol-
   agnostic access.

3.1.  URI mapping

   When accessing cross-protocol resources in a protocol-agnostic way,
   clients MUST use an URI with a scheme supported by the client.

   Since determination of equivalence of URIs (e.g. whether or not they
   identify the same resource) is based on lexicographic comparison, URI
   domains using different schemes are fully distinct: resources
   identified by the same authority and path tuple change when switching
   the scheme.

   Example: Assume that the following resource exists -
   "coap://node.coap.something.net/foo".  The resource identified by
   "http://node.coap.something.net/foo" may not exist or be non-
   equivalent to the one identified by the 'coap' scheme.
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   If a cross-protocol URI exists providing an equivalent representation
   of the native protocol resource, it can be provided by a different
   URI (in terms of authority and path).  The mapping of an URI between
   HTTP and CoAP is said HC URI mapping.

   Example: The HC URI mapping to HTTP of the CoAP resource identified
   by "coap://node.coap.something.net/foo" is
   "http://node.something.net/foobar".

   The process of providing the HC URI mapping could be complex, since a
   proper mechanism to statically or dynamically (discover) map the
   resource HC URI mapping is required.

   Two static HC URI mappings are discussed in the following
   subsections.

3.1.1.  Homogeneous mapping

   The URI mapping between CoAP and HTTP is called homogeneous, if the
   same resource is identified by URIs with different schemes.

   Example: The CoAP resource "//node.coap.something.net/foo" identified
   either by the URI "coap://node.coap.something.net/foo", and or by the
   URI "http://node.coap.something.net/foo" is the same.  When the
   resource is accessed using HTTP, the mapping from HTTP to CoAP is
   performed by an HC proxy

   When homogeneous HC URI mapping is available, HC-I proxies are easily
   implementable.

3.1.2.  Embedded mapping

   When the HC URI mapping of the resource embeds inside it the
   authority and path part of the native URI, then the mapping is said
   to be embedded.

   Example: The CoAP resource "coap://node.coap.something.net/foo" can
   be accessed at
   "http://hc-proxy.something.net/coap/node.coap.something.net/foo".

   This mapping technique can be used to reduce the mapping complexity
   in an HC reverse proxy.

3.1.2.1.  HTML5 scheme handler registration

   The draft HTML5 standard offers a mechanism that allows an HTTP user
   agent to register a custom scheme handler through an HTML5 web page.
   This feature permits to an HC proxy to be registered as "handler" for
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   URIs with the 'web+coap' or 'web+coaps' schemes using an HTML5 web
   page which embeds the custom scheme handler registration call
   registerProtocolHandler() described in Section 6.5.1.2 of
   [W3C.HTML5].

   Example: the HTML5 homepage of a HC proxy at h2c.example.org could
   include the method call:

   registerProtocolHandler('web+coap', 'proxy?url=%s', 'example HC proxy')

   This registration call will prompt the HTTP user agent to ask for the
   user's permission to register the HC proxy as a handler for all 'web+
   coap' URIs.  If the user accepts, whenever a 'web+coap' link is
   requested, the request will be fulfilled through the HC proxy: URI
   "web+coap://foo.org/a" will be transformed into URI
   "http://h2c.example.org/proxy?url=web+coap://foo.org/a".

4.  HTTP-CoAP implementation

4.1.  Placement and deployment

   In typical scenarios the HC proxy is expected to be server-side (SS),
   in particular deployed at the edge of the constrained network.

   The arguments supporting SS placement are the following:

   TCP/UDP:  Translation between HTTP and CoAP requires also a TCP to
      UDP mapping; UDP performance over the unconstrained Internet may
      not be adequate.  In order to minimize the number of required
      retransmissions and overall reliability, TCP/UDP conversion SHOULD
      be performed at a SS placed proxy.

   Caching:  Efficient caching requires that all the CoAP traffic is
      intercepted by the same proxy, thus an SS placement, collecting
      all the traffic, is strategical for this need.

   Multicast:  To support using local-multicast functionalities
      available in the constrained network, the HC proxy MAY require a
      network interface directly attached to the constrained network.
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                            +------+
                            |      |
                            | DNS  |
                            |      |
                            +------+
                                                --------------------
                                               /                    \
                                              /  /-----\     /-----\ \
                                             /     CoAP       CoAP    \
                                            /    server      server    \
                                           ||    \-----/     \-----/   ||
                                     +----------+                      ||
                                     | HTTP/CoAP|        /-----\       ||
                                     |  Proxy   |          CoAP        ||
                                     |(HC Proxy)|         server       ||
    +------+                         +----------+        \-----/       ||
    |HTTP  |                               ||   /-----\                ||
    |Client|                               ||    CoAP                  ||
    +------+                                \    server                /
                                             \  \-----/               /
                                              \         /-----\      /
                                               \         CoAP       /
                                                \        server    /
                                                 \      \-----/   /
                                                  ----------------

            Figure 1: Server-side HC proxy deployment scenario

   Other important aspects involved in the selection of which type of
   proxy deployment, whose choice impacts its placement too, are the
   following:

   Client/Proxy/Network configuration overhead:  Forward proxies require
      either static configuration or discovery support in the client.
      Reverse proxies require either static configuration, server
      discovery or embedded URI mapping in the proxy.  Interception
      proxies require minimal deployment effor (i.e. web traffic routing
      towards the proxy).

   Scalability/Availability:  Both aspects are typically addressed using
      redundancy.  CS deployments, due to the limited catchment area and
      administrative-wide domain of operation, have looser requirements
      on this.  SS deployments, in dense/popular/critical environments,
      have stricter requirements and MAY need to be replicated.
      Stateful proxies (e.g. reverse) may be complex to replicate.

   Discussion about security impacts of different deployments is covered
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   in Section 6.

   Table 1 shows some interesting HC proxy deployment scenarios, and
   notes the advantages related to each scenario.

             +--------------------------+------+------+------+
             | Feature                  | F CS | R SS | I SS |
             +--------------------------+------+------+------+
             | TCP/UDP                  |    - |    + |    + |
             | Multicast                |    - |    + |    + |
             | Caching                  |    - |    + |    + |
             | Scalability/Availability |    + |  +/- |    + |
             | Configuration            |    - |    - |    + |
             +--------------------------+------+------+------+

                 Table 1: Interesting HC proxy deployments

   Guidelines proposed in the previous paragraphs have been used to fill
   out the above table.  In the first three rows, it can be seen that SS
   deployment is preferred versus CS.  Scalability/Availability issues
   can be generally handled, but some complexity may be involved in
   reverse proxies scenarios.  Configuration overhead could be
   simplified when interception proxies deployments are feasible.

   When support for legacy HTTP clients is required, it may be
   preferable using configuration/discovery free deployments.  Discovery
   procedures for client or proxy auto-configuration are still under
   active-discussion: see [I-D.vanderstok-core-bc],
   [I-D.bormann-core-simple-server-discovery] or
   [I-D.shelby-core-resource-directory].  Static configuration of
   multiple forward proxies is typically not feasible in existing HTTP
   clients.

4.2.  Basic mapping

   The mapping of HTTP requests to CoAP and of the response back to HTTP
   is defined in Section 8.2 of [I-D.ietf-core-coap].

   The mapping of a CoAP response code to HTTP is not straightforward,
   this mapping MUST be operated accordingly to Table 4 of
   [I-D.ietf-core-coap].

