
CoRE Working Group A. Castellani
Internet-Draft University of Padova
Intended status: Informational S. Loreto
Expires: August 29, 2013 Ericsson
 A. Rahman
 InterDigital Communications, LLC
 T. Fossati
 KoanLogic
 E. Dijk
 Philips Research
 February 25, 2013

 Best Practices for HTTP-CoAP Mapping Implementation
 draft-castellani-core-http-mapping-07

Abstract

 This draft provides reference information for HTTP-CoAP protocol
 translation proxy implementors, focusing primarily on the reverse
 proxy case. It details deployment options, discusses possible
 approaches for URI mapping, and provides a set of guidelines and
 considerations related to protocol translation.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 29, 2013.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents

Castellani, et al. Expires August 29, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78

Internet-Draft HTTP-CoAP Mapping February 2013

 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Terminology . 3
 3. Cross-Protocol Usage of URIs 4
 4. HTTP to CoAP URI Mapping 5
 4.1. Embedded Mapping . 5
 4.2. Homogeneous Mapping 5
 4.3. Scheme Security Mapping 6
 5. HTTP-CoAP Reverse Proxy 6
 5.1. Proxy Placement . 7
 5.2. Response Code Translations 8
 5.3. Media Type Translations 10
 5.4. Caching and Congestion Control 11
 5.5. Cache Refresh via Observe 11
 5.6. Use of CoAP Blockwise Transfer 12
 5.7. Security Translation 13
 5.8. Other guidelines . 13
 6. IANA Considerations . 14
 7. Security Considerations 14
 7.1. Traffic overflow . 14
 7.2. Handling Secured Exchanges 15
 8. Acknowledgements . 15
 9. References . 16
 9.1. Normative References 16
 9.2. Informative References 17
 Authors' Addresses . 17

Castellani, et al. Expires August 29, 2013 [Page 2]

http://trustee.ietf.org/license-info

Internet-Draft HTTP-CoAP Mapping February 2013

1. Introduction

 CoAP [I-D.ietf-core-coap] has been designed with the twofold aim to
 be an application protocol specialized for constrained environments
 and to be easily used in REST architectures such as the Web. The
 latter goal has led to define CoAP to easily interoperate with HTTP
 [RFC2616] through an intermediary proxy which performs cross-protocol
 conversion.

 Section 10 of [I-D.ietf-core-coap] describes the fundamentals of the
 CoAP-HTTP (and vice-versa) cross-protocol mapping process. However,
 implementing such a cross-protocol proxy can be complex, and many
 details regarding its internal procedures and design choices require
 further elaboration. Therefore a first goal of this document is to
 provide more detailed information to proxy designers and
 implementers, to help implement proxies that correctly inter-work
 with other CoAP and HTTP client/server implementations that adhere to
 the HTTP and CoAP specifications.

 The second goal of this informational document is to define a
 consistent set of guidelines that a HTTP-to-CoAP proxy implementation
 MAY adhere to. The main reason of adhering to such guidelines is to
 reduce variation between proxy implementations, thereby increasing
 interoperability. (As an example use case, a proxy conforming to
 these guidelines made by vendor A can be easily replaced by a proxy
 from vendor B that also conforms to the guidelines.)

 This draft is organized as follows:

 o Section 2 describes terminology to identify proxy types, mapping
 approaches and proxy deployments;

 o Section 3 discusses how URIs refer to resources independent of
 access protocols;

 o Section 5 analyzes the mapping that allows HTTP clients to contact
 CoAP servers;

 o Section 7 discusses possible security impact related to HTTP/CoAP
 cross-protocol mapping.

2. Terminology

 This document assumes readers are familiar with the terms Reverse
 Proxy as defined in [I-D.ietf-httpbis-p1-messaging] and Interception
 Proxy as defined in [RFC3040]. In addition, the following terms are
 defined:

Castellani, et al. Expires August 29, 2013 [Page 3]

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc3040

Internet-Draft HTTP-CoAP Mapping February 2013

 Cross-Protocol Proxy (or Cross Proxy): is a proxy performing a cross-
 protocol mapping, in the context of this document a HTTP-CoAP (HC)
 mapping. A Cross-Protocol Proxy can behave as a Forward Proxy,
 Reverse Proxy or Interception Proxy. Note: In this document we focus
 on the Reverse Proxy mode of the Cross-Protocol Proxy.

