
CoRE Working Group A. Castellani
Internet-Draft University of Padova
Intended status: Informational S. Loreto
Expires: September 13, 2012 Ericsson
 A. Rahman
 InterDigital Communications, LLC
 T. Fossati
 KoanLogic
 E. Dijk
 Philips Research
 March 12, 2012

Best practices for HTTP-CoAP mapping implementation
draft-castellani-core-http-mapping-03

Abstract

 This draft aims at being a base reference documentation for HTTP-CoAP
 proxy implementors. It details deployment options, discusses
 possible approaches for URI mapping, and provides useful
 considerations related to protocol translation.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 13, 2012.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Castellani, et al. Expires September 13, 2012 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft HTTP-CoAP mapping March 2012

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Castellani, et al. Expires September 13, 2012 [Page 2]

Internet-Draft HTTP-CoAP mapping March 2012

Table of Contents

1. Introduction . 4
2. Terminology . 4
3. Cross-protocol resource identification using URIs 5
3.1. URI mapping . 6
3.1.1. Homogeneous mapping 7
3.1.2. Embedded mapping 7

4. HTTP-CoAP implementation 8
4.1. Placement and deployment 8
4.2. Basic mapping . 10
4.2.1. Caching and congestion control 11
4.2.2. Cache Refresh via Observe 12
4.2.3. Use of CoAP blockwise transfer 13
4.2.4. Use case: HTTP/IPv4-CoAP/IPv6 proxy 13

4.3. Multiple message exchanges mapping 15
4.3.1. Relevant features of existing standards 15
4.3.2. Multicast mapping 16
4.3.3. Multicast responses caching 19
4.3.4. Observe mapping 20

5. CoAP-HTTP implementation 28
5.1. Placement and Deployment 29
5.2. Basic mapping . 30
5.2.1. Payloads and Media Types 30
5.2.2. Max-Age and ETag Options 31
5.2.3. Use of CoAP blockwise transfer 31
5.2.4. HTTP Status Codes 1xx and 3xx 31
5.2.5. Examples . 31

6. Security Considerations 33
6.1. Traffic overflow . 34
6.2. Cross-protocol security policy mapping 34
6.3. Handling secured exchanges 35
6.4. Spoofing and Cache Poisoning 35
6.5. Subscription . 36

7. Acknowledgements . 36
8. References . 36
8.1. Normative References 36
8.2. Informative References 38

Appendix A. Internal Mapping Functions (from an implementer's
 perspective) . 39

A.1. URL Map Algorithm . 39
A.2. Security Policy Map Algorithm 40
A.3. Content-Type Map Algorithm 41

 Authors' Addresses . 41

Castellani, et al. Expires September 13, 2012 [Page 3]

Internet-Draft HTTP-CoAP mapping March 2012

1. Introduction

 RESTful protocols, such as HTTP [RFC2616] and CoAP
 [I-D.ietf-core-coap], can interoperate through an intermediary proxy
 which performs cross-protocol mapping.

 A reference about the mapping process is provided in Section 8 of
 [I-D.ietf-core-coap]. However, depending on the involved
 application, deployment scenario, or network topology, such mapping
 could be realized using a wide range of intermediaries.

 Moreover, the process of implementing such a proxy could be complex,
 and details regarding its internal procedures and design choices
 deserve further discussion, which is provided in this document.

 This draft is organized as follows:

 o Section 2 describes terminology to identify different mapping
 approaches and the related proxy deployments;

 o Section 3 discusses impact of the mapping on URI and describes
 notable options;

 o Section 4 and Section 5 respectively analyze the mapping from HTTP
 to CoAP and viceversa;

 o Section 6 discusses possible security impact related to the
 mapping.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Terminology

 A device providing cross-protocol HTTP-CoAP mapping is called an
 HTTP-CoAP cross-protocol proxy (HC proxy).

 At least two different kinds of HC proxies exist:

 o One-way cross-protocol proxy (1-way proxy): This proxy translates
 from a client of a protocol to a server of another protocol but
 not vice-versa.

 o Two-way (or bidirectional) cross-protocol proxy (2-way proxy):
 This proxy translates from a client of both protocols to a server
 supporting one protocol.

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2119

Castellani, et al. Expires September 13, 2012 [Page 4]

Internet-Draft HTTP-CoAP mapping March 2012

 1-way and 2-way HC proxies are realized using the following general
 types of proxies:

 Forward proxy (F): Is a proxy known by the client (either CoAP or
 HTTP) used to access a specific cross-protocol server
 (respectively HTTP or CoAP). Main feature: server(s) do not
 require to be known in advance by the proxy (ZSC: Zero Server
 Configuration).

 Reverse proxy (R): Is a proxy known by the client to be the server,
 however for a subset of resources it works as a proxy, by knowing
 the real server(s) serving each resource. When a cross-protocol
 resource is accessed by a client, the request will be silently
 forwarded by the reverse proxy to the real server (running a
 different protocol). If a response is received by the reverse
 proxy, it will be mapped, if possible, to the original protocol
 and sent back to the client. Main feature: client(s) do not
 require to know in advance the proxy (ZCC: Zero Client
 Configuration).

 Interception proxy (I): This proxy [RFC3040] can intercept any
 origin protocol request (HTTP or CoAP) and map it to the
 destination protocol, without any kind of knowledge about the
 client or server involved in the exchange. Main feature:
 client(s) and server(s) do not require to know or be known in
 advance by the proxy (ZCC and ZSC).

 A server-side (SS) proxy is placed in the same network domain of the
 server; Conversely a client-side (CS) is in the same network domain
 of the client. Differently from these two cases, the proxy is said
 to be External (E).

3. Cross-protocol resource identification using URIs

 A Uniform Resource Identifier (URI) provides a simple and extensible
 means for identifying a resource. It enables uniform identification
 of resources via a separately defined extensible set of naming
 schemes [RFC3986].

 URIs are formed of at least three components: scheme, authority and
 path. The scheme is the first part of the URI, and it often
 corresponds to the protocol used to access the resource. However, as
 noted in Section 1.2.2 of [RFC3986] the scheme does not imply that a
 particular protocol is used to access the resource.

 Clients using URIs to identify target resources (e.g. HTTP web
 browsers) may support only a limited set of schemes (i.e. 'http',

https://datatracker.ietf.org/doc/html/rfc3040
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986#section-1.2.2

Castellani, et al. Expires September 13, 2012 [Page 5]

Internet-Draft HTTP-CoAP mapping March 2012

 'https'). If such clients need to interoperate with resources
 identified by an unsupported scheme (e.g. 'coap'), the existence of a
 URI using a scheme supported by the client is required for
 interoperability.

 Both CoAP and HTTP implement the REST paradigm, so, in principle, the
 same resource can be made available in each protocol if protocol
 translation is applied.

 In general two different procedures can be used by a client to access
 cross-protocol resources:

 Protocol-aware access: Happens when a client knows the other
 protocol domain and accesses the cross-protocol resource using its
 URI by using an HC proxy. Example: An HTTP client accesses a CoAP
 resource by addressing it using the 'coap' scheme inside the HTTP
 request (actual protocol translation is provided by the proxy).
 Both HTTP and CoAP allow using different schemes in requests to
 proxies: (i) see Section 4.1.2 of [I-D.ietf-httpbis-p1-messaging],
 and (ii) Section 5.10.3 of [I-D.ietf-core-coap].

 Protocol-agnostic access: The client accesses the cross-protocol
 resource using an URI with a scheme supported by the client (e.g.
 uses 'http' scheme to access a CoAP resource), URI and protocol
 translation is provided by a cross-protocol proxy. In order to
 use this method a URI identifying an equivalent resource MUST
 exist, and SHOULD be provided by the cross-protocol proxy.

 URI mapping is NOT required when using protocol-aware access, the
 following section is focused on URI mapping techniques for protocol-
 agnostic access.

3.1. URI mapping

 When accessing cross-protocol resources in a protocol-agnostic way,
 clients MUST use an URI with a scheme supported by the client.

 Since determination of equivalence of URIs (e.g. whether or not they
 identify the same resource) is based on lexicographic comparison, URI
 domains using different schemes are fully distinct: resources
 identified by the same authority and path tuple change when switching
 the scheme.

 Example: Assume that the following resource exists -
 "coap://node.coap.something.net/foo". The resource identified by
 "http://node.coap.something.net/foo" may not exist or be non-
 equivalent to the one identified by the 'coap' scheme.

Castellani, et al. Expires September 13, 2012 [Page 6]

Internet-Draft HTTP-CoAP mapping March 2012

 If a cross-protocol URI exists providing an equivalent representation
 of the native protocol resource, it can be provided by a different
 URI (in terms of authority and path). The mapping of an URI between
 HTTP and CoAP is said HC URI mapping.

 Example: The HC URI mapping to HTTP of the CoAP resource identified
 by "coap://node.coap.something.net/foo" is
 "http://node.something.net/foobar".

 The process of providing the HC URI mapping could be complex, since a
 proper mechanism to statically or dynamically (discover) map the
 resource HC URI mapping is required.

 Two static HC URI mappings are discussed in the following
 subsections.

3.1.1. Homogeneous mapping

 The URI mapping between CoAP and HTTP is called homogeneous, if the
 same resource is identified by URIs with different schemes.