   No temporal upper bound is defined for a CoAP server to provide the
   response, thus for long delays the HTTP client or any other proxy in
   between MAY timeout.  Further discussion is available in Section

7.1.4 of [I-D.ietf-httpbis-p1-messaging].

   The HC proxy MUST define an internal timeout for each pending CoAP
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   request, because the CoAP server may silently die before completing
   the request.

   Even if the DNS protocol may not be used inside the constrained
   network, having valid DNS entries for constrained hosts, where
   possible, MAY help HTTP clients to access the resources offered by
   them.

   An example of the usefulness of such entries is described in
Section 4.2.4.

   HTTP connection pipelining (section 7.1.2.2 of
   [I-D.ietf-httpbis-p1-messaging]) is transparent to the CoAP network:
   the HC proxy will sequentially serve the pipelined requests by
   issuing different CoAP requests.

4.2.1.  Caching and congestion control

   The HC proxy SHOULD limit the number of requests to CoAP servers by
   responding, where applicable, with a cached representation of the
   resource.

   Duplicate idempotent pending requests to the same resource SHOULD in
   general be avoided, by duplexing the response to the relevant hosts
   without duplicating the request.

   If the HTTP client times out and drops the HTTP session to the proxy
   (closing the TCP connection), the HC proxy SHOULD wait for the
   response and cache it if possible.  Further idempotent requests to
   the same resource can use the result present in cache, or, if a
   response has still to come, requests will wait on the open CoAP
   session.

   Resources experiencing a high access rate coupled with high
   volatility MAY be observed [I-D.ietf-core-observe] by the HC proxy to
   keep their cached representation fresh while minimizing the number of
   needed messages.  See Section 4.2.2 for a heuristics that enables the
   HC proxy to decide whether observing is a more convenient strategy
   than ordinary refreshing via Max-Age/ETag-based mechanisms.

   Specific deployments may show highly congested servers/resources --
   e.g. multicast resources (see Section 4.3.2), popular servers, etc.
   A careful analysis is required to pick the correct caching policy
   involving these resources, also taking into consideration the
   security implications that may impact these targets specifically, and
   the constrained network in general.

   To this end when traffic reduction obtained by the caching mechanism
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   is not adequate, the HC proxy could apply stricter policing by
   limiting the amount of aggregate traffic to the constrained network.
   In particular, the HC proxy SHOULD pose a rigid upper limit to the
   number of concurrent CoAP request pending on the same constrained
   network; further request MAY either be queued or dropped.  In order
   to efficiently apply this congestion control, the HC proxy SHOULD be
   SS placed.

   Further discussion on congestion control can be found in
   [I-D.eggert-core-congestion-control].

4.2.2.  Cache Refresh via Observe

   There are cases where using CoAP observe protocol to handle proxy
   cache refresh may be preferable to the validation mechanism based on
   ETag's defined in section 5.6.2 of [I-D.ietf-core-coap].  Such
   scenarios include, but are not limited to, sleeping nodes -- with
   possibly high variance in requests' distribution -- which would
   greatly benefit from a server driven cache update mechanism.  Ideal
   candidates would also be the crowded or very low throughput networks,
   where reduction of the total number of exchanged messages is an
   important requirement.

   This subsection aims at providing a practical evaluation method to
   decide whether the refresh of a cached resource R is more efficiently
   handled via ETag validation or by establishing an observation on R.

   Let T_R be the mean time between two client requests to resource R,
   let F_R be the freshness lifetime of R representation, and let M_R be
   the total number of messages exchanged towards resource R. If we
   assume that the initial cost for establishing the observation is
   negligible, an observation on R reduces M_R iff T_R < 2*F_R with
   respect to using ETag validation, that is iff the mean arrival time
   of requests for resource R is greater than half the refresh rate of
   R.

   When using observations M_R is always upper bounded by 2*F_R: in the
   constrained network no more than 2*F_R messages will be generated
   towards resource R.

   Proof: Let T be the evaluated interval of time, let M_Ro be the total
   number of messages exchanged towards resource R using observation,
   and let M_Re be the total number of messages exchanged towards
   resource R using ETag validation.  The following equations hold M_Re
   = T*2/T_R, M_Ro = T/F_R. M_Ro < M_Re iff 1/F_R < 2/T_R, that is T_R <
   2*F_R. The amount of messages saved using observation is T*(2*F_R-
   T_R)/(T_R*F_R).
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   Example: assume that F_R is one second and T_R is 1.5 seconds.  Since
   1.5 is lower than 2*1, an observation on R reduces M_R. In a single
   day of usage, 28800 messages will be saved if the HC proxy
   establishes an observation on R. The single message cost required to
   establish this observation is negligible.

4.2.3.  Use of CoAP blockwise transfer

   An HC proxy SHOULD support CoAP blockwise transfers
   [I-D.ietf-core-block] to allow transport of large CoAP payloads while
   avoiding link-layer fragmentation in LLNs, and to cope with small
   datagram buffers in CoAP end-points as described in
   [I-D.ietf-core-coap].  An HC proxy SHOULD attempt to retry a CoAP PUT
   or POST request with a payload using blockwise transfer if the
   destination CoAP server responded with 4.13 (Request Entity Too
   Large) to the original request.  An HC proxy SHOULD attempt to use
   blockwise transfer when sending a CoAP PUT or POST request message
   that is larger than BLOCKWISE_THRESHOLD.  The value of
   BLOCKWISE_THRESHOLD is implementation-specific, for example it may
   set by an administrator, preset to a known or typical UDP datagram
   buffer size for CoAP end-points, to N times the size of a link-layer
   frame where e.g.  N=5, preset to a known IP MTU value, or set to a
   known Path MTU value.

   For improved latency an HC proxy MAY initiate a blockwise CoAP
   request triggered by an incoming HTTP request even when the HTTP
   request message has not yet been fully received, but enough data has
   been received to send one or more data blocks to a CoAP server
   already.

4.2.4.  Use case: HTTP/IPv4-CoAP/IPv6 proxy

   This section covers the expected common use case regarding an HTTP/
   IPv4 client accessing a CoAP/IPv6 resource.

   While HTTP and IPv4 are today widely adopted communication protocols
   in the Internet, a pervasive deployment of constrained nodes
   exploiting the IPv6 address space is expected: enabling direct
   interoperability of such technologies is a valuable goal.

   An HC proxy supporting IPv4/IPv6 mapping is said to be a v4/v6 proxy.

   An HC v4/v6 proxy SHOULD always try to resolve the URI authority, and
   SHOULD prefer using the IPv6 resolution if available.  The authority
   part of the URI is used internally by the HC proxy and SHOULD not be
   mapped to CoAP.

   Figure 2 shows an HTTP client on IPv4 (C) accessing a CoAP server on



Castellani, et al.     Expires September 13, 2012              [Page 13]



Internet-Draft              HTTP-CoAP mapping                 March 2012

   IPv6 (S) through an HC proxy on IPv4/IPv6 (P).  The DNS has an A
   record for "node.coap.something.net" resolving to the IPv4 address of
   the HC proxy, and an AAAA record with the IPv6 address of the CoAP
   server.

