
Network Working Group M. Cavage
Internet-Draft Oracle
Intended status: Standards Track M. Sporny
Expires: May 19, 2018 Digital Bazaar
 November 15, 2017

Signing HTTP Messages
draft-cavage-http-signatures-09

Abstract

 When communicating over the Internet using the HTTP protocol, it can
 be desirable for a server or client to authenticate the sender of a
 particular message. It can also be desirable to ensure that the
 message was not tampered with during transit. This document
 describes a way for servers and clients to simultaneously add
 authentication and message integrity to HTTP messages by using a
 digital signature.

Feedback

 This specification is a joint work product of the W3C Digital
 Verification Community Group [1] and the W3C Credentials Community
 Group [2]. Feedback related to this specification should be sent to
 public-credentials@w3.org [3].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 19, 2018.

Cavage & Sporny Expires May 19, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft Signing HTTP Messages November 2017

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Table of Contents

1. Introduction . 3
1.1. Using Signatures in HTTP Requests 3
1.2. Using Signatures in HTTP Responses 4

2. The Components of a Signature 4
2.1. Signature Parameters 4
2.1.1. keyId . 4
2.1.2. algorithm . 4
2.1.3. headers . 4
2.1.4. signature . 5

2.2. Ambiguous Parameters 5
2.3. Signature String Construction 5
2.4. Creating a Signature 6
2.5. Verifying a Signature 7

3. The 'Signature' HTTP Authentication Scheme 7
3.1. Authorization Header 7
3.1.1. Initiating Signature Authorization 8
3.1.2. RSA Example . 8
3.1.3. HMAC Example . 9

4. The 'Signature' HTTP Header 9
4.1. Signature Header . 10
4.1.1. RSA Example . 10
4.1.2. HMAC Example . 11

5. References . 11
5.1. Normative References 11
5.2. Informative References 12
5.3. URIs . 12

Appendix A. Security Considerations 13
Appendix B. Extensions . 13
Appendix C. Test Values . 14
C.1. Default Test . 15
C.2. Basic Test . 15
C.3. All Headers Test . 16

Appendix D. Acknowledgements 16
Appendix E. IANA Considerations 16

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Cavage & Sporny Expires May 19, 2018 [Page 2]

Internet-Draft Signing HTTP Messages November 2017

E.1. Signature Authentication Scheme 16
E.2. Signature Algorithm Registry 17

 Authors' Addresses . 17

1. Introduction

 This protocol extension is intended to provide a simple and standard
 way for clients to sign HTTP messages.

 HTTP Authentication [RFC2617] defines Basic and Digest authentication
 mechanisms, TLS 1.2 [RFC5246] defines cryptographically strong
 transport layer security, and OAuth 2.0 [RFC6749] provides a fully-
 specified alternative for authorization of web service requests.
 Each of these approaches are employed on the Internet today with
 varying degrees of protection. However, none of these schemes are
 designed to cryptographically sign the HTTP messages themselves,
 which is required in order to ensure end-to-end message integrity.
 An added benefit of signing the HTTP message for the purposes of end-
 to-end message integrity is that the client can be authenticated
 using the same mechanism without the need for multiple round-trips.

 Several web service providers have invented their own schemes for
 signing HTTP messages, but to date, none have been standardized.
 While there are no techniques in this proposal that are novel beyond
 the previous art, it is useful to standardize a simple and
 cryptographically strong mechanism for digitally signing HTTP
 messages.

1.1. Using Signatures in HTTP Requests

 It is common practice to protect sensitive website API functionality
 via authentication mechanisms. Often, the entity accessing these
 APIs is a piece of automated software outside of an interactive human
 session. While there are mechanisms like OAuth and API secrets that
 are used to grant API access, each have their weaknesses such as
 unnecessary complexity for particular use cases or the use of shared
 secrets which may not be acceptable to an implementer.

 Digital signatures are widely used to provide authentication without
 the need for shared secrets. They also do not require a round-trip
 in order to authenticate the client. A server need only have a
 mapping between the key being used to sign the content and the
 authorized entity to verify that a message was signed by that entity.