 Example: The CoAP resource "//node.coap.something.net/foo" identified
 either by the URI "coap://node.coap.something.net/foo", and or by the
 URI "http://node.coap.something.net/foo" is the same. When the
 resource is accessed using HTTP, the mapping from HTTP to CoAP is
 performed by an HC proxy

 When homogeneous HC URI mapping is available, HC-I proxies are easily
 implementable.

3.1.2. Embedded mapping

 When the HC URI mapping of the resource embeds inside it the
 authority and path part of the native URI, then the mapping is said
 to be embedded.

 Example: The CoAP resource "coap://node.coap.something.net/foo" can
 be accessed at
 "http://hc-proxy.something.net/coap/node.coap.something.net/foo".

 This mapping technique can be used to reduce the mapping complexity
 in an HC reverse proxy.

3.1.2.1. HTML5 scheme handler registration

 The draft HTML5 standard offers a mechanism that allows an HTTP user
 agent to register a custom scheme handler through an HTML5 web page.
 This feature permits to an HC proxy to be registered as "handler" for

Castellani, et al. Expires September 13, 2012 [Page 7]

Internet-Draft HTTP-CoAP mapping March 2012

 URIs with the 'web+coap' or 'web+coaps' schemes using an HTML5 web
 page which embeds the custom scheme handler registration call
 registerProtocolHandler() described in Section 6.5.1.2 of
 [W3C.HTML5].

 Example: the HTML5 homepage of a HC proxy at h2c.example.org could
 include the method call:

 registerProtocolHandler('web+coap', 'proxy?url=%s', 'example HC proxy')

 This registration call will prompt the HTTP user agent to ask for the
 user's permission to register the HC proxy as a handler for all 'web+
 coap' URIs. If the user accepts, whenever a 'web+coap' link is
 requested, the request will be fulfilled through the HC proxy: URI
 "web+coap://foo.org/a" will be transformed into URI
 "http://h2c.example.org/proxy?url=web+coap://foo.org/a".

4. HTTP-CoAP implementation

4.1. Placement and deployment

 In typical scenarios the HC proxy is expected to be server-side (SS),
 in particular deployed at the edge of the constrained network.

 The arguments supporting SS placement are the following:

 TCP/UDP: Translation between HTTP and CoAP requires also a TCP to
 UDP mapping; UDP performance over the unconstrained Internet may
 not be adequate. In order to minimize the number of required
 retransmissions and overall reliability, TCP/UDP conversion SHOULD
 be performed at a SS placed proxy.

 Caching: Efficient caching requires that all the CoAP traffic is
 intercepted by the same proxy, thus an SS placement, collecting
 all the traffic, is strategical for this need.

 Multicast: To support using local-multicast functionalities
 available in the constrained network, the HC proxy MAY require a
 network interface directly attached to the constrained network.

Castellani, et al. Expires September 13, 2012 [Page 8]

Internet-Draft HTTP-CoAP mapping March 2012

 +------+
 | |
 | DNS |
 | |
 +------+

 / \
 / /-----\ /-----\ \
 / CoAP CoAP \
 / server server \
 || \-----/ \-----/ ||
 +----------+ ||
 | HTTP/CoAP| /-----\ ||
 | Proxy | CoAP ||
 |(HC Proxy)| server ||
 +------+ +----------+ \-----/ ||
 |HTTP | || /-----\ ||
 |Client| || CoAP ||
 +------+ \ server /
 \ \-----/ /
 \ /-----\ /
 \ CoAP /
 \ server /
 \ \-----/ /

 Figure 1: Server-side HC proxy deployment scenario

 Other important aspects involved in the selection of which type of
 proxy deployment, whose choice impacts its placement too, are the
 following:

 Client/Proxy/Network configuration overhead: Forward proxies require
 either static configuration or discovery support in the client.
 Reverse proxies require either static configuration, server
 discovery or embedded URI mapping in the proxy. Interception
 proxies require minimal deployment effor (i.e. web traffic routing
 towards the proxy).

 Scalability/Availability: Both aspects are typically addressed using
 redundancy. CS deployments, due to the limited catchment area and
 administrative-wide domain of operation, have looser requirements
 on this. SS deployments, in dense/popular/critical environments,
 have stricter requirements and MAY need to be replicated.
 Stateful proxies (e.g. reverse) may be complex to replicate.

 Discussion about security impacts of different deployments is covered

Castellani, et al. Expires September 13, 2012 [Page 9]

Internet-Draft HTTP-CoAP mapping March 2012

 in Section 6.

 Table 1 shows some interesting HC proxy deployment scenarios, and
 notes the advantages related to each scenario.

 +--------------------------+------+------+------+
 | Feature | F CS | R SS | I SS |
 +--------------------------+------+------+------+
 | TCP/UDP | - | + | + |
 | Multicast | - | + | + |
 | Caching | - | + | + |
 | Scalability/Availability | + | +/- | + |
 | Configuration | - | - | + |
 +--------------------------+------+------+------+

 Table 1: Interesting HC proxy deployments

 Guidelines proposed in the previous paragraphs have been used to fill
 out the above table. In the first three rows, it can be seen that SS
 deployment is preferred versus CS. Scalability/Availability issues
 can be generally handled, but some complexity may be involved in
 reverse proxies scenarios. Configuration overhead could be
 simplified when interception proxies deployments are feasible.

 When support for legacy HTTP clients is required, it may be
 preferable using configuration/discovery free deployments. Discovery
 procedures for client or proxy auto-configuration are still under
 active-discussion: see [I-D.vanderstok-core-bc],
 [I-D.bormann-core-simple-server-discovery] or
 [I-D.shelby-core-resource-directory]. Static configuration of
 multiple forward proxies is typically not feasible in existing HTTP
 clients.

4.2. Basic mapping

 The mapping of HTTP requests to CoAP and of the response back to HTTP
 is defined in Section 8.2 of [I-D.ietf-core-coap].

 The mapping of a CoAP response code to HTTP is not straightforward,
 this mapping MUST be operated accordingly to Table 4 of
 [I-D.ietf-core-coap].

 No temporal upper bound is defined for a CoAP server to provide the
 response, thus for long delays the HTTP client or any other proxy in
 between MAY timeout. Further discussion is available in Section

7.1.4 of [I-D.ietf-httpbis-p1-messaging].

 The HC proxy MUST define an internal timeout for each pending CoAP

Castellani, et al. Expires September 13, 2012 [Page 10]

Internet-Draft HTTP-CoAP mapping March 2012

 request, because the CoAP server may silently die before completing
 the request.

 Even if the DNS protocol may not be used inside the constrained
 network, having valid DNS entries for constrained hosts, where
 possible, MAY help HTTP clients to access the resources offered by
 them.

 An example of the usefulness of such entries is described in
Section 4.2.4.

 HTTP connection pipelining (section 7.1.2.2 of
 [I-D.ietf-httpbis-p1-messaging]) is transparent to the CoAP network:
 the HC proxy will sequentially serve the pipelined requests by
 issuing different CoAP requests.

4.2.1. Caching and congestion control

 The HC proxy SHOULD limit the number of requests to CoAP servers by
 responding, where applicable, with a cached representation of the
 resource.

 Duplicate idempotent pending requests to the same resource SHOULD in
 general be avoided, by duplexing the response to the relevant hosts
 without duplicating the request.

 If the HTTP client times out and drops the HTTP session to the proxy
 (closing the TCP connection), the HC proxy SHOULD wait for the
 response and cache it if possible. Further idempotent requests to
 the same resource can use the result present in cache, or, if a
 response has still to come, requests will wait on the open CoAP
 session.

 Resources experiencing a high access rate coupled with high
 volatility MAY be observed [I-D.ietf-core-observe] by the HC proxy to
 keep their cached representation fresh while minimizing the number of
 needed messages. See Section 4.2.2 for a heuristics that enables the
 HC proxy to decide whether observing is a more convenient strategy
 than ordinary refreshing via Max-Age/ETag-based mechanisms.

 Specific deployments may show highly congested servers/resources --
 e.g. multicast resources (see Section 4.3.2), popular servers, etc.
 A careful analysis is required to pick the correct caching policy
 involving these resources, also taking into consideration the
 security implications that may impact these targets specifically, and
 the constrained network in general.

 To this end when traffic reduction obtained by the caching mechanism

Castellani, et al. Expires September 13, 2012 [Page 11]

Internet-Draft HTTP-CoAP mapping March 2012

 is not adequate, the HC proxy could apply stricter policing by
 limiting the amount of aggregate traffic to the constrained network.
 In particular, the HC proxy SHOULD pose a rigid upper limit to the
 number of concurrent CoAP request pending on the same constrained
 network; further request MAY either be queued or dropped. In order
 to efficiently apply this congestion control, the HC proxy SHOULD be
 SS placed.

 Further discussion on congestion control can be found in
 [I-D.eggert-core-congestion-control].

4.2.2. Cache Refresh via Observe

 There are cases where using CoAP observe protocol to handle proxy
 cache refresh may be preferable to the validation mechanism based on
 ETag's defined in section 5.6.2 of [I-D.ietf-core-coap]. Such
 scenarios include, but are not limited to, sleeping nodes -- with
 possibly high variance in requests' distribution -- which would
 greatly benefit from a server driven cache update mechanism. Ideal
 candidates would also be the crowded or very low throughput networks,
 where reduction of the total number of exchanged messages is an
 important requirement.