 Forward Proxy: a message forwarding agent that is selected by the
 client, usually via local configuration rules, to receive requests
 for some type(s) of absolute URI and to attempt to satisfy those
 requests via translation to the protocol indicated by the absolute
 URI. The user decides (is willing to) use the proxy as the
 forwarding/dereferencing agent for a predefined subset of the URI
 space.

 Reverse Proxy: a receiving agent that acts as a layer above some
 other server(s) and translates the received requests to the
 underlying server's protocol. It behaves as an origin (HTTP) server
 on its connection towards the (HTTP) client and as a (CoAP) client on
 its connection towards the (CoAP) origin server. The (HTTP) client
 uses the "origin-form" [I-D.ietf-httpbis-p1-messaging] as a request-
 target URI.

 Reverse and Forward proxies are technically very similar, with main
 differences being that the former appears to a client as an origin
 server while the latter does not, and that clients may be unaware
 they are communicating with a proxy.

 Placement terms: a server-side (SS) proxy is placed in the same
 network domain as the server; conversely a client-side (CS) proxy is
 in the same network domain as the client. In any other case than SS
 or CS, the proxy is said to be External (E).

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

3. Cross-Protocol Usage of URIs

 A Uniform Resource Identifier (URI) provides a simple and extensible
 method for identifying a resource. It enables uniform identification
 of resources via a separately defined extensible set of naming
 schemes [RFC3986].

 URIs are formed of at least three components: scheme, authority and
 path. The scheme often corresponds to the protocol used to access
 the resource. However, as noted in Section 1.2.2 of [RFC3986] the

Castellani, et al. Expires August 29, 2013 [Page 4]

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986#section-1.2.2

Internet-Draft HTTP-CoAP Mapping February 2013

 scheme does not imply that a particular protocol is used to access
 the resource. So, we can define the same resource to be accessible
 by different protocols i.e. the resource can have cross-protocol URIs
 referring to it.

 HTTP clients typically only support 'http' and 'https' schemes.
 Therefore, they cannot directly access CoAP servers (which support
 'coap' and/or 'coaps'). In this situation, communication is enabled
 by a Cross-Protocol Proxy, as shown in Figure 1, supporting URI
 mapping features. Such features are discussed in the following
 section.

4. HTTP to CoAP URI Mapping

 Assume that a HTTP client wants to access a CoAP resource and
 indicates a target resource of "http://node.something.net/foobar" to
 a Forward cross proxy. A possible URI mapping done by the proxy
 could result in "coap://node.coap.something.net/foo".

 As shown in the above example, in a cross-protocol URI the scheme,
 authority and path parts of the URI may all change. The process of
 providing cross-protocol URIs may be complex, since a mechanism to
 statically or dynamically (e.g., discovery) map the URI is needed.

 Two simple static URI mapping solutions are proposed in the following
 subsections. Note that other mapping approaches are possible as
 well.

4.1. Embedded Mapping

 In an embedded mapping approach, the HTTP URI has embedded inside it
 the authority and path part of the CoAP URI.

 Example: The CoAP resource "//node.coap.something.net/foo" can be
 accessed by an HTTP client by inserting in the request
 "http://hc-proxy.something.net/coap/node.coap.something.net/foo".
 The Cross-Protocol Proxy then maps the URI to
 "coap://node.coap.something.net/foo"

4.2. Homogeneous Mapping

 In a homogeneous mapping approach, only the scheme portion of the URI
 needs to be mapped. The rest of the URI (i.e. authority, path, etc.)
 remains unchanged.

 Example: The CoAP resource "coap://node.coap.something.net/foo" can
 be accessed by an HTTP client by requesting

Castellani, et al. Expires August 29, 2013 [Page 5]

Internet-Draft HTTP-CoAP Mapping February 2013

 "http://node.coap.something.net/foo". The Cross-Protocol Proxy
 receiving the request is responsible to map the URI to
 "coap://node.coap.something.net/foo"

 Background info: The assumption in this case is that the HTTP client
 would be able to successfully resolve "node.coap.something.net" using
 DNS infrastructure to return the IP address of the HC proxy. Most
 likely this would be through a two step DNS lookup where the first
 DNS lookup would resolve "something.net" using public DNS
 infrastructure. Then the second DNS lookup on the subdomain "coap"
 and the host "node" would typically be resolved by a DNS server
 operated by the owner of domain "something.net". So this domain
 owner can manage its own internal node names and subdomain allocation
 which would correspond to the CoAP namespace

4.3. Scheme Security Mapping

 In general, regardless of the URI mapping scheme used in the Cross-
 Protocol Proxy, an "https" request SHOULD be translated to a "coaps"
 request. The exception case being cases where security on the CoAP
 side is not needed because the network is well enough protected
 already by other means (e.g. strong link-layer security, or the CoAP
 network runs inside a firewalled network, etc.).