 This specification provides two mechanisms that can be used by a
 server to authenticate a client. The first is the 'Signature' HTTP
 Authentication Scheme, which may be used for interactive sessions.

https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6749

Cavage & Sporny Expires May 19, 2018 [Page 3]

Internet-Draft Signing HTTP Messages November 2017

 The second is the Signature HTTP Header, which is typically used by
 automated software agents.

1.2. Using Signatures in HTTP Responses

 For high security transactions, having an additional signature on the
 HTTP header allows a client to ensure that even if the transport
 channel has been compromised, that the content of the messages have
 not been compromised. This specification provides a HTTP Signature
 Header mechanism that can be used by a client to authenticate the
 sender of a message and ensure that particular headers have not been
 modified in transit.

2. The Components of a Signature

 There are a number of components in a signature that are common
 between the 'Signature' HTTP Authentication Scheme and the
 'Signature' HTTP Header. This section details the components of a
 digital signature.

2.1. Signature Parameters

 The following section details the signature parameters.

2.1.1. keyId

 REQUIRED. The `keyId` field is an opaque string that the server can
 use to look up the component they need to validate the signature. It
 could be an SSH key fingerprint, a URL to machine-readable key data,
 an LDAP DN, etc. Management of keys and assignment of `keyId` is out
 of scope for this document.

2.1.2. algorithm

 REQUIRED. The `algorithm` parameter is used to specify the digital
 signature algorithm to use when generating the signature. Valid
 values for this parameter can be found in the Signature Algorithms
 registry located at http://www.iana.org/assignments/signature-

algorithms [4] and MUST NOT be marked "deprecated".

2.1.3. headers

 OPTIONAL. The `headers` parameter is used to specify the list of
 HTTP headers included when generating the signature for the message.
 If specified, it should be a lowercased, quoted list of HTTP header
 fields, separated by a single space character. If not specified,
 implementations MUST operate as if the field were specified with a
 single value, the `Date` header, in the list of HTTP headers. Note

http://www.iana.org/assignments/signature-algorithms
http://www.iana.org/assignments/signature-algorithms

Cavage & Sporny Expires May 19, 2018 [Page 4]

Internet-Draft Signing HTTP Messages November 2017

 that the list order is important, and MUST be specified in the order
 the HTTP header field-value pairs are concatenated together during
 signing.

2.1.4. signature

 REQUIRED. The `signature` parameter is a base 64 encoded digital
 signature, as described in RFC 4648 [RFC4648], Section 4 [5]. The
 client uses the `algorithm` and `headers` signature parameters to
 form a canonicalized `signing string`. This `signing string` is then
 signed with the key associated with `keyId` and the algorithm
 corresponding to `algorithm`. The `signature` parameter is then set
 to the base 64 encoding of the signature.

2.2. Ambiguous Parameters

 If any of the parameters listed above are erroneously duplicated in
 the associated header field, then the last parameter defined MUST be
 used. Any parameter that is not recognized as a parameter, or is not
 well-formed, MUST be ignored.

2.3. Signature String Construction

 In order to generate the string that is signed with a key, the client
 MUST use the values of each HTTP header field in the `headers`
 Signature parameter, in the order they appear in the `headers`
 Signature parameter. It is out of scope for this document to dictate
 what header fields an application will want to enforce, but
 implementers SHOULD at minimum include the request target and Date
 header fields.

 To include the HTTP request target in the signature calculation, use
 the special `(request-target)` header field name.

 1. If the header field name is `(request-target)` then generate the
 header field value by concatenating the lowercased :method, an
 ASCII space, and the :path pseudo-headers (as specified in
 HTTP/2, Section 8.1.2.3 [6]).

 2. Create the header field string by concatenating the lowercased
 header field name followed with an ASCII colon `:`, an ASCII
 space ` `, and the header field value. Leading and trailing
 optional whitespace (OWS) in the header field value MUST be
 omitted (as specified in RFC7230 [RFC7230], Section 3.2.4 [7]).
 If there are multiple instances of the same header field, all
 header field values associated with the header field MUST be
 concatenated, separated by a ASCII comma and an ASCII space `, `,
 and used in the order in which they will appear in the

https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc4648#section-4
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7230#section-3.2.4

Cavage & Sporny Expires May 19, 2018 [Page 5]

Internet-Draft Signing HTTP Messages November 2017

 transmitted HTTP message. Any other modification to the header
 field value MUST NOT be made.