 This subsection aims at providing a practical evaluation method to
 decide whether the refresh of a cached resource R is more efficiently
 handled via ETag validation or by establishing an observation on R.

 Let T_R be the mean time between two client requests to resource R,
 let F_R be the freshness lifetime of R representation, and let M_R be
 the total number of messages exchanged towards resource R. If we
 assume that the initial cost for establishing the observation is
 negligible, an observation on R reduces M_R iff T_R < 2*F_R with
 respect to using ETag validation, that is iff the mean arrival time
 of requests for resource R is greater than half the refresh rate of
 R.

 When using observations M_R is always upper bounded by 2*F_R: in the
 constrained network no more than 2*F_R messages will be generated
 towards resource R.

 Proof: Let T be the evaluated interval of time, let M_Ro be the total
 number of messages exchanged towards resource R using observation,
 and let M_Re be the total number of messages exchanged towards
 resource R using ETag validation. The following equations hold M_Re
 = T*2/T_R, M_Ro = T/F_R. M_Ro < M_Re iff 1/F_R < 2/T_R, that is T_R <
 2*F_R. The amount of messages saved using observation is T*(2*F_R-
 T_R)/(T_R*F_R).

Castellani, et al. Expires September 13, 2012 [Page 12]

Internet-Draft HTTP-CoAP mapping March 2012

 Example: assume that F_R is one second and T_R is 1.5 seconds. Since
 1.5 is lower than 2*1, an observation on R reduces M_R. In a single
 day of usage, 28800 messages will be saved if the HC proxy
 establishes an observation on R. The single message cost required to
 establish this observation is negligible.

4.2.3. Use of CoAP blockwise transfer

 An HC proxy SHOULD support CoAP blockwise transfers
 [I-D.ietf-core-block] to allow transport of large CoAP payloads while
 avoiding link-layer fragmentation in LLNs, and to cope with small
 datagram buffers in CoAP end-points as described in
 [I-D.ietf-core-coap]. An HC proxy SHOULD attempt to retry a CoAP PUT
 or POST request with a payload using blockwise transfer if the
 destination CoAP server responded with 4.13 (Request Entity Too
 Large) to the original request. An HC proxy SHOULD attempt to use
 blockwise transfer when sending a CoAP PUT or POST request message
 that is larger than BLOCKWISE_THRESHOLD. The value of
 BLOCKWISE_THRESHOLD is implementation-specific, for example it may
 set by an administrator, preset to a known or typical UDP datagram
 buffer size for CoAP end-points, to N times the size of a link-layer
 frame where e.g. N=5, preset to a known IP MTU value, or set to a
 known Path MTU value.

 For improved latency an HC proxy MAY initiate a blockwise CoAP
 request triggered by an incoming HTTP request even when the HTTP
 request message has not yet been fully received, but enough data has
 been received to send one or more data blocks to a CoAP server
 already.

4.2.4. Use case: HTTP/IPv4-CoAP/IPv6 proxy

 This section covers the expected common use case regarding an HTTP/
 IPv4 client accessing a CoAP/IPv6 resource.

 While HTTP and IPv4 are today widely adopted communication protocols
 in the Internet, a pervasive deployment of constrained nodes
 exploiting the IPv6 address space is expected: enabling direct
 interoperability of such technologies is a valuable goal.

 An HC proxy supporting IPv4/IPv6 mapping is said to be a v4/v6 proxy.

 An HC v4/v6 proxy SHOULD always try to resolve the URI authority, and
 SHOULD prefer using the IPv6 resolution if available. The authority
 part of the URI is used internally by the HC proxy and SHOULD not be
 mapped to CoAP.

 Figure 2 shows an HTTP client on IPv4 (C) accessing a CoAP server on

Castellani, et al. Expires September 13, 2012 [Page 13]

Internet-Draft HTTP-CoAP mapping March 2012

 IPv6 (S) through an HC proxy on IPv4/IPv6 (P). The DNS has an A
 record for "node.coap.something.net" resolving to the IPv4 address of
 the HC proxy, and an AAAA record with the IPv6 address of the CoAP
 server.

 C P S
 | | |
 | | | Source: IPv4 of C
 | | | Destination: IPv4 of P
 +---->| | GET /foo HTTP/1.1
 | | | Host: node.coap.something.net
 | | | ..other HTTP headers ..
 | | |
 | | | Source: IPv6 of P
 | | | Destination: IPv6 of S
 | +---->| CON GET
 | | | URI-Path: foo
 | | |
 | | | Source: IPv6 of S
 | | | Destination: IPv6 of P
 | |<----+ ACK
 | | |
 | | | ... Time passes ...
 | | |
 | | | Source: IPv6 of S
 | | | Destination: IPv6 of P
 | |<----+ CON 2.00
 | | | "bar"
 | | |
 | | | Source: IPv6 of P
 | | | Destination: IPv6 of S
 | +---->| ACK
 | | |
 | | | Source: IPv4 of P
 | | | Destination: IPv4 of C
 |<----+ | HTTP/1.1 200 OK
 | | | .. other HTTP headers ..
 | | |
 | | | bar
 | | |

 Figure 2: HTTP/IPv4 to CoAP/IPv6 mapping

 The proposed example shows the HC proxy operating also the mapping
 between IPv4 to IPv6 using the authority information available in any
 HTTP 1.1 request. This way, IPv6 connectivity is not required at the

Castellani, et al. Expires September 13, 2012 [Page 14]

Internet-Draft HTTP-CoAP mapping March 2012

 HTTP client when accessing a CoAP server over IPv6 only, which is a
 typical expected use case.

 When P is an interception HC proxy, the CoAP request SHOULD have the
 IPv6 address of C as source (IPv4 can always be mapped into IPv6).

 The described solution takes into account only the HTTP/IPv4 clients
 accessing CoAP/IPv6 servers; this solution does not provide a full
 fledged mapping from HTTP to CoAP.

 In order to obtain a working deployment for HTTP/IPv6 clients, a
 different HC proxy access method may be required, or Internet AAAA
 records should not point to the node anymore (the HC proxy should use
 a different DNS database pointing to the node).

 When an HC interception proxy deployment is used this solution is
 fully working even with HTTP/IPv6 clients.

4.3. Multiple message exchanges mapping

 This section discusses the mapping of the multicast and observe
 features of CoAP, which have no corresponding primitive in HTTP, and
 as such are not immediately translatable.

 The mapping, which must be considered in both the arrow directions
 (H->C, C->H) may involve multi-part responses, as in the multicast
 use case, asynchronous delivery through HTTP bidirectional
 techniques, and HTTP Web Linking in order to reduce the semantics
 lost in the translation.

4.3.1. Relevant features of existing standards

 Various features provided by existing standards are useful to
 efficiently represent sessions involving multiple messages.

4.3.1.1. Multipart messages

 In particular, the "multipart/*" media type, defined in Section 5.1
 of [RFC2046], is a suitable solution to deliver multiple CoAP
 responses within a single HTTP payload. Each part of a multipart
 entity SHOULD be represented using "message/http" media type
 containing the full mapping of a single CoAP response as previously
 described.

4.3.1.2. Immediate message delivery

 An HC proxy may prefer to transfer each CoAP response immediately
 after its reception. This is possible thanks to the HTTP Transfer-

https://datatracker.ietf.org/doc/html/rfc2046#section-5.1
https://datatracker.ietf.org/doc/html/rfc2046#section-5.1

Castellani, et al. Expires September 13, 2012 [Page 15]

Internet-Draft HTTP-CoAP mapping March 2012

 Encoding "chunked", that enables transferring single responses
 without any further delay.

 A detailed discussion on the use of chunked Transfer-Encoding to
 stream data over HTTP can be found in [RFC6202]. Large delays
 between chunks can lead the HTTP session to timeout, more details on
 this issue can be found in [I-D.thomson-hybi-http-timeout].

 An HC proxy MAY prefer (e.g. to avoid buffering) to transfer each
 response related to a multicast request as soon as it comes in from
 the server. One possible way to achieve this result is using the
 "chunked" Transfer-Encoding in the HTTP response, to push individual
 responses until some trigger is fired (timeout, max number of
 messages, etc.).

 An example showing immediate delivery of CoAP responses using HTTP
 chunks will be provided in Section 4.3.4, while describing its
 application to an observe session.

4.3.1.3. Detailing source information

 Under some circumstances, responses may come from different sources
 (i.e. responses to a multicast request); in this case details about
 the actual source of each CoAP response MAY be provided to the
 client. Source information can be represented using HTTP Web Linking
 as defined in [RFC5988], by adding the actual source URI into each
 response using Link option with "via" relation type.

4.3.2. Multicast mapping

 In order to establish a multicast communication such a feature should
 be offered either by the network (i.e. IP multicast, link-layer
 multicast, etc.) or by a gateway (i.e. the HC proxy). Rationale on
 the methods available to obtain such a feature is out-of-scope of
 this document, and extensive discussion of group communication
 techniques is available in [I-D.ietf-core-groupcomm].

 Additional considerations related to handling multicast requests
 mapping are detailed in the following sections.