5. HTTP-CoAP Reverse Proxy

 A HTTP-CoAP Reverse Cross-Protocol Proxy is accessed by web clients
 only supporting HTTP, and handles their requests by mapping these to
 CoAP requests, which are forwarded to CoAP servers; and mapping back
 the received CoAP responses to HTTP. This mechanism is transparent
 to the client, which may assume that it is communicating with the
 intended target HTTP server. In other words, the client accesses the
 proxy as an origin server using the "origin-form"
 [I-D.ietf-httpbis-p1-messaging] as a Request Target.

 Normative requirements on the translation of HTTP requests to CoAP
 and of the CoAP responses back to HTTP responses are defined in
 Section 10.2 of [I-D.ietf-core-coap]. However, that section only
 considers the case of a HTTP-CoAP Forward Cross-Protocol Proxy in
 which a client explicitly indicates it targets a request to a CoAP
 server, and does not cover all aspects of proxy implementation in
 detail. The present section provides guidelines and more details for
 the implementation of a Reverse Cross-Protocol Proxy, which MAY be
 followed in addition to the normative requirements.

 Translation of unicast HTTP requests into multicast CoAP requests is
 currently out of scope since in a reverse proxy scenario a HTTP

Castellani, et al. Expires August 29, 2013 [Page 6]

Internet-Draft HTTP-CoAP Mapping February 2013

 client typically expects to receive a single response, not multiple.
 However a Cross-Protocol Proxy MAY include custom application-
 specific functions to generate a multicast CoAP request based on a
 unicast HTTP request and aggregate multiple CoAP responses into a
 single HTTP response.

 Note that the guidelines in this section also apply to an HTTP-CoAP
 Intercepting Cross-Protocol Proxy.

5.1. Proxy Placement

 Typically, a Cross-Protocol Proxy is located at the edge of the
 constrained network. See Figure 1. The arguments supporting server-
 side (SS) placement are the following:

 Caching: Efficient caching requires that all request traffic to a
 CoAP server is handled by the same proxy which receives HTTP
 requests from multiple source locations. This maximally reduces
 the load on (constrained) CoAP servers.

 Multicast: To support CoAPs use of local-multicast functionalities
 available in a constrained network, the Cross-Protocol Proxy
 requires a network interface directly attached to the constrained
 network.

 TCP/UDP: Translation between HTTP and CoAP requires also TCP/UDP
 translation; TCP may be the preferred way for communicating with
 the constrained network due to its reliability or due to
 intermediate gateways configured to block UDP traffic.

 Arguments against SS placement, in favor of client-side (CS), are:

 Scalability: A solution where a single SS proxy has to manage
 numerous open TCP/IP connections to a large number of HTTP clients
 is not scalable. (Unless multiple SS proxies are employed with a
 load-balancing mechanism, which adds complexity.)

Castellani, et al. Expires August 29, 2013 [Page 7]

Internet-Draft HTTP-CoAP Mapping February 2013

 +------+
 | |
 | DNS |
 | |
 +------+ Constrained Network

 / \
 / /-----\ /-----\ \
 / CoAP CoAP \
 / server server \
 || \-----/ \-----/ ||
 +------+ HTTP Request +----------+ ||
 |HTTP |------------------------>| HTTP/CoAP| Req /-----\ || |
 |Client| | Cross- |------->| CoAP ||
 | |<------------------------| Proxy |<-------|server ||
 +------+ HTTP Response +----------+ Resp \-----/ ||
 || ||
 || /-----\ ||
 || CoAP ||
 \ server /
 \ \-----/ /
 \ /-----\ /
 \ CoAP /
 \ server /
 \ \-----/ /

 Figure 1: Reverse Cross-Protocol Proxy Deployment Scenario

5.2. Response Code Translations

 Table 1 defines all possible CoAP responses along with the HTTP
 response to which each CoAP response SHOULD be translated. This
 table complies with the Section 10.2 requirements of
 [I-D.ietf-core-coap] and is intended to cover all possible cases.
 Multiple appearances of a HTTP status code in the second column
 indicates multiple equivalent HTTP responses are possible, depending
 on the conditions cited in the Notes (third column).