 3. If value is not the last value then append an ASCII newline `\n`.

 To illustrate the rules specified above, assume a `headers` parameter
 list with the value of `(request-target) host date cache-control
 x-example` with the following HTTP request headers:

 GET /foo HTTP/1.1
 Host: example.org
 Date: Tue, 07 Jun 2014 20:51:35 GMT
 X-Example: Example header
 with some whitespace.
 Cache-Control: max-age=60
 Cache-Control: must-revalidate

 For the HTTP request headers above, the corresponding signature
 string is:

 (request-target): get /foo
 host: example.org
 date: Tue, 07 Jun 2014 20:51:35 GMT
 cache-control: max-age=60, must-revalidate
 x-example: Example header with some whitespace.

2.4. Creating a Signature

 In order to create a signature, a client MUST:

 1. Use the contents of the HTTP message, the `headers` value, and
 the Signature String Construction algorithm to create the
 signature string.

 2. The `algorithm` and key associated with `keyId` must then be used
 to generate a digital signature on the signature string.

 3. The `signature` is then generated by base 64 encoding the output
 of the digital signature algorithm.

 For example, assume that the `algorithm` value was "rsa-sha256".
 This would signal to the application that the data associated with
 `keyId` is an RSA Private Key (as defined in RFC 3447 [RFC3447]), the
 signature string hashing function is SHA-256, and the signing
 algorithm is the one defined in RFC 3447 [RFC3447],
 Section Section 8.2.1 [8]. The result of the signature creation
 algorithm specified in RFC 3447 [RFC3447] should result in a binary

https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc3447

Cavage & Sporny Expires May 19, 2018 [Page 6]

Internet-Draft Signing HTTP Messages November 2017

 string, which is then base 64 encoded and placed into the `signature`
 value.

2.5. Verifying a Signature

 In order to verify a signature, a server MUST:

 1. Use the received HTTP message, the `headers` value, and the
 Signature String Construction algorithm to recreate the signature
 string.

 2. The `algorithm`, `keyId`, and base 64 decoded `signature` listed
 in the signature parameters are then used to verify the
 authenticity of the digital signature.

 For example, assume that the `algorithm` value was "rsa-sha256".
 This would signal to the application that the data associated with
 `keyId` is an RSA Public Key (as defined in RFC 3447 [RFC3447]), the
 signature string hashing function is SHA-256, and the `signature`
 verification algorithm to use to verify the signature is the one
 defined in RFC 3447 [RFC3447], Section Section 8.2.2 [9]. The result
 of the signature verification algorithm specified in RFC 3447
 [RFC3447] should result in a successful verification unless the
 headers protected by the signature were tampered with in transit.

3. The 'Signature' HTTP Authentication Scheme

 The "signature" authentication scheme is based on the model that the
 client must authenticate itself with a digital signature produced by
 either a private asymmetric key (e.g., RSA) or a shared symmetric key
 (e.g., HMAC). The scheme is parameterized enough such that it is not
 bound to any particular key type or signing algorithm. However, it
 does explicitly assume that clients can send an HTTP `Date` header.

3.1. Authorization Header

 The client is expected to send an Authorization header (as defined in
RFC 7235 [RFC7235], Section 4.1 [10]) where the "auth-scheme" is

 "Signature" and the "auth-param" parameters meet the requirements
 listed in Section 2: The Components of a Signature.

 The rest if this section uses the following HTTP request as an
 example.

https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc3447
https://datatracker.ietf.org/doc/html/rfc7235
https://datatracker.ietf.org/doc/html/rfc7235#section-4.1

Cavage & Sporny Expires May 19, 2018 [Page 7]

Internet-Draft Signing HTTP Messages November 2017

 POST /foo HTTP/1.1
 Host: example.org
 Date: Tue, 07 Jun 2014 20:51:35 GMT
 Content-Type: application/json
 Digest: SHA-256=X48E9qOokqqrvdts8nOJRJN3OWDUoyWxBf7kbu9DBPE=
 Content-Length: 18

 {"hello": "world"}

 Note that the use of the `Digest` header field is per RFC 3230
[RFC3230], Section 4.3.2 [11] and is included merely as a

 demonstration of how an implementer could include information about
 the body of the message in the signature. The following sections
 also assume that the "rsa-key-1" keyId refers to a private key known
 to the client and a public key known to the server. The "hmac-key-1"
 keyId refers to key known to the client and server.