4.3.2.1. URI identification and mapping

 In order to successfully handle a multicast request, the HC proxy
 MUST successfully perform the following tasks on the URI:

https://datatracker.ietf.org/doc/html/rfc6202
https://datatracker.ietf.org/doc/html/rfc5988

Castellani, et al. Expires September 13, 2012 [Page 16]

Internet-Draft HTTP-CoAP mapping March 2012

 Identification: The HC proxy MUST understand whether the requested
 URI identifies a group of nodes.

 Mapping: The HC proxy MUST know how to distribute the multicast
 request to involved servers; this process is specific of the group
 communication technology used.

 When using IPv6 multicast paired with DNS, the mapping to IPv6
 multicast is simply done using DNS resolution. If the group
 management is performed at the proxy, the URI or part of it (i.e. the
 authority) can be mapped using some static or dynamic table available
 at the HC proxy. In Section 3.5 of [I-D.ietf-core-groupcomm]
 discusses a method to build and maintain a local table of multicast
 authorities.

4.3.2.2. Request handling

 When the HC proxy receives a request to a URI that has been
 successfully identified and mapped to a group of nodes, it SHOULD
 start a multicast proxying operation, if supported by the proxy.

 Multicast request handling consists of the following steps:

 Multicast TX: The HC proxy sends out the request on the CoAP side by
 using the methods offered by the specific group communication
 technology used in the constrained network;

 Collecting RXs: The HC proxy collects every response related to the
 request;

 Timeout: The HC proxy has to pay special attention in multicast
 timing, detailed discussion about timing depends upon the
 particular group communication technology used;

 Distributing RXs to the client: The HC proxy can distribute the
 responses in two different ways: batch delivering them at the end
 of the process or on timeout, or immediately delivering them as
 they are available. Batch requires more caching and introduces
 delays but may lead to lower TCP overhead and simpler processing.
 Immediate delivery is the converse. A trade-off solution of
 partial batch delivery may also be feasible and efficient in some
 circumstances.

4.3.2.3. Examples

 Figure 3 shows an HTTP client (C) requesting the resource "/foo" to a
 group of CoAP servers (S1/S2/S3) through an HC proxy (P) which uses
 IP multicast to send the corresponding CoAP request.

Castellani, et al. Expires September 13, 2012 [Page 17]

Internet-Draft HTTP-CoAP mapping March 2012

C P S1 S2 S3
| | | | |
+---->| | | | GET /foo HTTP/1.1
| | | | | Host: group-of-nodes.coap.something.net
| | | | | .. other HTTP headers ..
| | | | |
| +---->|---->|---->| NON GET
| | | | | URI-Path: foo
| | | | |
| |<----------+ | NON 2.00
| | | | | "S2"
| | | | |
| | X---------------+ NON 2.00
| | | | | "S3"
| | | | |
| |<----+ | | NON 2.00
| | | | | "S1"
| | | | |
| | | | | ... Timeout ...
| | | | |
|<----+ | | | HTTP/1.1 200 OK
| | | | | Content-Type: multipart/mixed; boundary="response"
| | | | | .. other HTTP headers ..
| | | | |
| | | | | --response
| | | | | Content-Type: message/http
| | | | |
| | | | | HTTP/1.1 200 OK
| | | | | Link: <http://node2.coap.something.net/foo>; rel=via
| | | | |
| | | | | S2
| | | | |
| | | | | --response
| | | | | Content-Type: message/http
| | | | |
| | | | | HTTP/1.1 200 OK
| | | | | Link: <http://node1.coap.something.net/foo>; rel=via
| | | | |
| | | | | S1
| | | | |
| | | | | --response--
| | | | |

 Figure 3: Unicast HTTP to multicast CoAP mapping

 The example proposed in the above diagram does not make any
 assumption on which underlying group communication technology is

http://node2.coap.something.net/foo
http://node1.coap.something.net/foo

Castellani, et al. Expires September 13, 2012 [Page 18]

Internet-Draft HTTP-CoAP mapping March 2012

 available in the constrained network. Some detailed discussion is
 provided about it along the following lines.

 C makes a GET request to group-of-nodes.coap.something.net. This
 domain name MAY either resolve to the address of P, or to the IPv6
 multicast address of the nodes (if IP multicast is supported and P is
 an interception proxy), or the proxy P is specifically known by the
 client that sends this request to it.

 To successfully start multicast proxying operation, the HC proxy MUST
 know that the destination URI involves a group of CoAP servers, e.g.
 the authority group-of-nodes.coap.something.net is known to identify
 a group of nodes either by using an internal lookup table, using DNS
 paired with IPv6 multicast, or by using some other special technique.

 A specific implementation option is proposed to further explain the
 proposed example. Assume that DNS is configured such that all
 subdomain queries to coap.something.net, such as group-of-
 nodes.coap.something.net, resolve to the address of P. P performs the
 HC URI mapping by removing the 'coap' subdomain from the authority
 and by switching the scheme from 'http' to 'coap' (result:
 "coap://group-of-node.something.net/foo"); "group-of-
 nodes.something.net" is resolved to an IPv6 multicast address to
 which S1, S2 and S3 belong. The proxy handles this request as
 multicast and sends the request "GET /foo" to the multicast group .

4.3.3. Multicast responses caching

 We call perfect caching when the proxy uses only the cached
 representations to provide a response to the HTTP client. In the
 case of a multicast CoAP request, perfect caching is not adequate.
 This section updates the general caching guidelines of Section 4.2.1
 with specific guidelines for the multicast use case.

 Due to the inherent unreliable nature of the NON messages involved
 and since nodes may have dynamic membership in multicast groups,
 responding only with previously cached responses without issuing a
 new multicast request is not recommended. This perfect caching
 behaviour leads to miss responses of nodes that later joined the
 multicast group, and/or to repeately serve partial representations
 due to message losses. Therefore a multicast CoAP request SHOULD be
 sent by a HC proxy for each incoming request addressed to a multicast
 group.

 Caching of multicast responses is still a valuable goal to pursue
 reduce network congestion, battery consumption and response latency.
 Some considerations to be performed when adopting a multicast caching
 behaviour are outlined in the following paragraph.

Castellani, et al. Expires September 13, 2012 [Page 19]

Internet-Draft HTTP-CoAP mapping March 2012

 Caching of multicast GET responses MAY be implemented by adopting
 some technique that takes into account either knowledge about dynamic
 characteristics of group membership (occurrence or frequency of group
 changes) or even better its full knowledge (list of nodes currently
 part of the group).

 When using a technique exploiting this knowledge, valid cached
 responses SHOULD be served from cache.

4.3.4. Observe mapping

 By design, and certainly not without a good rationale, HTTP lacks a
 publish-subscriber facility. This implies that the mapping of the
 CoAP observe semantics has to be created ad hoc, perhaps by making
 use of one of the well-known HTTP techniques currently employed to
 establish an HTTP bidirectional connection with the target resource -
 as documented in [RFC6202].

 In the following sections we will describe some of the approaches
 that can be used to identify an observable resource and to create the
 communication bridging needed to set up an end to end HTTP-CoAP
 observation.

4.3.4.1. Identification

 In order to appropriately process an observe request, the HC proxy
 needs to know whether a given request is intended to establish an
 observation on the target resource, instead of triggering a regular
 request-response exchange.

 At least two different approaches to identify such special requests
 exist, as discussed below.

4.3.4.1.1. Observable URI mapping

 An URI is said to be observable whenever every request to it
 implicitly requires the establishment of an HTTP bidirectional
 connection to the resource.

 Such subscription to the resource is always paired, if possible, to a
 CoAP observe session to the actual resource being observed. In
 general, multiple connections that are active with a single
 observable resource at the same time, are multiplexed to the single
 observe session opened by the intermediary. Its notifications are
 then de-multiplexed by the HC proxy to every HTTP subscriber.

 An intermediary MAY pair a couple of distinct HTTP URIs to a single
 CoAP observable resource: one providing the usual request-response

https://datatracker.ietf.org/doc/html/rfc6202

Castellani, et al. Expires September 13, 2012 [Page 20]

Internet-Draft HTTP-CoAP mapping March 2012

 mediated access to the resource, and the other that always triggers a
 CoAP observe session.

4.3.4.1.1.1. Discovery

 As shown in Figure 4, in order to know whether an URI is observable,
 an HTTP UA MAY do a preflight request to the target resource using
 the HTTP OPTIONS method (see section 6.2 of
 [I-D.ietf-httpbis-p2-semantics]) to discover the communication
 options available for that resource.

 If the resource supports observation, the proxy adds a Link Header
 [RFC5988] with the "obs" attribute as link-param (see Section 7 of
 [I-D.ietf-core-observe]).

 C P S
 | | | OPTIONS /kitchen/temp HTTP/1.1
 +------>| | Host: node.coap.something.net
 | | |
 | +------>| CON GET
 | | | Uri-Path: /.well-known/core?anchor=/kitchen/temp
 | | |
 | |<------+ ACK 2.05
 | | | Payload: </kitchen/temp>;obs
 | | |
 |<------+ | HTTP/1.1 200 OK
 | | | Link: </kitchen/temp>; obs; type="application/atom+xml"
 | | | Allow: GET, OPTIONS

 Figure 4: Discover observability with HTTP OPTIONS

4.3.4.1.2. Differentiation using HTTP Header

 Discerning an observation request through in-protocol means, e.g. via
 the presence and values of some HTTP metadata, avoids introducing
 static "observable" URIs in the HC proxy namespace. Though ideally
 the former should be preferred, there seems to be no standard way to
 use one of the established HTTP headers to convey the observe
 semantics.