Castellani, et al. Expires August 29, 2013 [Page 8]

Internet-Draft HTTP-CoAP Mapping February 2013

 +-----------------------------+-----------------------------+-------+
 | CoAP Response Code | HTTP Status Code | Notes |
 +-----------------------------+-----------------------------+-------+
2.01 Created	201 Created	1
2.02 Deleted	200 OK	2
	204 No Content	2
2.03 Valid	304 Not Modified	3
	200 OK	4
2.04 Changed	200 OK	2
	204 No Content	2
2.05 Content	200 OK	
4.00 Bad Request	400 Bad Request	
4.01 Unauthorized	400 Bad Request	5
4.02 Bad Option	400 Bad Request	6
4.03 Forbidden	403 Forbidden	
4.04 Not Found	404 Not Found	
4.05 Method Not Allowed	400 Bad Request	7
4.06 Not Acceptable	406 Not Acceptable	
4.12 Precondition Failed	412 Precondition Failed	
4.13 Request Entity Too	413 Request Repr. Too Large	
Large		
4.15 Unsupported Media Type	415 Unsupported Media Type	
5.00 Internal Server Error	500 Internal Server Error	
5.01 Not Implemented	501 Not Implemented	
5.02 Bad Gateway	502 Bad Gateway	
5.03 Service Unavailable	503 Service Unavailable	8
5.04 Gateway Timeout	504 Gateway Timeout	
5.05 Proxying Not Supported	502 Bad Gateway	9
 +-----------------------------+-----------------------------+-------+

 Table 1: HTTP-CoAP Response Mapping

 Notes:

 1. A CoAP server may return an arbitrary format payload along with
 this response. This payload SHOULD be returned as entity in the
 HTTP 201 response. Section 7.3.2 of
 [I-D.ietf-httpbis-p2-semantics] does not put any requirement on
 the format of the payload. (In the past, [RFC2616] did.)

 2. The HTTP code is 200 or 204 respectively for the case that a CoAP
 server returns a payload or not. [I-D.ietf-httpbis-p2-semantics]
 Section 5.3 requires code 200 in case a representation of the
 action result is returned for DELETE, POST and PUT and code 204
 if not. Hence, a proxy SHOULD transfer any CoAP payload
 contained in a 2.02 response to the HTTP client in a 200 OK
 response.

Castellani, et al. Expires August 29, 2013 [Page 9]

https://datatracker.ietf.org/doc/html/rfc2616

Internet-Draft HTTP-CoAP Mapping February 2013

 3. A CoAP 2.03 (Valid) response only (1) confirms that the request
 ETag is valid and (2) provides a new Max-Age value. HTTP 304
 (Not Modified) also updates some header fields of a stored
 response. A non-caching proxy may not have enough information to
 fill in the required values in the HTTP 304 (Not Modified)
 response, so it may not be advisable for a non-caching proxy to
 provoke the 2.03 (Valid) response by forwarding an ETag. A
 caching proxy will fill the information out of the cache.

 4. A 200 response to a CoAP 2.03 occurs only when the proxy is
 caching and translated a HTTP request (without validation
 request) to a CoAP request that includes validation, for
 efficiency. The proxy receiving 2.03 updates the freshness of
 the cached representation and returns the entire representation
 to the HTTP client.

 5. The HTTP code 401 Unauthorized MUST NOT be used, as long as in
 CoAP there is no equivalent defined of the required WWW-
 Authenticate header (Section 3.1 of [I-D.ietf-httpbis-p7-auth]).

 6. In some cases a proxy receiving 4.02 may retry the request with
 less CoAP Options in the hope that the server will understand the
 newly formulated request. For example, if the proxy tried using
 a Block Option which was not recognized by the CoAP server it may
 retry without that Block Option.

 7. The HTTP code "405 Method Not Allowed" MUST NOT be used since
 CoAP does not provide enough information to determine a value for
 the required "Allow" response-header field.