3.1.1. Initiating Signature Authorization

 A server may notify a client when a protected resource could be
 accessed by authenticating itself to the server. To initiate this
 process, the server will request that the client authenticate itself
 via a 401 response code. The server may optionally specify which
 HTTP headers it expects to be signed by specifying the `headers`
 parameter in the WWW-Authenticate header. For example:

HTTP/1.1 401 Unauthorized
Date: Thu, 08 Jun 2014 18:32:30 GMT
Content-Length: 1234
Content-Type: text/html
WWW-Authenticate: Signature realm="Example",headers="(request-target) date"

...

3.1.2. RSA Example

 The authorization header and signature would be generated as:

 Authorization: Signature keyId="rsa-key-1",algorithm="rsa-sha256",
 headers="(request-target) host date digest content-length",
 signature="Base64(RSA-SHA256(signing string))"

 The client would compose the signing string as:

https://datatracker.ietf.org/doc/html/rfc3230
https://datatracker.ietf.org/doc/html/rfc3230#section-4.3.2

Cavage & Sporny Expires May 19, 2018 [Page 8]

Internet-Draft Signing HTTP Messages November 2017

 (request-target): post /foo\n
 host: example.org\n
 date: Tue, 07 Jun 2014 20:51:35 GMT\n
 digest: SHA-256=X48E9qOokqqrvdts8nOJRJN3OWDUoyWxBf7kbu9DBPE=\n
 content-length: 18

 Note that the '\n' symbols above are included to demonstrate where
 the new line character should be inserted. There is no new line on
 the final line of the signing string.

 For an RSA-based signature, the authorization header and signature
 would then be generated as:

 Authorization: Signature keyId="rsa-key-1",algorithm="rsa-sha256",
 headers="(request-target) host date digest content-length",
 signature="Base64(RSA-SHA256(signing string))"

3.1.3. HMAC Example

 For an HMAC-based signature without a list of headers specified, the
 authorization header and signature would be generated as:

 Authorization: Signature keyId="hmac-key-1",algorithm="hmac-sha256",
 headers="(request-target) host date digest content-length",
 signature="Base64(HMAC-SHA256(signing string))"

 The only difference between the RSA Example and the HMAC Example is
 the signature algorithm that is used. The client would compose the
 signing string in the same way as the RSA Example above:

 (request-target): post /foo\n
 host: example.org\n
 date: Tue, 07 Jun 2014 20:51:35 GMT\n
 digest: SHA-256=X48E9qOokqqrvdts8nOJRJN3OWDUoyWxBf7kbu9DBPE=\n
 content-length: 18

4. The 'Signature' HTTP Header

 The "signature" HTTP Header is based on the model that the sender
 must authenticate itself with a digital signature produced by either
 a private asymmetric key (e.g., RSA) or a shared symmetric key (e.g.,
 HMAC). The scheme is parameterized enough such that it is not bound
 to any particular key type or signing algorithm. However, it does
 explicitly assume that senders can send an HTTP `Date` header.

Cavage & Sporny Expires May 19, 2018 [Page 9]

Internet-Draft Signing HTTP Messages November 2017

4.1. Signature Header

 The sender is expected to transmit a header (as defined in RFC 7230
[RFC7230], Section 3.2 [12]) where the "field-name" is "Signature",

 and the "field-value" contains one or more "auth-param"s (as defined
 in RFC 7235 [RFC7235], Section 4.1 [13]) where the "auth-param"
 parameters meet the requirements listed in Section 2: The Components
 of a Signature.

 The rest if this section uses the following HTTP request as an
 example.