 Standardizing such methods is out-of-scope of this document, so we
 just point out some possible approaches that in the future may be
 used to differentiate observation requests from regular requests.

https://datatracker.ietf.org/doc/html/rfc5988

Castellani, et al. Expires September 13, 2012 [Page 21]

Internet-Draft HTTP-CoAP mapping March 2012

4.3.4.1.2.1. Expect Header

 The first method involves the use of the Expect header as defined in
 Section 9.3 of [I-D.ietf-httpbis-p2-semantics]. Whenever an HC proxy
 receives a request with a "206-partial-content" expectation, the
 proxy MUST fulfill this expectation by pairing this request to either
 a new or existing observe session to the resource.

 If the proxy is unable to observe the resource, or if the observation
 establishment fails, the proxy MUST reply to the client with "417
 Expectation Failed" status code.

 Given that the Expect header is processed hop-by-hop, this method
 will fail immediately in case a proxy not supporting this expectation
 is traversed. For this reason, at present, the said approach can't
 be used in the public Internet.

4.3.4.1.2.2. Prefer Header

 A second, very similar, approach involves the use of the Prefer
 header, defined in [I-D.snell-http-prefer]. The HTTP user agent
 expresses the preference to establish an observation with the target
 resource by including a "streaming" preference to request an HTTP
 Streaming session, or a "long-polling" preference to signal to the
 proxy its intended polling behaviour (see [RFC6202]).

 A compliant HC proxy will try to fulfill the preference, and manifest
 observation establishment success by responding with a status code of
 "206 Partial Content". The observation request fails, falling back
 to a single response, whenever the status code is different from 206.

 This approach will never fail immediately, differently from the
 previous one, even across a chain of unaware proxies; however, as
 documented in [RFC6202], caching intermediaries may interfere, delay
 or block the HTTP bidirectional connection, making this approach
 unacceptable when no weak consistency of the resource can be
 tolerated by the requesting UA.

4.3.4.2. Notification(s) mapping

 Multiplexing notifications using a single HTTP bidirectional session
 needs some further considerations about the selection of the media
 type that best fits this specific use case.

 The usage of two different content-types that are suitable for
 carrying multiple notifications in a single session, is discussed in
 the following sections.

https://datatracker.ietf.org/doc/html/rfc6202
https://datatracker.ietf.org/doc/html/rfc6202

Castellani, et al. Expires September 13, 2012 [Page 22]

Internet-Draft HTTP-CoAP mapping March 2012

4.3.4.2.1. Multipart messaging

 As already discussed in Section 4.3.1.1 for multicasting, the
 "multipart/*" media type is a suitable solution to deliver multiple
 CoAP notifications within a single HTTP payload.

 As in the multicast case, each part of the multipart entity MAY be
 represented using a "message/http" media type, containing the full
 mapping of the single CoAP notification mapped, so that CoAP envelope
 informations are preserved (e.g. the response code).

 A more sophisticated mapping could use multipart/mixed with native or
 translated media type.

4.3.4.2.2. Using ATOM Feeds

 Popular observable resources with refresh rates higher than a couple
 of seconds may be treated as Atom feeds [RFC4287], especially with
 delay tolerant user agents and where persistence is required.

 Figure 4 shows a resource supporting 'application/atom+xml' media-
 type. In such case clients can listen to update notification by
 regularly polling the resource via opportunely spaced GETs, i.e.
 driven by the advertised max-age value.

4.3.4.3. Examples

 Figure 5 shows the interaction between an HTTP client (C), an HC
 proxy (P), and a CoAP server (S) for the observation of the resource
 "temperature" (T) available on S.

 C manifests its intention to observe T by including the Expect Header
 in the request; if P or S do not support this interaction, the
 request MUST fail with "417 Expectation Failed" return code. In the
 presented example, both P and C support this interaction, and the
 subscription is successful, as stated by the "206 Partial Content"
 return code.

 At every notification corresponds the emission of a HTTP chunk
 containing a single part, which contains a "message/http" payload
 containing the full mapping of the notification. When the
 observation is dropped by the CoAP server, the HTTP streaming session
 is closed.

 C P S
 | | |
 +---->| | GET /temperature HTTP/1.1

https://datatracker.ietf.org/doc/html/rfc4287

Castellani, et al. Expires September 13, 2012 [Page 23]

Internet-Draft HTTP-CoAP mapping March 2012

 | | | Host: node.coap.something.net
 | | | Expect: 206-partial-content
 | | | Accept: multipart/mixed
 | | |
 | +---->| CON GET
 | | | Uri-Path: temperature
 | | | Observe: 0
 | | |
 | |<----+ ACK 2.05
 | | | Observe: 3482
 | | | "22.1 C"
 | | |
 |<----+ | HTTP/1.1 206 Partial Content
 | | | Content-Type: multipart/mixed; boundary=notification
 | | |
 | | | XX
 | | | --notification
 | | | Content-Type: message/http
 | | |
 | | | HTTP/1.1 200 OK
 | | |
 | | | 22.1 C
 | | |
 | | | ... about 60 seconds have passed ...
 | | |
 | |<----+ NON 2.05
 | | | Observe: 3542
 | | | "21.6 C"
 | | |
 |<----+ | YY
 | | | --notification
 | | | Content-Type: message/http
 | | |
 | | | HTTP/1.1 200 OK
 | | |
 | | | 21.6 C
 | | |
 | | | ... if the server drops the relationship ...
 | | |
 | |<----+ NON 2.05
 | | | "21.8 C"
 | | |
 |<----+ | ZZ
 | | | --notification
 | | | Content-Type: message/http
 | | |
 | | | HTTP/1.1 200 OK
 | | |

Castellani, et al. Expires September 13, 2012 [Page 24]

Internet-Draft HTTP-CoAP mapping March 2012

 | | | 21.8 C
 | | |
 | | | --notification--
 | | |
 | | | 0

 Figure 5: HTTP Streaming to CoAP Observe

 Figure 6 shows the interaction between an HTTP client (C), an HC
 proxy (P), and a CoAP server (S) for the observation of the resource
 "temperature" (T) available on S.

 C manifests its intention to observe T by including the Prefer Header
 in the request; if P or S do not support this interaction, the
 request silently fails if a status code "200 OK" is returned, which
 means that no further notification is expected on that session.

 In the presented example, both P and C support this interaction, and
 the subscription is successful, as stated by the "206 Partial
 Content" status code. At every notification a new response is sent
 to the pending client, always containing the "206 Partial Content"
 status code, to indicate that the observe session is still active, so
 that C can issue a new long-polling request immediately after this
 notification.

 If the observation relationship is dropped by S, P notifies the last
 received content using the "200 OK" status code, indicating that no
 further notification is expected on this observe session.

Castellani, et al. Expires September 13, 2012 [Page 25]

Internet-Draft HTTP-CoAP mapping March 2012

 C P S
 | | |
 +---->| | GET /temperature HTTP/1.1
 | | | Host: node.coap.something.net
 | | | Prefer: long-polling
 | | |
 | +---->| CON GET
 | | | Uri-Path: temperature
 | | | Observe: 0
 | | |
 | |<----+ ACK 2.05
 | | | Observe: 3482
 | | | "22.1 C"
 | | |
 |<----+ | HTTP/1.1 206 Partial Content
 | | |
 | | | 22.1 C
 | | |
 +---->| | GET /temperature HTTP/1.1
 | | | Host: node.coap.something.net
 | | | Prefer: long-polling
 | | |
 | | | ... about 60 seconds have passed ...
 | | |
 | |<----+ NON 2.05
 | | | Observe: 3542
 | | | "21.6 C"
 | | |
 |<----+ | HTTP/1.1 206 Partial Content
 | | |
 | | | 21.6 C
 | | |
 +---->| | GET /temperature HTTP/1.1
 | | | Host: node.coap.something.net
 | | | Prefer: long-polling
 | | |
 | | | ... if the server drops the relationship ...
 | | |
 | |<----+ NON 2.05
 | | | "21.8 C"
 | | |
 |<----+ | HTTP/1.1 200 OK
 | | |
 | | | 21.8 C

 Figure 6: HTTP Long Polling to CoAP Observe

Castellani, et al. Expires September 13, 2012 [Page 26]

Internet-Draft HTTP-CoAP mapping March 2012

 Figure 7 shows the interaction between an HTTP client (C), an HC
 proxy (P), and a CoAP server (S) for the observation of the resource
 "kitchen/temp" (T) available on S.

 It is assumed that the HC proxy knows that the requested resource is
 observable (since perhaps being asked beforehand to discover its
 properties as described in Figure 4.) When asked by the HTTP client
 to retrieve the resource, it requests an observation - in case it
 weren't already in place - and then sends the collected data to the
 client as an Atom feed. The data coming through in the constrained
 network is stored locally on the proxy, and forwarded when further
 requests are received on the HTTP side. As already said, using the
 Atom format has two main advantages: first, there is always a
 "current" feed, but there may also be a complete log made available
 to HTTP clients; secondly, the HTTP intermediaries can play a
 substantial role in absorbing a fair amount of the load on the HC
 proxy. The latter is a very important property when the requested
 resource is or becomes very popular.