   C     P     S
   |     |     |
   |     |     |  Source: IPv4 of C
   |     |     |  Destination: IPv4 of P
   +---->|     |  GET /foo HTTP/1.1
   |     |     |  Host: node.coap.something.net
   |     |     |  ..other HTTP headers ..
   |     |     |
   |     |     |  Source: IPv6 of P
   |     |     |  Destination: IPv6 of S
   |     +---->|  CON GET
   |     |     |  URI-Path: foo
   |     |     |
   |     |     |  Source: IPv6 of S
   |     |     |  Destination: IPv6 of P
   |     |<----+  ACK
   |     |     |
   |     |     |  ... Time passes ...
   |     |     |
   |     |     |  Source: IPv6 of S
   |     |     |  Destination: IPv6 of P
   |     |<----+  CON 2.00
   |     |     |  "bar"
   |     |     |
   |     |     |  Source: IPv6 of P
   |     |     |  Destination: IPv6 of S
   |     +---->|  ACK
   |     |     |
   |     |     |  Source: IPv4 of P
   |     |     |  Destination: IPv4 of C
   |<----+     |  HTTP/1.1 200 OK
   |     |     |  .. other HTTP headers ..
   |     |     |
   |     |     |  bar
   |     |     |

                 Figure 2: HTTP/IPv4 to CoAP/IPv6 mapping

   The proposed example shows the HC proxy operating also the mapping
   between IPv4 to IPv6 using the authority information available in any
   HTTP 1.1 request.  This way, IPv6 connectivity is not required at the
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   HTTP client when accessing a CoAP server over IPv6 only, which is a
   typical expected use case.

   When P is an interception HC proxy, the CoAP request SHOULD have the
   IPv6 address of C as source (IPv4 can always be mapped into IPv6).

   The described solution takes into account only the HTTP/IPv4 clients
   accessing CoAP/IPv6 servers; this solution does not provide a full
   fledged mapping from HTTP to CoAP.

   In order to obtain a working deployment for HTTP/IPv6 clients, a
   different HC proxy access method may be required, or Internet AAAA
   records should not point to the node anymore (the HC proxy should use
   a different DNS database pointing to the node).

   When an HC interception proxy deployment is used this solution is
   fully working even with HTTP/IPv6 clients.

4.3.  Multiple message exchanges mapping

   This section discusses the mapping of the multicast and observe
   features of CoAP, which have no corresponding primitive in HTTP, and
   as such are not immediately translatable.

   The mapping, which must be considered in both the arrow directions
   (H->C, C->H) may involve multi-part responses, as in the multicast
   use case, asynchronous delivery through HTTP bidirectional
   techniques, and HTTP Web Linking in order to reduce the semantics
   lost in the translation.

4.3.1.  Relevant features of existing standards

   Various features provided by existing standards are useful to
   efficiently represent sessions involving multiple messages.

4.3.1.1.  Multipart messages

   In particular, the "multipart/*" media type, defined in Section 5.1
   of [RFC2046], is a suitable solution to deliver multiple CoAP
   responses within a single HTTP payload.  Each part of a multipart
   entity SHOULD be represented using "message/http" media type
   containing the full mapping of a single CoAP response as previously
   described.

4.3.1.2.  Immediate message delivery

   An HC proxy may prefer to transfer each CoAP response immediately
   after its reception.  This is possible thanks to the HTTP Transfer-

https://datatracker.ietf.org/doc/html/rfc2046#section-5.1
https://datatracker.ietf.org/doc/html/rfc2046#section-5.1


Castellani, et al.     Expires September 13, 2012              [Page 15]



Internet-Draft              HTTP-CoAP mapping                 March 2012

   Encoding "chunked", that enables transferring single responses
   without any further delay.

   A detailed discussion on the use of chunked Transfer-Encoding to
   stream data over HTTP can be found in [RFC6202].  Large delays
   between chunks can lead the HTTP session to timeout, more details on
   this issue can be found in [I-D.thomson-hybi-http-timeout].

   An HC proxy MAY prefer (e.g. to avoid buffering) to transfer each
   response related to a multicast request as soon as it comes in from
   the server.  One possible way to achieve this result is using the
   "chunked" Transfer-Encoding in the HTTP response, to push individual
   responses until some trigger is fired (timeout, max number of
   messages, etc.).

   An example showing immediate delivery of CoAP responses using HTTP
   chunks will be provided in Section 4.3.4, while describing its
   application to an observe session.

4.3.1.3.  Detailing source information

   Under some circumstances, responses may come from different sources
   (i.e. responses to a multicast request); in this case details about
   the actual source of each CoAP response MAY be provided to the
   client.  Source information can be represented using HTTP Web Linking
   as defined in [RFC5988], by adding the actual source URI into each
   response using Link option with "via" relation type.

4.3.2.  Multicast mapping

   In order to establish a multicast communication such a feature should
   be offered either by the network (i.e.  IP multicast, link-layer
   multicast, etc.) or by a gateway (i.e. the HC proxy).  Rationale on
   the methods available to obtain such a feature is out-of-scope of
   this document, and extensive discussion of group communication
   techniques is available in [I-D.ietf-core-groupcomm].

   Additional considerations related to handling multicast requests
   mapping are detailed in the following sections.

4.3.2.1.  URI identification and mapping

   In order to successfully handle a multicast request, the HC proxy
   MUST successfully perform the following tasks on the URI:

https://datatracker.ietf.org/doc/html/rfc6202
https://datatracker.ietf.org/doc/html/rfc5988
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   Identification:  The HC proxy MUST understand whether the requested
      URI identifies a group of nodes.

   Mapping:  The HC proxy MUST know how to distribute the multicast
      request to involved servers; this process is specific of the group
      communication technology used.

   When using IPv6 multicast paired with DNS, the mapping to IPv6
   multicast is simply done using DNS resolution.  If the group
   management is performed at the proxy, the URI or part of it (i.e. the
   authority) can be mapped using some static or dynamic table available
   at the HC proxy.  In Section 3.5 of [I-D.ietf-core-groupcomm]
   discusses a method to build and maintain a local table of multicast
   authorities.

4.3.2.2.  Request handling

   When the HC proxy receives a request to a URI that has been
   successfully identified and mapped to a group of nodes, it SHOULD
   start a multicast proxying operation, if supported by the proxy.

   Multicast request handling consists of the following steps:

   Multicast TX:  The HC proxy sends out the request on the CoAP side by
      using the methods offered by the specific group communication
      technology used in the constrained network;

   Collecting RXs:  The HC proxy collects every response related to the
      request;

   Timeout:  The HC proxy has to pay special attention in multicast
      timing, detailed discussion about timing depends upon the
      particular group communication technology used;

   Distributing RXs to the client:  The HC proxy can distribute the
      responses in two different ways: batch delivering them at the end
      of the process or on timeout, or immediately delivering them as
      they are available.  Batch requires more caching and introduces
      delays but may lead to lower TCP overhead and simpler processing.
      Immediate delivery is the converse.  A trade-off solution of
      partial batch delivery may also be feasible and efficient in some
      circumstances.