 POST /foo HTTP/1.1
 Host: example.org
 Date: Tue, 07 Jun 2014 20:51:35 GMT
 Content-Type: application/json
 Digest: SHA-256=X48E9qOokqqrvdts8nOJRJN3OWDUoyWxBf7kbu9DBPE=
 Content-Length: 18

 {"hello": "world"}

 The following sections assume that the "rsa-key-1" keyId refers to a
 private key known to the client and a public key known to the server.
 The "hmac-key-1" keyId refers to key known to the client and server.

4.1.1. RSA Example

 The signature header and signature would be generated as:

 Signature: keyId="rsa-key-1",algorithm="rsa-sha256",
 headers="(request-target) host date digest content-length",
 signature="Base64(RSA-SHA256(signing string))"

 The client would compose the signing string as:

 (request-target): post /foo\n
 host: example.org\n
 date: Tue, 07 Jun 2014 20:51:35 GMT\n
 digest: SHA-256=X48E9qOokqqrvdts8nOJRJN3OWDUoyWxBf7kbu9DBPE=\n
 content-length: 18

 Note that the '\n' symbols above are included to demonstrate where
 the new line character should be inserted. There is no new line on
 the final line of the signing string.

 For an RSA-based signature, the authorization header and signature
 would then be generated as:

https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7230#section-3.2
https://datatracker.ietf.org/doc/html/rfc7235
https://datatracker.ietf.org/doc/html/rfc7235#section-4.1

Cavage & Sporny Expires May 19, 2018 [Page 10]

Internet-Draft Signing HTTP Messages November 2017

 Signature: keyId="rsa-key-1",algorithm="rsa-sha256",
 headers="(request-target) host date digest content-length",
 signature="Base64(RSA-SHA256(signing string))"

4.1.2. HMAC Example

 For an HMAC-based signature without a list of headers specified, the
 authorization header and signature would be generated as:

 Signature: keyId="hmac-key-1",algorithm="hmac-sha256",
 headers="(request-target) host date digest content-length",
 signature="Base64(HMAC-SHA256(signing string))"

 The only difference between the RSA Example and the HMAC Example is
 the signature algorithm that is used. The client would compose the
 signing string in the same way as the RSA Example above:

 (request-target): post /foo\n
 host: example.org\n
 date: Tue, 07 Jun 2014 20:51:35 GMT\n
 digest: SHA-256=X48E9qOokqqrvdts8nOJRJN3OWDUoyWxBf7kbu9DBPE=\n
 content-length: 18

5. References

5.1. Normative References

 [I-D.ietf-jose-json-web-algorithms]
 Jones, M., "JSON Web Algorithms (JWA)", draft-ietf-jose-

json-web-algorithms-20 (work in progress), January 2014.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <https://www.rfc-editor.org/info/rfc4648>.

 [RFC6376] Crocker, D., Ed., Hansen, T., Ed., and M. Kucherawy, Ed.,
 "DomainKeys Identified Mail (DKIM) Signatures", STD 76,

RFC 6376, DOI 10.17487/RFC6376, September 2011,
 <https://www.rfc-editor.org/info/rfc6376>.

https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-algorithms-20
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-algorithms-20
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc4648
https://www.rfc-editor.org/info/rfc4648
https://datatracker.ietf.org/doc/html/rfc6376
https://www.rfc-editor.org/info/rfc6376

Cavage & Sporny Expires May 19, 2018 [Page 11]

Internet-Draft Signing HTTP Messages November 2017

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [RFC7235] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Authentication", RFC 7235,
 DOI 10.17487/RFC7235, June 2014,
 <https://www.rfc-editor.org/info/rfc7235>.

5.2. Informative References

 [RFC2617] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S.,
 Leach, P., Luotonen, A., and L. Stewart, "HTTP
 Authentication: Basic and Digest Access Authentication",

RFC 2617, DOI 10.17487/RFC2617, June 1999,
 <https://www.rfc-editor.org/info/rfc2617>.

 [RFC3230] Mogul, J. and A. Van Hoff, "Instance Digests in HTTP",
RFC 3230, DOI 10.17487/RFC3230, January 2002,

 <https://www.rfc-editor.org/info/rfc3230>.