 8. The value of the HTTP "Retry-After" response-header field is
 taken from the value of the CoAP Max-Age Option, if present.

 9. This CoAP response can only happen if the proxy itself is
 configured to use a CoAP Forward Proxy to execute some, or all,
 of its CoAP requests.

5.3. Media Type Translations

 A Cross-Protocol Proxy translates a media type string, carried in a
 HTTP Content-Type header in a request, to a CoAP Content-Format
 Option with the equivalent numeric value. The media types supported
 by CoAP are defined in the CoAP Content-Format Registry. Any HTTP
 request with a Content-Type for which the proxy does not know an
 equivalent CoAP Content-Format number, MUST lead to HTTP response 415
 (Unsupported Media Type).

 Also, a CoAP Content-Format value in a response is translated back to

Castellani, et al. Expires August 29, 2013 [Page 10]

Internet-Draft HTTP-CoAP Mapping February 2013

 the equivalent HTTP Content-Type. If a proxy receives a CoAP
 Content-Format value that it does not recognize (e.g. because the
 value is IANA-registered after the proxy software was deployed), and
 is unable to look up the equivalent HTTP Content-Type on the fly, the
 proxy SHOULD return an HTTP entity (payload) without Content-Type
 header (complying to Section 3.1.1.5 of
 [I-D.ietf-httpbis-p2-semantics]).

5.4. Caching and Congestion Control

 A Cross-Protocol Proxy SHOULD limit the number of requests to CoAP
 servers by responding, where applicable, with a cached representation
 of the resource.

 Duplicate idempotent pending requests by a Cross-Protocol Proxy to
 the same CoAP resource SHOULD in general be avoided, by duplexing the
 response to the requesting HTTP clients without duplicating the CoAP
 request.

 If the HTTP client times out and drops the HTTP session to the Cross-
 Protocol Proxy (closing the TCP connection) after the HTTP request
 was made, a Cross-Protocol Proxy SHOULD wait for the associated CoAP
 response and cache it if possible. Further requests to the Cross-
 Protocol Proxy for the same resource can use the result present in
 cache, or, if a response has still to come, the HTTP requests will
 wait on the open CoAP session.

 According to [I-D.ietf-core-coap], a proxy MUST limit the number of
 outstanding interactions to a given CoAP server to NSTART. To limit
 the amount of aggregate traffic to a constrained network, the Cross-
 Protocol Proxy SHOULD also pose a limit to the number of concurrent
 CoAP requests pending on the same constrained network; further
 incoming requests MAY either be queued or dropped (returning 503
 Service Unavailable). This limit and the proxy queueing/dropping
 behavior SHOULD be configurable. In order to efficiently apply this
 congestion control, the Cross-Protocol Proxy SHOULD be SS placed.

 Resources experiencing a high access rate coupled with high
 volatility MAY be observed [I-D.ietf-core-observe] by the Cross-
 Protocol Proxy to keep their cached representation fresh while
 minimizing the number CoAP messages. See Section 5.5.

5.5. Cache Refresh via Observe

 There are cases where using the CoAP observe protocol
 [I-D.ietf-core-observe] to handle proxy cache refresh is preferable
 to the validation mechanism based on ETag as defined in
 [I-D.ietf-core-coap]. Such scenarios include, but are not limited

Castellani, et al. Expires August 29, 2013 [Page 11]

Internet-Draft HTTP-CoAP Mapping February 2013

 to, sleepy nodes -- with possibly high variance in requests'
 distribution -- which would greatly benefit from a server driven
 cache update mechanism. Ideal candidates would also be crowded or
 very low throughput networks, where reduction of the total number of
 exchanged messages is an important requirement.

 This subsection aims at providing a practical evaluation method to
 decide whether the refresh of a cached resource R is more efficiently
 handled via ETag validation or by establishing an observation on R.

 Let T_R be the mean time between two client requests to resource R,
 let F_R be the freshness lifetime of R representation, and let M_R be
 the total number of messages exchanged towards resource R. If we
 assume that the initial cost for establishing the observation is
 negligible, an observation on R reduces M_R iff T_R < 2*F_R with
 respect to using ETag validation, that is iff the mean arrival time
 of requests for resource R is greater than half the refresh rate of
 R.