4.3.2.3.  Examples

   Figure 3 shows an HTTP client (C) requesting the resource "/foo" to a
   group of CoAP servers (S1/S2/S3) through an HC proxy (P) which uses
   IP multicast to send the corresponding CoAP request.
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C     P     S1    S2    S3
|     |     |     |     |
+---->|     |     |     |  GET /foo HTTP/1.1
|     |     |     |     |  Host: group-of-nodes.coap.something.net
|     |     |     |     |  .. other HTTP headers ..
|     |     |     |     |
|     +---->|---->|---->|  NON GET
|     |     |     |     |  URI-Path: foo
|     |     |     |     |
|     |<----------+     |  NON 2.00
|     |     |     |     |  "S2"
|     |     |     |     |
|     | X---------------+  NON 2.00
|     |     |     |     |  "S3"
|     |     |     |     |
|     |<----+     |     |  NON 2.00
|     |     |     |     |  "S1"
|     |     |     |     |
|     |     |     |     |  ... Timeout ...
|     |     |     |     |
|<----+     |     |     |  HTTP/1.1 200 OK
|     |     |     |     |  Content-Type: multipart/mixed; boundary="response"
|     |     |     |     |  .. other HTTP headers ..
|     |     |     |     |
|     |     |     |     |  --response
|     |     |     |     |  Content-Type: message/http
|     |     |     |     |
|     |     |     |     |  HTTP/1.1 200 OK
|     |     |     |     |  Link: <http://node2.coap.something.net/foo>; rel=via
|     |     |     |     |
|     |     |     |     |  S2
|     |     |     |     |
|     |     |     |     |  --response
|     |     |     |     |  Content-Type: message/http
|     |     |     |     |
|     |     |     |     |  HTTP/1.1 200 OK
|     |     |     |     |  Link: <http://node1.coap.something.net/foo>; rel=via
|     |     |     |     |
|     |     |     |     |  S1
|     |     |     |     |
|     |     |     |     |  --response--
|     |     |     |     |

             Figure 3: Unicast HTTP to multicast CoAP mapping

   The example proposed in the above diagram does not make any
   assumption on which underlying group communication technology is

http://node2.coap.something.net/foo
http://node1.coap.something.net/foo
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   available in the constrained network.  Some detailed discussion is
   provided about it along the following lines.

   C makes a GET request to group-of-nodes.coap.something.net.  This
   domain name MAY either resolve to the address of P, or to the IPv6
   multicast address of the nodes (if IP multicast is supported and P is
   an interception proxy), or the proxy P is specifically known by the
   client that sends this request to it.

   To successfully start multicast proxying operation, the HC proxy MUST
   know that the destination URI involves a group of CoAP servers, e.g.
   the authority group-of-nodes.coap.something.net is known to identify
   a group of nodes either by using an internal lookup table, using DNS
   paired with IPv6 multicast, or by using some other special technique.

   A specific implementation option is proposed to further explain the
   proposed example.  Assume that DNS is configured such that all
   subdomain queries to coap.something.net, such as group-of-
   nodes.coap.something.net, resolve to the address of P. P performs the
   HC URI mapping by removing the 'coap' subdomain from the authority
   and by switching the scheme from 'http' to 'coap' (result:
   "coap://group-of-node.something.net/foo"); "group-of-
   nodes.something.net" is resolved to an IPv6 multicast address to
   which S1, S2 and S3 belong.  The proxy handles this request as
   multicast and sends the request "GET /foo" to the multicast group .

4.3.3.  Multicast responses caching

   We call perfect caching when the proxy uses only the cached
   representations to provide a response to the HTTP client.  In the
   case of a multicast CoAP request, perfect caching is not adequate.
   This section updates the general caching guidelines of Section 4.2.1
   with specific guidelines for the multicast use case.

   Due to the inherent unreliable nature of the NON messages involved
   and since nodes may have dynamic membership in multicast groups,
   responding only with previously cached responses without issuing a
   new multicast request is not recommended.  This perfect caching
   behaviour leads to miss responses of nodes that later joined the
   multicast group, and/or to repeately serve partial representations
   due to message losses.  Therefore a multicast CoAP request SHOULD be
   sent by a HC proxy for each incoming request addressed to a multicast
   group.

   Caching of multicast responses is still a valuable goal to pursue
   reduce network congestion, battery consumption and response latency.
   Some considerations to be performed when adopting a multicast caching
   behaviour are outlined in the following paragraph.
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   Caching of multicast GET responses MAY be implemented by adopting
   some technique that takes into account either knowledge about dynamic
   characteristics of group membership (occurrence or frequency of group
   changes) or even better its full knowledge (list of nodes currently
   part of the group).

   When using a technique exploiting this knowledge, valid cached
   responses SHOULD be served from cache.

4.3.4.  Observe mapping

   By design, and certainly not without a good rationale, HTTP lacks a
   publish-subscriber facility.  This implies that the mapping of the
   CoAP observe semantics has to be created ad hoc, perhaps by making
   use of one of the well-known HTTP techniques currently employed to
   establish an HTTP bidirectional connection with the target resource -
   as documented in [RFC6202].

   In the following sections we will describe some of the approaches
   that can be used to identify an observable resource and to create the
   communication bridging needed to set up an end to end HTTP-CoAP
   observation.

4.3.4.1.  Identification

   In order to appropriately process an observe request, the HC proxy
   needs to know whether a given request is intended to establish an
   observation on the target resource, instead of triggering a regular
   request-response exchange.

   At least two different approaches to identify such special requests
   exist, as discussed below.

4.3.4.1.1.  Observable URI mapping

   An URI is said to be observable whenever every request to it
   implicitly requires the establishment of an HTTP bidirectional
   connection to the resource.

   Such subscription to the resource is always paired, if possible, to a
   CoAP observe session to the actual resource being observed.  In
   general, multiple connections that are active with a single
   observable resource at the same time, are multiplexed to the single
   observe session opened by the intermediary.  Its notifications are
   then de-multiplexed by the HC proxy to every HTTP subscriber.

   An intermediary MAY pair a couple of distinct HTTP URIs to a single
   CoAP observable resource: one providing the usual request-response

https://datatracker.ietf.org/doc/html/rfc6202
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   mediated access to the resource, and the other that always triggers a
   CoAP observe session.

4.3.4.1.1.1.  Discovery

   As shown in Figure 4, in order to know whether an URI is observable,
   an HTTP UA MAY do a preflight request to the target resource using
   the HTTP OPTIONS method (see section 6.2 of
   [I-D.ietf-httpbis-p2-semantics]) to discover the communication
   options available for that resource.

   If the resource supports observation, the proxy adds a Link Header
   [RFC5988] with the "obs" attribute as link-param (see Section 7 of
   [I-D.ietf-core-observe]).

 C       P       S
 |       |       |  OPTIONS /kitchen/temp HTTP/1.1
 +------>|       |  Host: node.coap.something.net
 |       |       |
 |       +------>|  CON GET
 |       |       |  Uri-Path: /.well-known/core?anchor=/kitchen/temp
 |       |       |
 |       |<------+  ACK 2.05
 |       |       |  Payload: </kitchen/temp>;obs
 |       |       |
 |<------+       |  HTTP/1.1 200 OK
 |       |       |  Link: </kitchen/temp>; obs; type="application/atom+xml"
 |       |       |  Allow: GET, OPTIONS

            Figure 4: Discover observability with HTTP OPTIONS

4.3.4.1.2.  Differentiation using HTTP Header

   Discerning an observation request through in-protocol means, e.g. via
   the presence and values of some HTTP metadata, avoids introducing
   static "observable" URIs in the HC proxy namespace.  Though ideally
   the former should be preferred, there seems to be no standard way to
   use one of the established HTTP headers to convey the observe
   semantics.

   Standardizing such methods is out-of-scope of this document, so we
   just point out some possible approaches that in the future may be
   used to differentiate observation requests from regular requests.

https://datatracker.ietf.org/doc/html/rfc5988
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4.3.4.1.2.1.  Expect Header

   The first method involves the use of the Expect header as defined in
   Section 9.3 of [I-D.ietf-httpbis-p2-semantics].  Whenever an HC proxy
   receives a request with a "206-partial-content" expectation, the
   proxy MUST fulfill this expectation by pairing this request to either
   a new or existing observe session to the resource.