 [RFC3447] Jonsson, J. and B. Kaliski, "Public-Key Cryptography
 Standards (PKCS) #1: RSA Cryptography Specifications
 Version 2.1", RFC 3447, DOI 10.17487/RFC3447, February
 2003, <https://www.rfc-editor.org/info/rfc3447>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
RFC 6749, DOI 10.17487/RFC6749, October 2012,

 <https://www.rfc-editor.org/info/rfc6749>.

5.3. URIs

 [1] https://w3c-dvcg.github.io/

 [2] https://w3c-ccg.github.io/

 [3] mailto:public-credentials@w3.org

 [4] http://www.iana.org/assignments/signature-algorithms

 [5] http://tools.ietf.org/html/rfc4648#section-4

https://datatracker.ietf.org/doc/html/rfc7230
https://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/rfc7235
https://www.rfc-editor.org/info/rfc7235
https://datatracker.ietf.org/doc/html/rfc2617
https://www.rfc-editor.org/info/rfc2617
https://datatracker.ietf.org/doc/html/rfc3230
https://www.rfc-editor.org/info/rfc3230
https://datatracker.ietf.org/doc/html/rfc3447
https://www.rfc-editor.org/info/rfc3447
https://datatracker.ietf.org/doc/html/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://w3c-dvcg.github.io/
https://w3c-ccg.github.io/
http://www.iana.org/assignments/signature-algorithms
http://tools.ietf.org/html/rfc4648#section-4

Cavage & Sporny Expires May 19, 2018 [Page 12]

Internet-Draft Signing HTTP Messages November 2017

 [6] https://tools.ietf.org/html/rfc7540#section-8.1.2.3

 [7] http://tools.ietf.org/html/rfc7230#section-3.2.4

 [8] http://tools.ietf.org/html/rfc3447#section-8.2.1

 [9] http://tools.ietf.org/html/rfc3447#section-8.2.2

 [10] http://tools.ietf.org/html/draft-ietf-rfc7235-auth-25#section-
4.1

 [11] http://tools.ietf.org/html/rfc3230#section-4.3.2

 [12] http://tools.ietf.org/html/rfc7230#section-3.2

 [13] http://tools.ietf.org/html/rfc7235#section-4.1

 [14] https://web-payments.org/specs/source/http-signatures-audit/

 [15] https://web-payments.org/specs/source/http-signature-nonces/

 [16] https://web-payments.org/specs/source/http-signature-trailers/

 [17] http://www.iana.org/assignments/http-auth-scheme-signature

 [18] http://www.iana.org/assignments/http-authschemes

 [19] http://www.iana.org/assignments/signature-algorithms

Appendix A. Security Considerations

 There are a number of security considerations to take into account
 when implementing or utilizing this specification. A thorough
 security analysis of this protocol, including its strengths and
 weaknesses, can be found in Security Considerations for HTTP
 Signatures [14].

Appendix B. Extensions

 This specification was designed to be simple, modular, and
 extensible. There are a number of other specifications that build on
 this one. For example, the HTTP Signature Nonces [15] specification
 details how to use HTTP Signatures over a non-secured channel like
 HTTP and the HTTP Signature Trailers [16] specification explains how
 to apply HTTP Signatures to streaming content. Developers that
 desire more functionality than this specification provides are urged
 to ensure that an extension specification doesn't already exist
 before implementing a proprietary extension.

https://tools.ietf.org/html/rfc7540#section-8.1.2.3
http://tools.ietf.org/html/rfc7230#section-3.2.4
http://tools.ietf.org/html/rfc3447#section-8.2.1
http://tools.ietf.org/html/rfc3447#section-8.2.2
http://tools.ietf.org/html/draft-ietf-rfc7235-auth-25#section-4.1
http://tools.ietf.org/html/draft-ietf-rfc7235-auth-25#section-4.1
http://tools.ietf.org/html/rfc3230#section-4.3.2
http://tools.ietf.org/html/rfc7230#section-3.2
http://tools.ietf.org/html/rfc7235#section-4.1
https://web-payments.org/specs/source/http-signatures-audit/
https://web-payments.org/specs/source/http-signature-nonces/
https://web-payments.org/specs/source/http-signature-trailers/
http://www.iana.org/assignments/http-auth-scheme-signature
http://www.iana.org/assignments/http-authschemes
http://www.iana.org/assignments/signature-algorithms