 When using observations M_R is always upper bounded by 2*F_R: in the
 constrained network no more than 2*F_R messages will be generated
 towards resource R.

5.6. Use of CoAP Blockwise Transfer

 A Cross-Protocol Proxy SHOULD support CoAP blockwise transfers
 [I-D.ietf-core-block] to allow transport of large CoAP payloads while
 avoiding excessive link-layer fragmentation in LLNs, and to cope with
 small datagram buffers in CoAP end-points as described in
 [I-D.ietf-core-coap] Section 4.6.

 A Cross-Protocol Proxy SHOULD attempt to retry a payload-carrying
 CoAP PUT or POST request with blockwise transfer if the destination
 CoAP server responded with 4.13 (Request Entity Too Large) to the
 original request. A Cross-Protocol Proxy SHOULD attempt to use
 blockwise transfer when sending a CoAP PUT or POST request message
 that is larger than a value BLOCKWISE_THRESHOLD. The value of
 BLOCKWISE_THRESHOLD MAY be implementation-specific, for example
 calculated based on a known or typical UDP datagram buffer size for
 CoAP end-points, or set to N times the size of a link-layer frame
 where e.g. N=5, or preset to a known IP MTU value, or set to a known
 Path MTU value. The value BLOCKWISE_THRESHOLD or parameters from
 which it is calculated SHOULD be configurable in a proxy
 implementation.

 The Cross-Protocol Proxy SHOULD detect CoAP end-points not supporting
 blockwise transfers by checking for a 4.02 (Bad Option) response
 returned by an end-point in response to a CoAP request with a Block*

Castellani, et al. Expires August 29, 2013 [Page 12]

Internet-Draft HTTP-CoAP Mapping February 2013

 Option. This allows the Cross-Protocol Proxy to be more efficient,
 not attempting repeated blockwise transfers to CoAP servers that do
 not support it. However if a request payload is too large to be sent
 as a single CoAP request and blockwise transfer would be unavoidable,
 the proxy still SHOULD attempt blockwise transfer on such an end-
 point before returning 413 (Request Entity Too Large) to the HTTP
 client.

 For improved latency a cross proxy MAY initiate a blockwise CoAP
 request triggered by an incoming HTTP request even when the HTTP
 request message has not yet been fully received, but enough data has
 been received to send one or more data blocks to a CoAP server
 already. This is particularly useful on slow client-to-proxy
 connections.

5.7. Security Translation

 A HC proxy SHOULD implement explicit rules for security context
 translations. A translation may involve e.g. applying a rule that
 any "https" request is translated to a "coaps" request, or e.g.
 applying a rule that a "https" request is translated to an unsecured
 "coap" request. Another rule could specify the security policy and
 parameters used for DTLS connections. Such rules will largely depend
 on the application and network context in which a proxy is applied.
 To enable widest possible use of a proxy implementation, these rules
 SHOULD be configurable in a HC proxy.

5.8. Other guidelines

 For long delays of a CoAP server, the HTTP client or any other proxy
 in between MAY timeout. Further discussion of timeouts in HTTP is
 available in Section 6.2.4 of [I-D.ietf-httpbis-p1-messaging].

 A cross proxy MUST define an internal timeout for each pending CoAP
 request, because the CoAP server may silently die before completing
 the request. The timeout value SHOULD be approximately less than or
 equal to MAX_RTT defined in [I-D.ietf-core-coap].

 When the DNS protocol is not used between CoAP nodes in a constrained
 network, defining valid FQDN (i.e., DNS entries) for constrained CoAP
 servers, where possible, MAY help HTTP clients to access the
 resources offered by these servers via a HC proxy.

 HTTP connection pipelining (section 6.2.2.1 of
 [I-D.ietf-httpbis-p1-messaging]) MAY be supported by the proxy and is
 transparent to the CoAP network: the HC cross proxy will sequentially
 serve the pipelined requests by issuing different CoAP requests.

Castellani, et al. Expires August 29, 2013 [Page 13]

Internet-Draft HTTP-CoAP Mapping February 2013

6. IANA Considerations

 This memo includes no request to IANA.

7. Security Considerations

 The security concerns raised in Section 15.7 of [RFC2616] also apply
 to the cross proxy scenario. In fact, the cross proxy is a trusted
 (not rarely a transparently trusted) component in the network path.