   If the proxy is unable to observe the resource, or if the observation
   establishment fails, the proxy MUST reply to the client with "417
   Expectation Failed" status code.

   Given that the Expect header is processed hop-by-hop, this method
   will fail immediately in case a proxy not supporting this expectation
   is traversed.  For this reason, at present, the said approach can't
   be used in the public Internet.

4.3.4.1.2.2.  Prefer Header

   A second, very similar, approach involves the use of the Prefer
   header, defined in [I-D.snell-http-prefer].  The HTTP user agent
   expresses the preference to establish an observation with the target
   resource by including a "streaming" preference to request an HTTP
   Streaming session, or a "long-polling" preference to signal to the
   proxy its intended polling behaviour (see [RFC6202]).

   A compliant HC proxy will try to fulfill the preference, and manifest
   observation establishment success by responding with a status code of
   "206 Partial Content".  The observation request fails, falling back
   to a single response, whenever the status code is different from 206.

   This approach will never fail immediately, differently from the
   previous one, even across a chain of unaware proxies; however, as
   documented in [RFC6202], caching intermediaries may interfere, delay
   or block the HTTP bidirectional connection, making this approach
   unacceptable when no weak consistency of the resource can be
   tolerated by the requesting UA.

4.3.4.2.  Notification(s) mapping

   Multiplexing notifications using a single HTTP bidirectional session
   needs some further considerations about the selection of the media
   type that best fits this specific use case.

   The usage of two different content-types that are suitable for
   carrying multiple notifications in a single session, is discussed in
   the following sections.

https://datatracker.ietf.org/doc/html/rfc6202
https://datatracker.ietf.org/doc/html/rfc6202
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4.3.4.2.1.  Multipart messaging

   As already discussed in Section 4.3.1.1 for multicasting, the
   "multipart/*" media type is a suitable solution to deliver multiple
   CoAP notifications within a single HTTP payload.

   As in the multicast case, each part of the multipart entity MAY be
   represented using a "message/http" media type, containing the full
   mapping of the single CoAP notification mapped, so that CoAP envelope
   informations are preserved (e.g. the response code).

   A more sophisticated mapping could use multipart/mixed with native or
   translated media type.

4.3.4.2.2.  Using ATOM Feeds

   Popular observable resources with refresh rates higher than a couple
   of seconds may be treated as Atom feeds [RFC4287], especially with
   delay tolerant user agents and where persistence is required.

   Figure 4 shows a resource supporting 'application/atom+xml' media-
   type.  In such case clients can listen to update notification by
   regularly polling the resource via opportunely spaced GETs, i.e.
   driven by the advertised max-age value.

4.3.4.3.  Examples

   Figure 5 shows the interaction between an HTTP client (C), an HC
   proxy (P), and a CoAP server (S) for the observation of the resource
   "temperature" (T) available on S.

   C manifests its intention to observe T by including the Expect Header
   in the request; if P or S do not support this interaction, the
   request MUST fail with "417 Expectation Failed" return code.  In the
   presented example, both P and C support this interaction, and the
   subscription is successful, as stated by the "206 Partial Content"
   return code.

   At every notification corresponds the emission of a HTTP chunk
   containing a single part, which contains a "message/http" payload
   containing the full mapping of the notification.  When the
   observation is dropped by the CoAP server, the HTTP streaming session
   is closed.

   C     P     S
   |     |     |
   +---->|     |  GET /temperature HTTP/1.1

https://datatracker.ietf.org/doc/html/rfc4287
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   |     |     |  Host: node.coap.something.net
   |     |     |  Expect: 206-partial-content
   |     |     |  Accept: multipart/mixed
   |     |     |
   |     +---->|  CON GET
   |     |     |  Uri-Path: temperature
   |     |     |  Observe: 0
   |     |     |
   |     |<----+  ACK 2.05
   |     |     |  Observe: 3482
   |     |     |  "22.1 C"
   |     |     |
   |<----+     |  HTTP/1.1 206 Partial Content
   |     |     |  Content-Type: multipart/mixed; boundary=notification
   |     |     |
   |     |     |  XX
   |     |     |  --notification
   |     |     |  Content-Type: message/http
   |     |     |
   |     |     |  HTTP/1.1 200 OK
   |     |     |
   |     |     |  22.1 C
   |     |     |
   |     |     |  ... about 60 seconds have passed ...
   |     |     |
   |     |<----+  NON 2.05
   |     |     |  Observe: 3542
   |     |     |  "21.6 C"
   |     |     |
   |<----+     |  YY
   |     |     |  --notification
   |     |     |  Content-Type: message/http
   |     |     |
   |     |     |  HTTP/1.1 200 OK
   |     |     |
   |     |     |  21.6 C
   |     |     |
   |     |     |  ... if the server drops the relationship ...
   |     |     |
   |     |<----+  NON 2.05
   |     |     |  "21.8 C"
   |     |     |
   |<----+     |  ZZ
   |     |     |  --notification
   |     |     |  Content-Type: message/http
   |     |     |
   |     |     |  HTTP/1.1 200 OK
   |     |     |
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   |     |     |  21.8 C
   |     |     |
   |     |     |  --notification--
   |     |     |
   |     |     |  0

                 Figure 5: HTTP Streaming to CoAP Observe

   Figure 6 shows the interaction between an HTTP client (C), an HC
   proxy (P), and a CoAP server (S) for the observation of the resource
   "temperature" (T) available on S.

   C manifests its intention to observe T by including the Prefer Header
   in the request; if P or S do not support this interaction, the
   request silently fails if a status code "200 OK" is returned, which
   means that no further notification is expected on that session.

   In the presented example, both P and C support this interaction, and
   the subscription is successful, as stated by the "206 Partial
   Content" status code.  At every notification a new response is sent
   to the pending client, always containing the "206 Partial Content"
   status code, to indicate that the observe session is still active, so
   that C can issue a new long-polling request immediately after this
   notification.

   If the observation relationship is dropped by S, P notifies the last
   received content using the "200 OK" status code, indicating that no
   further notification is expected on this observe session.
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   C     P     S
   |     |     |
   +---->|     |  GET /temperature HTTP/1.1
   |     |     |  Host: node.coap.something.net
   |     |     |  Prefer: long-polling
   |     |     |
   |     +---->|  CON GET
   |     |     |  Uri-Path: temperature
   |     |     |  Observe: 0
   |     |     |
   |     |<----+  ACK 2.05
   |     |     |  Observe: 3482
   |     |     |  "22.1 C"
   |     |     |
   |<----+     |  HTTP/1.1 206 Partial Content
   |     |     |
   |     |     |  22.1 C
   |     |     |
   +---->|     |  GET /temperature HTTP/1.1
   |     |     |  Host: node.coap.something.net
   |     |     |  Prefer: long-polling
   |     |     |
   |     |     |  ... about 60 seconds have passed ...
   |     |     |
   |     |<----+  NON 2.05
   |     |     |  Observe: 3542
   |     |     |  "21.6 C"
   |     |     |
   |<----+     |  HTTP/1.1 206 Partial Content
   |     |     |
   |     |     |  21.6 C
   |     |     |
   +---->|     |  GET /temperature HTTP/1.1
   |     |     |  Host: node.coap.something.net
   |     |     |  Prefer: long-polling
   |     |     |
   |     |     |  ... if the server drops the relationship ...
   |     |     |
   |     |<----+  NON 2.05
   |     |     |  "21.8 C"
   |     |     |
   |<----+     |  HTTP/1.1 200 OK
   |     |     |
   |     |     |  21.8 C

                Figure 6: HTTP Long Polling to CoAP Observe
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   Figure 7 shows the interaction between an HTTP client (C), an HC
   proxy (P), and a CoAP server (S) for the observation of the resource
   "kitchen/temp" (T) available on S.