Cavage & Sporny Expires May 19, 2018 [Page 13]

Internet-Draft Signing HTTP Messages November 2017

 If extensions to this specification are made by adding new Signature
 Parameters, those extension parameters MUST be registered in the
 Signature Authentication Scheme Registry. The registry will be
 created and maintained at (the suggested URI)

http://www.iana.org/assignments/http-auth-scheme-signature [17]. An
 example entry in this registry is included below:

 Signature Parameter: nonce
 Reference to specification: [HTTP_AUTH_SIGNATURE_NONCE], Section XYZ.
 Notes (optional): The HTTP Signature Nonces specification details
 how to use HTTP Signatures over a unsecured channel like HTTP.

Appendix C. Test Values

 The following test data uses the following RSA 2048-bit keys, which
 we will refer to as `keyId=Test` in the following samples:

 -----BEGIN PUBLIC KEY-----
 MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDCFENGw33yGihy92pDjZQhl0C3
 6rPJj+CvfSC8+q28hxA161QFNUd13wuCTUcq0Qd2qsBe/2hFyc2DCJJg0h1L78+6
 Z4UMR7EOcpfdUE9Hf3m/hs+FUR45uBJeDK1HSFHD8bHKD6kv8FPGfJTotc+2xjJw
 oYi+1hqp1fIekaxsyQIDAQAB
 -----END PUBLIC KEY-----

 -----BEGIN RSA PRIVATE KEY-----
 MIICXgIBAAKBgQDCFENGw33yGihy92pDjZQhl0C36rPJj+CvfSC8+q28hxA161QF
 NUd13wuCTUcq0Qd2qsBe/2hFyc2DCJJg0h1L78+6Z4UMR7EOcpfdUE9Hf3m/hs+F
 UR45uBJeDK1HSFHD8bHKD6kv8FPGfJTotc+2xjJwoYi+1hqp1fIekaxsyQIDAQAB
 AoGBAJR8ZkCUvx5kzv+utdl7T5MnordT1TvoXXJGXK7ZZ+UuvMNUCdN2QPc4sBiA
 QWvLw1cSKt5DsKZ8UETpYPy8pPYnnDEz2dDYiaew9+xEpubyeW2oH4Zx71wqBtOK
 kqwrXa/pzdpiucRRjk6vE6YY7EBBs/g7uanVpGibOVAEsqH1AkEA7DkjVH28WDUg
 f1nqvfn2Kj6CT7nIcE3jGJsZZ7zlZmBmHFDONMLUrXR/Zm3pR5m0tCmBqa5RK95u
 412jt1dPIwJBANJT3v8pnkth48bQo/fKel6uEYyboRtA5/uHuHkZ6FQF7OUkGogc
 mSJluOdc5t6hI1VsLn0QZEjQZMEOWr+wKSMCQQCC4kXJEsHAve77oP6HtG/IiEn7
 kpyUXRNvFsDE0czpJJBvL/aRFUJxuRK91jhjC68sA7NsKMGg5OXb5I5Jj36xAkEA
 gIT7aFOYBFwGgQAQkWNKLvySgKbAZRTeLBacpHMuQdl1DfdntvAyqpAZ0lY0RKmW
 G6aFKaqQfOXKCyWoUiVknQJAXrlgySFci/2ueKlIE1QqIiLSZ8V8OlpFLRnb1pzI
 7U1yQXnTAEFYM560yJlzUpOb1V4cScGd365tiSMvxLOvTA==
 -----END RSA PRIVATE KEY-----

 All examples use this request:

http://www.iana.org/assignments/http-auth-scheme-signature

Cavage & Sporny Expires May 19, 2018 [Page 14]

Internet-Draft Signing HTTP Messages November 2017

 POST /foo?param=value&pet=dog HTTP/1.1
 Host: example.com
 Date: Sun, 05 Jan 2014 21:31:40 GMT
 Content-Type: application/json
 Digest: SHA-256=X48E9qOokqqrvdts8nOJRJN3OWDUoyWxBf7kbu9DBPE=
 Content-Length: 18