 The trustworthiness assumption on the cross proxy cannot be dropped.
 Even if we had a blind, bi-directional, end-to-end, tunneling
 facility like the one provided by the CONNECT method in HTTP, and
 also assuming the existence of a DTLS-TLS transparent mapping, the
 two tunneled ends should be speaking the same application protocol,
 which is not the case. Basically, the protocol translation function
 is a core duty of the cross proxy that can't be removed, and makes it
 a necessarily trusted, impossible to bypass, component in the
 communication path.

 A reverse proxy deployed at the boundary of a constrained network is
 an easy single point of failure for reducing availability. As such,
 a special care should be taken in designing, developing and operating
 it, keeping in mind that, in most cases, it could have fewer
 limitations than the constrained devices it is serving.

 The following sub paragraphs categorize and argue about a set of
 specific security issues related to the translation, caching and
 forwarding functionality exposed by a cross proxy module.

7.1. Traffic overflow

 Due to the typically constrained nature of CoAP nodes, particular
 attention SHOULD be posed in the implementation of traffic reduction
 mechanisms (see Section 5.4), because inefficient implementations can
 be targeted by unconstrained Internet attackers. Bandwidth or
 complexity involved in such attacks is very low.

 An amplification attack to the constrained network may be triggered
 by a multicast request generated by a single HTTP request mapped to a
 CoAP multicast resource, as considered in Section TBD of
 [I-D.ietf-core-coap].

 The impact of this amplification technique is higher than an
 amplification attack carried out by a malicious constrained device
 (e.g. ICMPv6 flooding, like Packet Too Big, or Parameter Problem on
 a multicast destination [RFC4732]), since it does not require direct

Castellani, et al. Expires August 29, 2013 [Page 14]

https://datatracker.ietf.org/doc/html/rfc2616#section-15.7
https://datatracker.ietf.org/doc/html/rfc4732

Internet-Draft HTTP-CoAP Mapping February 2013

 access to the constrained network.

 The feasibility of this attack, disruptive in terms of CoAP server
 availability, can be limited by access controlling the exposed HTTP
 multicast resource, so that only known/authorized users access such
 URIs.

7.2. Handling Secured Exchanges

 It is possible that the request from the client to the cross proxy is
 sent over a secured connection. However, there may or may not exist
 a secure connection mapping to the other protocol. For example, a
 secure distribution method for multicast traffic is complex and MAY
 not be implemented (see [I-D.ietf-core-groupcomm]).

 By default, a cross proxy SHOULD reject any secured client request if
 there is no configured security policy mapping. This recommendation
 MAY be relaxed in case the destination network is believed to be
 secured by other, complementary, means. E.g.: assumed that CoAP
 nodes are isolated behind a firewall (e.g. as the SS cross proxy
 deployment shown in Figure 1), the cross proxy may be configured to
 translate the incoming HTTPS request using plain CoAP (i.e. NoSec
 mode.)

 The HC URI mapping MUST NOT map to HTTP (see Section 4) a CoAP
 resource intended to be accessed only using HTTPS.

 A secured connection that is terminated at the cross proxy, i.e. the
 proxy decrypts secured data locally, raises an ambiguity about the
 cacheability of the requested resource. The cross proxy SHOULD NOT
 cache any secured content to avoid any leak of secured information.
 However in some specific scenario, a security/efficiency trade-off
 could motivate caching secured information; in that case the caching
 behavior MAY be tuned to some extent on a per-resource basis.

8. Acknowledgements

 An initial version of the table found in Section 5.2 has been
 provided in revision -05 of [I-D.ietf-core-coap]. Special thanks to
 Peter van der Stok for countless comments and discussions on this
 document, that contributed to its current structure and text.

 Thanks to Carsten Bormann, Zach Shelby, Michele Rossi, Nicola Bui,
 Michele Zorzi, Klaus Hartke, Cullen Jennings, Kepeng Li, Brian Frank,
 Peter Saint-Andre, Kerry Lynn, Linyi Tian, Dorothy Gellert, Francesco
 Corazza for helpful comments and discussions that have shaped the
 document.

Castellani, et al. Expires August 29, 2013 [Page 15]

Internet-Draft HTTP-CoAP Mapping February 2013

 The research leading to these results has received funding from the
 European Community's Seventh Framework Programme [FP7/2007-2013]
 under grant agreement n. [251557].