   It is assumed that the HC proxy knows that the requested resource is
   observable (since perhaps being asked beforehand to discover its
   properties as described in Figure 4.)  When asked by the HTTP client
   to retrieve the resource, it requests an observation - in case it
   weren't already in place - and then sends the collected data to the
   client as an Atom feed.  The data coming through in the constrained
   network is stored locally on the proxy, and forwarded when further
   requests are received on the HTTP side.  As already said, using the
   Atom format has two main advantages: first, there is always a
   "current" feed, but there may also be a complete log made available
   to HTTP clients; secondly, the HTTP intermediaries can play a
   substantial role in absorbing a fair amount of the load on the HC
   proxy.  The latter is a very important property when the requested
   resource is or becomes very popular.
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 C       P       S
 |       |       |  GET /kitchen/temp HTTP/1.1
 +------>|       |  Host: node.coap.something.net
 |       |       |
 |       +------>|  CON GET
 |       |       |  Uri-Path: kitchen/temp
 |       |       |  Observe: 0
 |       |       |
 |       |<------+  ACK 2.05
 |       |       |  Observe: 1000
 |       |       |  Max-Age: 10
 |       |       |  "22.3 C"
 |       |       |
 |<------+       |  HTTP/1.1 200 OK
 |       |       |  Cache-Control: max-age=10
 |       |       |  ETag: "0x5555"
 |       |       |  Content-Type: application/atom+xml
 |       |       |
 |       |       |  <feed xmlns="http://www.w3.org/2005/Atom">
 |       |       |    <entry>
 |       |       |      <id>urn:uuid:bf08203a-fbbf-49e8-bf11-3c4cff708525</id>
 |       |       |      <updated>2012-03-07T11:14:30</updated>
 |       |       |      <content type="text/plain">
 |       |       |        22.3 C
 |       |       |      </content>
 |       |       |    <entry>
 |       |       |  </feed>
 |       |       |
 |       |       |
 |       |<------+  NON 2.05
 |       |       |  Observe: 1010
 |       |       |  Max-Age: 10
 |       |       |  "22.4 C"
 |       |       |
 +------>|       |  GET /kitchen/temp HTTP/1.1
 |       |       |  Host: node.coap.something.net
 |       |       |
 |       |       |  [...]
 |       |       |

                   Figure 7: Observation via Atom feeds

5.  CoAP-HTTP implementation

   The CoAP protocol [I-D.ietf-core-coap] allows CoAP clients to request
   CoAP proxies to perform an HTTP request on their behalf.  This is
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   accomplished by the CoAP client populating an HTTP absolute URI in
   the 'Proxy-URI' option of the CoAP request to the CoAP proxy.  An
   absolute URI is an HTTP URI that does not contain a fragment
   component [RFC3986].  The proxy then composes an HTTP request with
   the given URI and sends it to the appropriate HTTP origin server.
   The server then returns the HTTP response to the proxy, which the
   proxy returns to the CoAP client via a CoAP response

5.1.  Placement and Deployment

   In typical scenarios, for communication from a CoAP client to an HTTP
   origin server, the HC proxy is expected to be located on the client-
   side (CS).  Specifically, the HC proxy is expected to be deployed at
   the edge of the constrained network as shown in Figure 8.

   The arguments supporting CS placement are as follows:

   Client/Proxy/Network configuration overhead:  CoAP clients require
      either static proxy configuration or proxy discovery support.
      This overhead is simplified if the proxy is placed on the same
      network domain of the client.

   TCP/UDP:  Translation between CoAP and HTTP requires also UDP to TCP
      mapping; UDP performance over the unconstrained Internet may not
      be adequate.  In order to minimize the number of required
      retransmissions on the constrained part of the network and the
      overall reliability, TCP/UDP conversion SHOULD be performed as
      soon as possible in the network path.

   Caching:  Efficient caching requires that all the CoAP traffic is
      intercepted by the same proxy, thus a CS placement, collecting all
      the traffic, is strategic for this need.

https://datatracker.ietf.org/doc/html/rfc3986


Castellani, et al.     Expires September 13, 2012              [Page 29]



Internet-Draft              HTTP-CoAP mapping                 March 2012

                            +------+
                            |      |
                            | DNS  |
                            |      |
                            +------+
                                                --------------------
                                               //                  \\
                                              /    /-----\   /---\   \
                                             /       CoAP     CoAP    \
                                            ||      client   client   ||
                                     +----------+  \-----/  \-----/   ||
                                     | HTTP/CoAP|            /-----\  ||
                                     |  Proxy   |              CoAP   ||
                                     |(HC Proxy)|             client  ||
    +------+                         +----------+            \-----/  ||
    |HTTP  |                                ||  /-----\               ||
    |Origin|                                ||    CoAP                ||
    |Server|                                 \   client   /-----\     /
    +------+                                  \ \-----/     CoAP     /
                                               \           client   /
                                                \\        \-----/ //
                                                 ------------------

            Figure 8: Client-side HC proxy deployment scenario

5.2.  Basic mapping

   The basic mapping of CoAP methods to HTTP is defined in
   [I-D.ietf-core-coap].  Specifically the {GET, PUT, POST, DELETE} set
   of CoAP methods are mapped to the equivalent HTTP methods.

   In general, an implementation will translate and forward CoAP
   requests to the HTTP origin server and translate back HTTP responses
   to CoAP responses, typically employing a certain amount of caching to
   make this translation more efficient.  This section gives some hints
   for implementing the translation.  In addition, some examples are
   given to illustrate the mappings.

5.2.1.  Payloads and Media Types

   CoAP supports only a subset of media types.  A proxy should convert
   payloads and approximate content-types as closely as possible.  For
   example, if a HTTP server returns a resource representation in "text/
   plain; charset=iso-8859-1" format, the proxy should convert the
   payload to "text/plain; charset=utf-8" format.  If conversion is not
   possible, the proxy can specify a media type of "application/
   octet-stream".
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5.2.2.  Max-Age and ETag Options

   The proxy can determine the Max-Age Option for responses to GET
   requests by calculating the freshness lifetime (see Section 13.2.4 of
   [RFC2616]) of the HTTP resource representation retrieved.  The Max-
   Age Option for responses to POST, PUT or DELETE requests should
   always be set to 0.

   The proxy can assign entity tags to responses it sends to a client.
   These can be generated locally, if the proxy employs a cache, or be
   derived from the ETag header field in a response from the HTTP origin
   server, in which case the proxy can optimize future requests to the
   HTTP by using Conditional Requests.  Note that CoAP does not support
   weak entity tags.

5.2.3.  Use of CoAP blockwise transfer

   A CH proxy SHOULD support CoAP blockwise transfers
   [I-D.ietf-core-block] to allow transport of large CoAP payloads while
   avoiding link-layer fragmentation in LLNs, and to cope with small
   datagram buffers in CoAP end-points as described in
   [I-D.ietf-core-block].