Castellani, et al. Expires September 13, 2012 [Page 27]

Internet-Draft HTTP-CoAP mapping March 2012

 C P S
 | | | GET /kitchen/temp HTTP/1.1
 +------>| | Host: node.coap.something.net
 | | |
 | +------>| CON GET
 | | | Uri-Path: kitchen/temp
 | | | Observe: 0
 | | |
 | |<------+ ACK 2.05
 | | | Observe: 1000
 | | | Max-Age: 10
 | | | "22.3 C"
 | | |
 |<------+ | HTTP/1.1 200 OK
 | | | Cache-Control: max-age=10
 | | | ETag: "0x5555"
 | | | Content-Type: application/atom+xml
 | | |
 | | | <feed xmlns="http://www.w3.org/2005/Atom">
 | | | <entry>
 | | | <id>urn:uuid:bf08203a-fbbf-49e8-bf11-3c4cff708525</id>
 | | | <updated>2012-03-07T11:14:30</updated>
 | | | <content type="text/plain">
 | | | 22.3 C
 | | | </content>
 | | | <entry>
 | | | </feed>
 | | |
 | | |
 | |<------+ NON 2.05
 | | | Observe: 1010
 | | | Max-Age: 10
 | | | "22.4 C"
 | | |
 +------>| | GET /kitchen/temp HTTP/1.1
 | | | Host: node.coap.something.net
 | | |
 | | | [...]
 | | |

 Figure 7: Observation via Atom feeds

5. CoAP-HTTP implementation

 The CoAP protocol [I-D.ietf-core-coap] allows CoAP clients to request
 CoAP proxies to perform an HTTP request on their behalf. This is

Castellani, et al. Expires September 13, 2012 [Page 28]

Internet-Draft HTTP-CoAP mapping March 2012

 accomplished by the CoAP client populating an HTTP absolute URI in
 the 'Proxy-URI' option of the CoAP request to the CoAP proxy. An
 absolute URI is an HTTP URI that does not contain a fragment
 component [RFC3986]. The proxy then composes an HTTP request with
 the given URI and sends it to the appropriate HTTP origin server.
 The server then returns the HTTP response to the proxy, which the
 proxy returns to the CoAP client via a CoAP response

5.1. Placement and Deployment

 In typical scenarios, for communication from a CoAP client to an HTTP
 origin server, the HC proxy is expected to be located on the client-
 side (CS). Specifically, the HC proxy is expected to be deployed at
 the edge of the constrained network as shown in Figure 8.

 The arguments supporting CS placement are as follows:

 Client/Proxy/Network configuration overhead: CoAP clients require
 either static proxy configuration or proxy discovery support.
 This overhead is simplified if the proxy is placed on the same
 network domain of the client.

 TCP/UDP: Translation between CoAP and HTTP requires also UDP to TCP
 mapping; UDP performance over the unconstrained Internet may not
 be adequate. In order to minimize the number of required
 retransmissions on the constrained part of the network and the
 overall reliability, TCP/UDP conversion SHOULD be performed as
 soon as possible in the network path.

 Caching: Efficient caching requires that all the CoAP traffic is
 intercepted by the same proxy, thus a CS placement, collecting all
 the traffic, is strategic for this need.

https://datatracker.ietf.org/doc/html/rfc3986

Castellani, et al. Expires September 13, 2012 [Page 29]

Internet-Draft HTTP-CoAP mapping March 2012

 +------+
 | |
 | DNS |
 | |
 +------+

 // \\
 / /-----\ /---\ \
 / CoAP CoAP \
 || client client ||
 +----------+ \-----/ \-----/ ||
 | HTTP/CoAP| /-----\ ||
 | Proxy | CoAP ||
 |(HC Proxy)| client ||
 +------+ +----------+ \-----/ ||
 |HTTP | || /-----\ ||
 |Origin| || CoAP ||
 |Server| \ client /-----\ /
 +------+ \ \-----/ CoAP /
 \ client /
 \\ \-----/ //

 Figure 8: Client-side HC proxy deployment scenario

5.2. Basic mapping

 The basic mapping of CoAP methods to HTTP is defined in
 [I-D.ietf-core-coap]. Specifically the {GET, PUT, POST, DELETE} set
 of CoAP methods are mapped to the equivalent HTTP methods.

 In general, an implementation will translate and forward CoAP
 requests to the HTTP origin server and translate back HTTP responses
 to CoAP responses, typically employing a certain amount of caching to
 make this translation more efficient. This section gives some hints
 for implementing the translation. In addition, some examples are
 given to illustrate the mappings.

5.2.1. Payloads and Media Types

 CoAP supports only a subset of media types. A proxy should convert
 payloads and approximate content-types as closely as possible. For
 example, if a HTTP server returns a resource representation in "text/
 plain; charset=iso-8859-1" format, the proxy should convert the
 payload to "text/plain; charset=utf-8" format. If conversion is not
 possible, the proxy can specify a media type of "application/
 octet-stream".

Castellani, et al. Expires September 13, 2012 [Page 30]

Internet-Draft HTTP-CoAP mapping March 2012

5.2.2. Max-Age and ETag Options

 The proxy can determine the Max-Age Option for responses to GET
 requests by calculating the freshness lifetime (see Section 13.2.4 of
 [RFC2616]) of the HTTP resource representation retrieved. The Max-
 Age Option for responses to POST, PUT or DELETE requests should
 always be set to 0.

 The proxy can assign entity tags to responses it sends to a client.
 These can be generated locally, if the proxy employs a cache, or be
 derived from the ETag header field in a response from the HTTP origin
 server, in which case the proxy can optimize future requests to the
 HTTP by using Conditional Requests. Note that CoAP does not support
 weak entity tags.

5.2.3. Use of CoAP blockwise transfer

 A CH proxy SHOULD support CoAP blockwise transfers
 [I-D.ietf-core-block] to allow transport of large CoAP payloads while
 avoiding link-layer fragmentation in LLNs, and to cope with small
 datagram buffers in CoAP end-points as described in
 [I-D.ietf-core-block].

 For improved latency a CH proxy MAY initiate a HTTP request triggered
 by an incoming blockwise CoAP request even when blocks of the CoAP
 request have only been partially received by the proxy, in cases
 where the Content-Length field is not going to be used in the HTTP
 request. This is useful especially if the network between proxy and
 HTTP server involves low-bandwidth links.

5.2.4. HTTP Status Codes 1xx and 3xx

 CoAP does not have provisional responses (HTTP Status Codes 1xx) or
 responses indicating that further action needs to be taken (HTTP
 Status Codes 3xx). When a proxy receives such a response from the
 HTTP server, the response should cause the proxy to complete the
 request, for example, by following redirects. If the proxy is unable
 or unwilling to do so, it can return a 5.02 (Bad Gateway) error.

5.2.5. Examples

 Figure 9 shows an example implementation of a basic CoAP GET request
 with an HTTP URI as the value of a Proxy-URI option. The proxy
 retrieves a representation of the target resource from the HTTP
 origin server. It converts the payload to a UTF-8 charset,
 calculates the Max-Age Option from the Expires header field, and
 derives an entity-tag from the ETag header field.

https://datatracker.ietf.org/doc/html/rfc2616#section-13.2.4
https://datatracker.ietf.org/doc/html/rfc2616#section-13.2.4

Castellani, et al. Expires September 13, 2012 [Page 31]

Internet-Draft HTTP-CoAP mapping March 2012

C P S
| | |
+---------->| | CoAP Header: GET (T=CON, Code=1, MID=0x1633)
| CoAP | | Token: 0x5a
| Get | | Proxy-URI: http://www.example.com/foo/bar
| | |
| | |
| +---------->| HTTP/1.1 GET /foo/bar
| | HTTP | Host: www.example.com
	GET
<----------+	CoAP Header: (T=ACK, Code=0, MID=0x1633)
	<----------+ HTTP/1.1 200 OK
	HTTP
	200 OK
<----------+	CoAP Header: 2.00 OK (T=CON, Code=64, MID=0xAAFO)
CoAP	
2.00 OK	
+---------->| | CoAP Header: (T=ACK, Code=0, MID=0xAAF0)

 Figure 9: A basic CoAP-HTTP GET request

 The example in Figure 10 builds on the previous example and shows an
 implementation of a GET request that includes a previously returned
 ETag Option. The proxy makes a Conditional Request to the HTTP
 origin server by including an If-None-Match header field in the HTTP
 GET Request. The CoAP response indicates that the response stored by
 the client is fresh. It includes a Max-Age Option calculated from
 the HTTP response's Expires header field.