9. References

9.1. Normative References

 [I-D.ietf-core-block]
 Bormann, C. and Z. Shelby, "Blockwise transfers in CoAP",
 draft-ietf-core-block-10 (work in progress), October 2012.

 [I-D.ietf-core-coap]
 Shelby, Z., Hartke, K., Bormann, C., and B. Frank,
 "Constrained Application Protocol (CoAP)",
 draft-ietf-core-coap-13 (work in progress), December 2012.

 [I-D.ietf-core-groupcomm]
 Rahman, A. and E. Dijk, "Group Communication for CoAP",
 draft-ietf-core-groupcomm-05 (work in progress),
 February 2013.

 [I-D.ietf-core-observe]
 Hartke, K., "Observing Resources in CoAP",
 draft-ietf-core-observe-07 (work in progress),
 October 2012.

 [I-D.ietf-httpbis-p1-messaging]
 Fielding, R. and J. Reschke, "Hypertext Transfer Protocol
 (HTTP/1.1): Message Syntax and Routing",
 draft-ietf-httpbis-p1-messaging-22 (work in progress),
 February 2013.

 [I-D.ietf-httpbis-p2-semantics]
 Fielding, R. and J. Reschke, "Hypertext Transfer Protocol
 (HTTP/1.1): Semantics and Content",
 draft-ietf-httpbis-p2-semantics-22 (work in progress),
 February 2013.

 [I-D.ietf-httpbis-p7-auth]
 Fielding, R. and J. Reschke, "Hypertext Transfer Protocol
 (HTTP/1.1): Authentication", draft-ietf-httpbis-p7-auth-22
 (work in progress), February 2013.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

Castellani, et al. Expires August 29, 2013 [Page 16]

https://datatracker.ietf.org/doc/html/draft-ietf-core-block-10
https://datatracker.ietf.org/doc/html/draft-ietf-core-coap-13
https://datatracker.ietf.org/doc/html/draft-ietf-core-groupcomm-05
https://datatracker.ietf.org/doc/html/draft-ietf-core-observe-07
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p1-messaging-22
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-22
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p7-auth-22
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

Internet-Draft HTTP-CoAP Mapping February 2013

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, January 2005.

9.2. Informative References

 [I-D.bormann-core-simple-server-discovery]
 Bormann, C., "CoRE Simple Server Discovery",
 draft-bormann-core-simple-server-discovery-01 (work in
 progress), March 2012.

 [I-D.shelby-core-resource-directory]
 Shelby, Z., Krco, S., and C. Bormann, "CoRE Resource
 Directory", draft-shelby-core-resource-directory-04 (work
 in progress), July 2012.

 [RFC3040] Cooper, I., Melve, I., and G. Tomlinson, "Internet Web
 Replication and Caching Taxonomy", RFC 3040, January 2001.

 [RFC4732] Handley, M., Rescorla, E., and IAB, "Internet Denial-of-
 Service Considerations", RFC 4732, December 2006.

Authors' Addresses

 Angelo P. Castellani
 University of Padova
 Via Gradenigo 6/B
 Padova 35131
 Italy

 Email: angelo@castellani.net

 Salvatore Loreto
 Ericsson
 Hirsalantie 11
 Jorvas 02420
 Finland

 Email: salvatore.loreto@ericsson.com

Castellani, et al. Expires August 29, 2013 [Page 17]

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/draft-bormann-core-simple-server-discovery-01
https://datatracker.ietf.org/doc/html/draft-shelby-core-resource-directory-04
https://datatracker.ietf.org/doc/html/rfc3040
https://datatracker.ietf.org/doc/html/rfc4732

Internet-Draft HTTP-CoAP Mapping February 2013

 Akbar Rahman
 InterDigital Communications, LLC
 1000 Sherbrooke Street West
 Montreal H3A 3G4
 Canada

 Phone: +1 514 585 0761
 Email: Akbar.Rahman@InterDigital.com

 Thomas Fossati
 KoanLogic
 Via di Sabbiuno 11/5
 Bologna 40136
 Italy

 Phone: +39 051 644 82 68
 Email: tho@koanlogic.com

 Esko Dijk
 Philips Research
 High Tech Campus 34
 Eindhoven 5656 AE
 The Netherlands

 Email: esko.dijk@philips.com

Castellani, et al. Expires August 29, 2013 [Page 18]