   For improved latency a CH proxy MAY initiate a HTTP request triggered
   by an incoming blockwise CoAP request even when blocks of the CoAP
   request have only been partially received by the proxy, in cases
   where the Content-Length field is not going to be used in the HTTP
   request.  This is useful especially if the network between proxy and
   HTTP server involves low-bandwidth links.

5.2.4.  HTTP Status Codes 1xx and 3xx

   CoAP does not have provisional responses (HTTP Status Codes 1xx) or
   responses indicating that further action needs to be taken (HTTP
   Status Codes 3xx).  When a proxy receives such a response from the
   HTTP server, the response should cause the proxy to complete the
   request, for example, by following redirects.  If the proxy is unable
   or unwilling to do so, it can return a 5.02 (Bad Gateway) error.

5.2.5.  Examples

   Figure 9 shows an example implementation of a basic CoAP GET request
   with an HTTP URI as the value of a Proxy-URI option.  The proxy
   retrieves a representation of the target resource from the HTTP
   origin server.  It converts the payload to a UTF-8 charset,
   calculates the Max-Age Option from the Expires header field, and
   derives an entity-tag from the ETag header field.

https://datatracker.ietf.org/doc/html/rfc2616#section-13.2.4
https://datatracker.ietf.org/doc/html/rfc2616#section-13.2.4
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C           P           S
|           |           |
+---------->|           |  CoAP Header: GET (T=CON, Code=1, MID=0x1633)
|   CoAP    |           |  Token:       0x5a
|   Get     |           |  Proxy-URI:   http://www.example.com/foo/bar
|           |           |
|           |           |
|           +---------->|  HTTP/1.1  GET /foo/bar
|           |   HTTP    |  Host: www.example.com
|           |   GET     |
|           |           |
|           |           |
|<----------+           |  CoAP Header: (T=ACK, Code=0, MID=0x1633)
|           |           |
|           |           |
|           |<----------+  HTTP/1.1  200 OK
|           |   HTTP    |  Date: Friday, 14 Oct 2011 15:00:00 GMT
|           |   200 OK  |  Content-Type: text/plain; charset=iso-8859-1
|           |           |  Content-Length: 11
|           |           |  Expires: Friday, 14 Oct 2011 16:00:00 GMT
|           |           |  ETag: "xyzzy"
|           |           |  Connection: close
|           |           |
|           |           |  Hello World
|           |           |
|           |           |
|<----------+           |  CoAP Header: 2.00 OK (T=CON, Code=64, MID=0xAAFO)
|   CoAP    |           |  Token:       0x5a
|  2.00 OK  |           |  C-Type:      text/plain; charset=utf-8
|           |           |  Max-Age:     3600
|           |           |  ETag:        0x78797A7A79
|           |           |  Payload:     "Hello World"
|           |           |
+---------->|           |  CoAP Header:   (T=ACK, Code=0, MID=0xAAF0)

                  Figure 9: A basic CoAP-HTTP GET request

   The example in Figure 10 builds on the previous example and shows an
   implementation of a GET request that includes a previously returned
   ETag Option.  The proxy makes a Conditional Request to the HTTP
   origin server by including an If-None-Match header field in the HTTP
   GET Request.  The CoAP response indicates that the response stored by
   the client is fresh.  It includes a Max-Age Option calculated from
   the HTTP response's Expires header field.
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C           P           S
|           |           |
+---------->|           |  CoAP Header: GET (T=CON, Code=1, MID=0x1CBO)
|   CoAP    |           |  Token:       0x7b
|   Get     |           |  Proxy-URI:   http://www.example.com/foo/bar
|           |           |  ETag:        0x78797A7A79
|           |           |
|           |           |
|           +---------->|  HTTP/1.1  GET /foo/bar
|           |   HTTP    |  Host: www.example.com
|           |   GET     |  If-None-Match: "xyzzy"
|           |           |
|           |           |
|<----------+           |  CoAP Header: (T=ACK, Code=0, MID=0x1CBO)
|           |           |
|           |           |
|           |<----------+  HTTP/1.1  304 Not Modified
|           |   HTTP    |  Date: Friday, 14 Oct 2011 17:00:00 GMT
|           |   304     |  Expires: Friday, 14 Oct 2011 18:00:00 GMT
|           |           |  ETag: "xyzzy"
|           |           |  Connection: close
|           |           |
|           |           |
|<----------+           |  CoAP Header: 2.03 Valid (T=CON, Code=67, MID=0xAAFF)
|   CoAP    |           |  Token:       0x7b
|   2.03    |           |  Max-Age:     3600
|           |           |  ETag:        0x78797A7A79
|           |           |
|           |           |
+---------->|           |  CoAP Header:   (T=ACK, Code=0, MID=0xAAFF)

          Figure 10: A CoAP-HTTP GET request with an ETag Option

6.  Security Considerations

   The security concerns raised in Section 15.7 of [RFC2616] also apply
   to the HC proxy scenario.  In fact, the HC proxy is a trusted (not
   rarely a transparently trusted) component in the network path.

   The trustworthiness assumption on the HC proxy cannot be dropped.
   Even if we had a blind, bi-directional, end-to-end, tunneling
   facility like the one provided by the CONNECT method in HTTP, and
   also assuming the existence of a DTLS-TLS transparent mapping, the
   two tunneled ends should be speaking the same application protocol,
   which is not the case.  Basically, the protocol translation function
   is a core duty of the HC proxy that can't be removed, and makes it a

https://datatracker.ietf.org/doc/html/rfc2616#section-15.7
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   necessarily trusted, impossible to bypass, component in the
   communication path.

   A reverse proxy deployed at the boundary of a constrained network is
   an easy single point of failure for reducing availability.  As such,
   a special care should be taken in designing, developing and operating
   it, keeping in mind that, in most cases, it could have fewer
   limitations than the constrained devices it is serving.

   The following sub paragraphs categorize and argue about a set of
   specific security issues related to the translation, caching and
   forwarding functionality exposed by an HC proxy module.

6.1.  Traffic overflow

   Due to the typically constrained nature of CoAP nodes, particular
   attention SHOULD be posed in the implementation of traffic reduction
   mechanisms (see Section 4.2.1), because inefficient implementations
   can be targeted by unconstrained Internet attackers.  Bandwidth or
   complexity involved in such attacks is very low.

   An amplification attack to the constrained network may be triggered
   by a multicast request generated by a single HTTP request mapped to a
   CoAP multicast resource, as considered in Section XX of
   [I-D.ietf-core-coap].

   The impact of this amplification technique is higher than an
   amplification attack carried out by a malicious constrained device
   (i.e.  ICMPv6 flooding, like Packet Too Big, or Parameter Problem on
   a multicast destination [RFC4732]), since it does not require direct
   access to the constrained network.

   The feasibility of this attack, disruptive in terms of CoAP server
   availability, can be limited by access controlling the exposed HTTP
   multicast resource, so that only known/authorized users access such
   URIs.

6.2.  Cross-protocol security policy mapping

   At the moment of this writing, CoAP and HTTP are missing any cross-
   protocol security policy mapping.

   The HC proxy SHOULD flexibly support security policies between the
   two protocols, possibly as part of the HC URI mapping function, in
   order to statically map HTTP and CoAP security policies at the proxy
   (see Appendix A.2 for an example.)

https://datatracker.ietf.org/doc/html/rfc4732
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6.3.  Handling secured exchanges

   It is possible that the request from the client to the HC proxy is
   sent over a secured connection.  However, there may or may not exist
   a secure connection mapping to the other protocol.  For example, a
   secure distribution method for multicast traffic is complex and MAY
   not be implemented (see [I-D.ietf-core-groupcomm]).