Castellani, et al. Expires September 13, 2012 [Page 32]

Internet-Draft HTTP-CoAP mapping March 2012

C P S
| | |
+---------->| | CoAP Header: GET (T=CON, Code=1, MID=0x1CBO)
| CoAP | | Token: 0x7b
| Get | | Proxy-URI: http://www.example.com/foo/bar
| | | ETag: 0x78797A7A79
| | |
| | |
| +---------->| HTTP/1.1 GET /foo/bar
| | HTTP | Host: www.example.com
| | GET | If-None-Match: "xyzzy"
| | |
| | |
|<----------+ | CoAP Header: (T=ACK, Code=0, MID=0x1CBO)
| | |
| | |
| |<----------+ HTTP/1.1 304 Not Modified
| | HTTP | Date: Friday, 14 Oct 2011 17:00:00 GMT
| | 304 | Expires: Friday, 14 Oct 2011 18:00:00 GMT
| | | ETag: "xyzzy"
| | | Connection: close
| | |
| | |
|<----------+ | CoAP Header: 2.03 Valid (T=CON, Code=67, MID=0xAAFF)
| CoAP | | Token: 0x7b
| 2.03 | | Max-Age: 3600
| | | ETag: 0x78797A7A79
| | |
| | |
+---------->| | CoAP Header: (T=ACK, Code=0, MID=0xAAFF)

 Figure 10: A CoAP-HTTP GET request with an ETag Option

6. Security Considerations

 The security concerns raised in Section 15.7 of [RFC2616] also apply
 to the HC proxy scenario. In fact, the HC proxy is a trusted (not
 rarely a transparently trusted) component in the network path.

 The trustworthiness assumption on the HC proxy cannot be dropped.
 Even if we had a blind, bi-directional, end-to-end, tunneling
 facility like the one provided by the CONNECT method in HTTP, and
 also assuming the existence of a DTLS-TLS transparent mapping, the
 two tunneled ends should be speaking the same application protocol,
 which is not the case. Basically, the protocol translation function
 is a core duty of the HC proxy that can't be removed, and makes it a

https://datatracker.ietf.org/doc/html/rfc2616#section-15.7

Castellani, et al. Expires September 13, 2012 [Page 33]

Internet-Draft HTTP-CoAP mapping March 2012

 necessarily trusted, impossible to bypass, component in the
 communication path.

 A reverse proxy deployed at the boundary of a constrained network is
 an easy single point of failure for reducing availability. As such,
 a special care should be taken in designing, developing and operating
 it, keeping in mind that, in most cases, it could have fewer
 limitations than the constrained devices it is serving.

 The following sub paragraphs categorize and argue about a set of
 specific security issues related to the translation, caching and
 forwarding functionality exposed by an HC proxy module.

6.1. Traffic overflow

 Due to the typically constrained nature of CoAP nodes, particular
 attention SHOULD be posed in the implementation of traffic reduction
 mechanisms (see Section 4.2.1), because inefficient implementations
 can be targeted by unconstrained Internet attackers. Bandwidth or
 complexity involved in such attacks is very low.

 An amplification attack to the constrained network may be triggered
 by a multicast request generated by a single HTTP request mapped to a
 CoAP multicast resource, as considered in Section XX of
 [I-D.ietf-core-coap].

 The impact of this amplification technique is higher than an
 amplification attack carried out by a malicious constrained device
 (i.e. ICMPv6 flooding, like Packet Too Big, or Parameter Problem on
 a multicast destination [RFC4732]), since it does not require direct
 access to the constrained network.

 The feasibility of this attack, disruptive in terms of CoAP server
 availability, can be limited by access controlling the exposed HTTP
 multicast resource, so that only known/authorized users access such
 URIs.

6.2. Cross-protocol security policy mapping

 At the moment of this writing, CoAP and HTTP are missing any cross-
 protocol security policy mapping.

 The HC proxy SHOULD flexibly support security policies between the
 two protocols, possibly as part of the HC URI mapping function, in
 order to statically map HTTP and CoAP security policies at the proxy
 (see Appendix A.2 for an example.)

https://datatracker.ietf.org/doc/html/rfc4732

Castellani, et al. Expires September 13, 2012 [Page 34]

Internet-Draft HTTP-CoAP mapping March 2012

6.3. Handling secured exchanges

 It is possible that the request from the client to the HC proxy is
 sent over a secured connection. However, there may or may not exist
 a secure connection mapping to the other protocol. For example, a
 secure distribution method for multicast traffic is complex and MAY
 not be implemented (see [I-D.ietf-core-groupcomm]).

 By default, an HC proxy SHOULD reject any secured client request if
 there is no configured security policy mapping. This recommendation
 MAY be relaxed in case the destination network is believed to be
 secured by other, complementary, means. E.g.: assumed that CoAP
 nodes are isolated behind a firewall (e.g. as the SS HC proxy
 deployment shown in Figure 1), the HC proxy may be configured to
 translate the incoming HTTPS request using plain CoAP (i.e. NoSec
 mode.)

 The HC URI mapping MUST NOT map to HTTP (see Section 3.1) a CoAP
 resource intended to be accessed only using HTTPS.

 A secured connection that is terminated at the HC proxy, i.e. the
 proxy decrypts secured data locally, raises an ambiguity about the
 cacheability of the requested resource. The HC proxy SHOULD NOT
 cache any secured content to avoid any leak of secured information.
 However in some specific scenario, a security/efficiency trade-off
 could motivate caching secured information; in that case the caching
 behavior MAY be tuned to some extent on a per-resource basis (see

Section 6.2).

6.4. Spoofing and Cache Poisoning

 In web security jargon, the "cache poisoning" verb accounts for
 attacks where an evil user causes the proxy server to associate
 incorrect content to a cached resource, which work through especially
 crafted HTTP requests or request/response combos.

 When working in CoAP NoSec mode, the use of UDP makes cache poisoning
 on the constrained network easy and effective, simple address
 spoofing by a malicious host is sufficient to perform the attack.
 The implicit broadcast nature of typical link-layer communication
 technologies used in constrained networks lead this attack to be
 easily performed by any host, even without the requirement of being a
 router in the network. The ultimate outcome depends on both the
 order of arrival of packets (legitimate and rogue) and the
 processing/discarding policy at the CoAP node; attackers targeting
 this weakness may have less requirements on timing, thus leading the
 attack to succeed with high probability.

Castellani, et al. Expires September 13, 2012 [Page 35]

Internet-Draft HTTP-CoAP mapping March 2012

 In case the threat of a rogue mote acting in the constrained network
 can't be winded up by appropriate procedural means, the only way to
 avoid such attacks is for any CoAP server to work at least in
 MultiKey mode with a 1:1 key with the HC proxy. SharedKey mode would
 just mitigate the attack, since a guessable MIDs and Tokens
 generation function at the HC proxy side would make it feasible for
 the evil mote to implement a "try until succeed" strategy. Also,
 (authenticated) encryption at a lower layer (MAC/PHY) could be
 defeated by a slightly more powerful attacker, a compromised router
 mote.

6.5. Subscription

 As noted in Section 7 of [I-D.ietf-core-observe], when using the
 observe pattern, an attacker could easily impose resource exhaustion
 on a naive server who's indiscriminately accepting observer
 relationships establishment from clients. The converse of this
 problem is also present, a malicious client may also target the HC
 proxy itself, by trying to exhaust the HTTP connection limit of the
 proxy by opening multiple subscriptions to some CoAP resource.

 Effective strategies to reduce success of such a DoS on the HTTP side
 (by forcing prior identification of the HTTP client via usual web
 authentication mechanisms), must always be weighted against an
 acceptable level of usability of the exposed CoAP resources.

7. Acknowledgements

 Special credit is given to Klaus Hartke who provided the text for
Section 5 and a lot of direct input to this document. Special credit

 about the text in Section 5 is given to Carsten Bormann who provied
 parts of it.

 Thanks to Zach Shelby, Michele Rossi, Nicola Bui, Michele Zorzi,
 Peter Saint-Andre, Cullen Jennings, Kepeng Li, Brian Frank, Peter Van
 Der Stok, Kerry Lynn, Linyi Tian, Dorothy Gellert for helpful
 comments and discussions that have shaped the document.

8. References

8.1. Normative References

 [I-D.ietf-core-block]
 Bormann, C. and Z. Shelby, "Blockwise transfers in CoAP",

draft-ietf-core-block-04 (work in progress), July 2011.

https://datatracker.ietf.org/doc/html/draft-ietf-core-block-04

Castellani, et al. Expires September 13, 2012 [Page 36]

Internet-Draft HTTP-CoAP mapping March 2012

 [I-D.ietf-core-coap]
 Shelby, Z., Hartke, K., Bormann, C., and B. Frank,
 "Constrained Application Protocol (CoAP)",

draft-ietf-core-coap-07 (work in progress), July 2011.

 [I-D.ietf-core-groupcomm]
 Rahman, A. and E. Dijk, "Group Communication for CoAP",

draft-ietf-core-groupcomm-00 (work in progress),
 January 2012.

 [I-D.ietf-core-observe]
 Hartke, K. and Z. Shelby, "Observing Resources in CoAP",

draft-ietf-core-observe-02 (work in progress), March 2011.

 [I-D.ietf-httpbis-p1-messaging]
 Fielding, R., Gettys, J., Mogul, J., Nielsen, H.,
 Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., and
 J. Reschke, "HTTP/1.1, part 1: URIs, Connections, and
 Message Parsing", draft-ietf-httpbis-p1-messaging-18 (work
 in progress), January 2012.

 [I-D.ietf-httpbis-p2-semantics]
 Fielding, R., Gettys, J., Mogul, J., Nielsen, H.,
 Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., and
 J. Reschke, "HTTP/1.1, part 2: Message Semantics",

draft-ietf-httpbis-p2-semantics-18 (work in progress),
 January 2012.

 [I-D.thomson-hybi-http-timeout]
 Thomson, M., Loreto, S., and G. Wilkins, "Hypertext
 Transfer Protocol (HTTP) Timeouts",

draft-thomson-hybi-http-timeout-00 (work in progress),
 March 2011.

 [RFC2046] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part Two: Media Types", RFC 2046,
 November 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, January 2005.

https://datatracker.ietf.org/doc/html/draft-ietf-core-coap-07
https://datatracker.ietf.org/doc/html/draft-ietf-core-groupcomm-00
https://datatracker.ietf.org/doc/html/draft-ietf-core-observe-02
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p1-messaging-18
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-18
https://datatracker.ietf.org/doc/html/draft-thomson-hybi-http-timeout-00
https://datatracker.ietf.org/doc/html/rfc2046
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc3986

Castellani, et al. Expires September 13, 2012 [Page 37]

Internet-Draft HTTP-CoAP mapping March 2012

 [RFC4287] Nottingham, M., Ed. and R. Sayre, Ed., "The Atom
 Syndication Format", RFC 4287, December 2005.

 [RFC5988] Nottingham, M., "Web Linking", RFC 5988, October 2010.

8.2. Informative References

 [I-D.bormann-core-simple-server-discovery]
 Bormann, C., "CoRE Simple Server Discovery",

draft-bormann-core-simple-server-discovery-00 (work in
 progress), March 2011.

 [I-D.eggert-core-congestion-control]
 Eggert, L., "Congestion Control for the Constrained
 Application Protocol (CoAP)",

draft-eggert-core-congestion-control-01 (work in
 progress), January 2011.

 [I-D.shelby-core-resource-directory]
 Shelby, Z. and S. Krco, "CoRE Resource Directory",

draft-shelby-core-resource-directory-01 (work in
 progress), September 2011.

 [I-D.snell-http-prefer]
 Snell, J., "Prefer Header for HTTP",

draft-snell-http-prefer-12 (work in progress),
 February 2012.

 [I-D.vanderstok-core-bc]
 Stok, P. and K. Lynn, "CoAP Utilization for Building
 Control", draft-vanderstok-core-bc-04 (work in progress),
 July 2011.

 [RFC3040] Cooper, I., Melve, I., and G. Tomlinson, "Internet Web
 Replication and Caching Taxonomy", RFC 3040, January 2001.

 [RFC4732] Handley, M., Rescorla, E., and IAB, "Internet Denial-of-
 Service Considerations", RFC 4732, December 2006.

 [RFC6202] Loreto, S., Saint-Andre, P., Salsano, S., and G. Wilkins,
 "Known Issues and Best Practices for the Use of Long
 Polling and Streaming in Bidirectional HTTP", RFC 6202,
 April 2011.

 [W3C.HTML5]
 Hickson, I., "HTML5", World Wide Web Consortium WD (work
 in progress) WD-html5-20111018, October 2011,
 <http://dev.w3.org/html5/spec/>.

https://datatracker.ietf.org/doc/html/rfc4287
https://datatracker.ietf.org/doc/html/rfc5988
https://datatracker.ietf.org/doc/html/draft-bormann-core-simple-server-discovery-00
https://datatracker.ietf.org/doc/html/draft-eggert-core-congestion-control-01
https://datatracker.ietf.org/doc/html/draft-shelby-core-resource-directory-01
https://datatracker.ietf.org/doc/html/draft-snell-http-prefer-12
https://datatracker.ietf.org/doc/html/draft-vanderstok-core-bc-04
https://datatracker.ietf.org/doc/html/rfc3040
https://datatracker.ietf.org/doc/html/rfc4732
https://datatracker.ietf.org/doc/html/rfc6202
http://dev.w3.org/html5/spec/

Castellani, et al. Expires September 13, 2012 [Page 38]

Internet-Draft HTTP-CoAP mapping March 2012

Appendix A. Internal Mapping Functions (from an implementer's
 perspective)

 At least three mapping functions have been identified, which take
 place at different stages of the HC proxy processing chain, involving
 the URL, Content-Type and Security Policy translation.

 All these maps are required to have at least URL granularity so that,
 in principle, each and every requested URL may be treated as an
 independent mapping source.

 In the following, the said map functions are characterized via their
 expected input and output, and a simple, yet sufficiently rich,
 configuration syntax is suggested.

 In the spirit of a document providing implementation guidance, the
 specification of a map grammar aims at putting the basis for a
 reusable software component (e.g. a stand-alone C library) that many
 different proxy implementations can link to, and benefit from.

A.1. URL Map Algorithm

 In case the HC proxy is a reverse proxy, i.e. it acts as the origin
 server in face of the served network, the URL of the resource
 requested by its clients (perhaps having an 'http' scheme) shall be
 mapped to the real resource origin (perhaps in the 'coap' scheme).

 In case HC is a forward proxy, no URL translation is needed since the
 client already knows the "real name" of the resource.

 An interception HC proxy, instead, MAY use the homogeneous mapping
 strategy (see Section 3.1.1 for details) to operate without any pre-
 configuration need.

 As noted in Appendix B of [RFC3986] any correctly formatted URL can
 be matched by a POSIX regular expression. By leveraging on this
 property, we suggest a syntax that describes the URL mapping in terms
 of substituting the regex-matching portions of the requested URL into
 the mapped URL template.

 E.g.: given the source regular expression
 '^http://example.com/coap/.*$' and destination template 'coap://$1'
 (where $1 stands for the first - and only in this specific case -
 substring matched by the regex pattern in the source), the input URL
 "http://example.com/coap/node1/resource2" translates to
 "coap://node1/resource2".

 This is a well established technique used in many todays web

https://datatracker.ietf.org/doc/html/rfc3986#appendix-B

Castellani, et al. Expires September 13, 2012 [Page 39]

Internet-Draft HTTP-CoAP mapping March 2012

 components (e.g. Django URL dispatcher, Apache mod_rewrite, etc.),
 which provides a compact and powerful engine to implement what
 essentially is an URL rewrite function.

 INPUT
 * requested URL

 OUTPUT
 * target URL

 SYNTAX
 url_map [rule name] {
 requested_url <regex>
 mapped_url <regex match subst template>
 }

 EXAMPLE 1
 url_map homogeneous {
 requested_url '^http://.*$'
 mapped_url 'coap//$1'
 }

 EXAMPLE 2
 url_map embedded {
 requested_url '^http://example.com/coap/.*$'
 mapped_url 'coap//$1'
 }

 Note that many different url_map records may be given in order to
 build the whole mapping function. Each of these records can be
 queried (in some predefined order) by the HC proxy until a match is
 found, or the list is exhausted. In the latter case, depending on
 the mapping policy (only internal, internal then external, etc.) the
 original request can be refused, or the same mapping query is
 forwarded to one or more external URL mapping components.

A.2. Security Policy Map Algorithm

 In case the "incoming" URL has been successfully translated, the HC
 proxy must lookup the security policy, if any, that needs to be
 applied to the request/response transaction carried on the "outgoing"
 leg.

Castellani, et al. Expires September 13, 2012 [Page 40]

Internet-Draft HTTP-CoAP mapping March 2012

 INPUT
 * target URL (after URL map has been applied)
 * original requester identity (given by cookie, or IP address, or
 crypto credentials/security context, etc.)

 OUTPUT
 * security context that will be applied to access the target URL

 SYNTAX
 sec_map [rule name] {
 target_url <regex> -- one or more
 requester_id [TBD]
 sec_context [TBD]
 }

 EXAMPLE
 [TBD]

A.3. Content-Type Map Algorithm

 In case a set of destination URLs is known as being limited in
 handling a narrow subset of mime types, a content-type map can be
 configured in order to let the HC proxy transparently handle the
 compatible/lossless format translation.

 INPUT
 * destination URL (after URL map has been applied)
 * original content-type

 OUTPUT
 * mapped content-type

 SYNTAX
 ct_map {
 target_url <regex> -- one or more targetURLs
 ct_switch <source_ct, dest_ct> -- one or more CTs
 }

 EXAMPLE
 ct_map {
 target_url '^coap://class-1-device/.*$'
 ct_switch */xml application/exi
 }

Castellani, et al. Expires September 13, 2012 [Page 41]

Internet-Draft HTTP-CoAP mapping March 2012

Authors' Addresses

 Angelo P. Castellani
 University of Padova
 Via Gradenigo 6/B
 Padova 35131
 Italy

 Email: angelo@castellani.net

 Salvatore Loreto
 Ericsson
 Hirsalantie 11
 Jorvas 02420
 Finland

 Email: salvatore.loreto@ericsson.com

 Akbar Rahman
 InterDigital Communications, LLC

 Email: Akbar.Rahman@InterDigital.com

 Thomas Fossati
 KoanLogic
 Via di Sabbiuno 11/5
 Bologna 40136
 Italy

 Phone: +39 051 644 82 68
 Email: tho@koanlogic.com

 Esko Dijk
 Philips Research

 Email: esko.dijk@philips.com

Castellani, et al. Expires September 13, 2012 [Page 42]