   By default, an HC proxy SHOULD reject any secured client request if
   there is no configured security policy mapping.  This recommendation
   MAY be relaxed in case the destination network is believed to be
   secured by other, complementary, means.  E.g.: assumed that CoAP
   nodes are isolated behind a firewall (e.g. as the SS HC proxy
   deployment shown in Figure 1), the HC proxy may be configured to
   translate the incoming HTTPS request using plain CoAP (i.e.  NoSec
   mode.)

   The HC URI mapping MUST NOT map to HTTP (see Section 3.1) a CoAP
   resource intended to be accessed only using HTTPS.

   A secured connection that is terminated at the HC proxy, i.e. the
   proxy decrypts secured data locally, raises an ambiguity about the
   cacheability of the requested resource.  The HC proxy SHOULD NOT
   cache any secured content to avoid any leak of secured information.
   However in some specific scenario, a security/efficiency trade-off
   could motivate caching secured information; in that case the caching
   behavior MAY be tuned to some extent on a per-resource basis (see

Section 6.2).

6.4.  Spoofing and Cache Poisoning

   In web security jargon, the "cache poisoning" verb accounts for
   attacks where an evil user causes the proxy server to associate
   incorrect content to a cached resource, which work through especially
   crafted HTTP requests or request/response combos.

   When working in CoAP NoSec mode, the use of UDP makes cache poisoning
   on the constrained network easy and effective, simple address
   spoofing by a malicious host is sufficient to perform the attack.
   The implicit broadcast nature of typical link-layer communication
   technologies used in constrained networks lead this attack to be
   easily performed by any host, even without the requirement of being a
   router in the network.  The ultimate outcome depends on both the
   order of arrival of packets (legitimate and rogue) and the
   processing/discarding policy at the CoAP node; attackers targeting
   this weakness may have less requirements on timing, thus leading the
   attack to succeed with high probability.
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   In case the threat of a rogue mote acting in the constrained network
   can't be winded up by appropriate procedural means, the only way to
   avoid such attacks is for any CoAP server to work at least in
   MultiKey mode with a 1:1 key with the HC proxy.  SharedKey mode would
   just mitigate the attack, since a guessable MIDs and Tokens
   generation function at the HC proxy side would make it feasible for
   the evil mote to implement a "try until succeed" strategy.  Also,
   (authenticated) encryption at a lower layer (MAC/PHY) could be
   defeated by a slightly more powerful attacker, a compromised router
   mote.

6.5.  Subscription

   As noted in Section 7 of [I-D.ietf-core-observe], when using the
   observe pattern, an attacker could easily impose resource exhaustion
   on a naive server who's indiscriminately accepting observer
   relationships establishment from clients.  The converse of this
   problem is also present, a malicious client may also target the HC
   proxy itself, by trying to exhaust the HTTP connection limit of the
   proxy by opening multiple subscriptions to some CoAP resource.

   Effective strategies to reduce success of such a DoS on the HTTP side
   (by forcing prior identification of the HTTP client via usual web
   authentication mechanisms), must always be weighted against an
   acceptable level of usability of the exposed CoAP resources.
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Appendix A.  Internal Mapping Functions (from an implementer's
             perspective)

   At least three mapping functions have been identified, which take
   place at different stages of the HC proxy processing chain, involving
   the URL, Content-Type and Security Policy translation.

   All these maps are required to have at least URL granularity so that,
   in principle, each and every requested URL may be treated as an
   independent mapping source.

   In the following, the said map functions are characterized via their
   expected input and output, and a simple, yet sufficiently rich,
   configuration syntax is suggested.

   In the spirit of a document providing implementation guidance, the
   specification of a map grammar aims at putting the basis for a
   reusable software component (e.g. a stand-alone C library) that many
   different proxy implementations can link to, and benefit from.

A.1.  URL Map Algorithm

   In case the HC proxy is a reverse proxy, i.e. it acts as the origin
   server in face of the served network, the URL of the resource
   requested by its clients (perhaps having an 'http' scheme) shall be
   mapped to the real resource origin (perhaps in the 'coap' scheme).

   In case HC is a forward proxy, no URL translation is needed since the
   client already knows the "real name" of the resource.

   An interception HC proxy, instead, MAY use the homogeneous mapping
   strategy (see Section 3.1.1 for details) to operate without any pre-
   configuration need.

   As noted in Appendix B of [RFC3986] any correctly formatted URL can
   be matched by a POSIX regular expression.  By leveraging on this
   property, we suggest a syntax that describes the URL mapping in terms
   of substituting the regex-matching portions of the requested URL into
   the mapped URL template.

   E.g.: given the source regular expression
   '^http://example.com/coap/.*$' and destination template 'coap://$1'
   (where $1 stands for the first - and only in this specific case -
   substring matched by the regex pattern in the source), the input URL
   "http://example.com/coap/node1/resource2" translates to
   "coap://node1/resource2".

   This is a well established technique used in many todays web

https://datatracker.ietf.org/doc/html/rfc3986#appendix-B
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   components (e.g.  Django URL dispatcher, Apache mod_rewrite, etc.),
   which provides a compact and powerful engine to implement what
   essentially is an URL rewrite function.

   INPUT
       * requested URL

   OUTPUT
       * target URL

   SYNTAX
       url_map [rule name] {
           requested_url   <regex>
           mapped_url      <regex match subst template>
       }

   EXAMPLE 1
       url_map homogeneous {
           requested_url   '^http://.*$'
           mapped_url      'coap//$1'
       }

   EXAMPLE 2
       url_map embedded {
           requested_url   '^http://example.com/coap/.*$'
           mapped_url      'coap//$1'
       }

   Note that many different url_map records may be given in order to
   build the whole mapping function.  Each of these records can be
   queried (in some predefined order) by the HC proxy until a match is
   found, or the list is exhausted.  In the latter case, depending on
   the mapping policy (only internal, internal then external, etc.) the
   original request can be refused, or the same mapping query is
   forwarded to one or more external URL mapping components.

A.2.  Security Policy Map Algorithm

   In case the "incoming" URL has been successfully translated, the HC
   proxy must lookup the security policy, if any, that needs to be
   applied to the request/response transaction carried on the "outgoing"
   leg.
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   INPUT
       * target URL (after URL map has been applied)
       * original requester identity (given by cookie, or IP address, or
         crypto credentials/security context, etc.)

   OUTPUT
       * security context that will be applied to access the target URL

   SYNTAX
       sec_map [rule name] {
           target_url      <regex>     -- one or more
           requester_id    [TBD]
           sec_context     [TBD]
       }

   EXAMPLE
       [TBD]

A.3.  Content-Type Map Algorithm

   In case a set of destination URLs is known as being limited in
   handling a narrow subset of mime types, a content-type map can be
   configured in order to let the HC proxy transparently handle the
   compatible/lossless format translation.

   INPUT
       * destination URL (after URL map has been applied)
       * original content-type

   OUTPUT
       * mapped content-type

   SYNTAX
       ct_map {
           target_url  <regex>                 -- one or more targetURLs
           ct_switch   <source_ct, dest_ct>    -- one or more CTs
       }

   EXAMPLE
       ct_map {
           target_url  '^coap://class-1-device/.*$'
           ct_switch   */xml   application/exi
       }
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