 {"hello": "world"}

C.1. Default Test

 If a list of headers is not included, the date is the only header
 that is signed by default. The string to sign would be:

 date: Sun, 05 Jan 2014 21:31:40 GMT

 The Authorization header would be:

 Authorization: Signature keyId="Test",algorithm="rsa-sha256",
 signature="SjWJWbWN7i0wzBvtPl8rbASWz5xQW6mcJmn+ibttBqtifLN7Sazz
 6m79cNfwwb8DMJ5cou1s7uEGKKCs+FLEEaDV5lp7q25WqS+lavg7T8hc0GppauB
 6hbgEKTwblDHYGEtbGmtdHgVCk9SuS13F0hZ8FD0k/5OxEPXe5WozsbM="

 The Signature header would be:

 Signature: keyId="Test",algorithm="rsa-sha256",
 signature="SjWJWbWN7i0wzBvtPl8rbASWz5xQW6mcJmn+ibttBqtifLN7Sazz
 6m79cNfwwb8DMJ5cou1s7uEGKKCs+FLEEaDV5lp7q25WqS+lavg7T8hc0GppauB
 6hbgEKTwblDHYGEtbGmtdHgVCk9SuS13F0hZ8FD0k/5OxEPXe5WozsbM="

C.2. Basic Test

 The minimum recommended data to sign is the (request-target), host,
 and date. In this case, the string to sign would be:

 (request-target): post /foo?param=value&pet=dog
 host: example.com
 date: Sun, 05 Jan 2014 21:31:40 GMT

 The Authorization header would be:

 Authorization: Signature keyId="Test",algorithm="rsa-sha256",
 headers="(request-target) host date", signature="qdx+H7PHHDZgy4
 y/Ahn9Tny9V3GP6YgBPyUXMmoxWtLbHpUnXS2mg2+SbrQDMCJypxBLSPQR2aAjn
 7ndmw2iicw3HMbe8VfEdKFYRqzic+efkb3nndiv/x1xSHDJWeSWkx3ButlYSuBs
 kLu6kd9Fswtemr3lgdDEmn04swr2Os0="

Cavage & Sporny Expires May 19, 2018 [Page 15]

Internet-Draft Signing HTTP Messages November 2017

C.3. All Headers Test

 A strong signature including all of the headers and a digest of the
 body of the HTTP request would result in the following signing
 string:

 (request-target): post /foo?param=value&pet=dog
 host: example.com
 date: Sun, 05 Jan 2014 21:31:40 GMT
 content-type: application/json
 digest: SHA-256=X48E9qOokqqrvdts8nOJRJN3OWDUoyWxBf7kbu9DBPE=
 content-length: 18

 The Authorization header would be:

Authorization: Signature keyId="Test",algorithm="rsa-sha256",
headers="(request-target) host date content-type digest content-length",
signature="vSdrb+dS3EceC9bcwHSo4MlyKS59iFIrhgYkz8+oVLEEzmYZZvRs
8rgOp+63LEM3v+MFHB32NfpB2bEKBIvB1q52LaEUHFv120V01IL+TAD48XaERZF
ukWgHoBTLMhYS2Gb51gWxpeIq8knRmPnYePbF5MOkR0Zkly4zKH7s1dE="

 The Signature header would be:

Signature: keyId="Test",algorithm="rsa-sha256",
headers="(request-target) host date content-type digest content-length",
signature="vSdrb+dS3EceC9bcwHSo4MlyKS59iFIrhgYkz8+oVLEEzmYZZvRs
8rgOp+63LEM3v+MFHB32NfpB2bEKBIvB1q52LaEUHFv120V01IL+TAD48XaERZF
ukWgHoBTLMhYS2Gb51gWxpeIq8knRmPnYePbF5MOkR0Zkly4zKH7s1dE="

Appendix D. Acknowledgements

 The editor would like to thank the following individuals for feedback
 on and implementations of the specification (in alphabetical order):
 Stephen Farrell, Phillip Hallam-Baker, Dave Lehn, Dave Longley, James
 H. Manger, Mark Nottingham, Yoav Nir, Julian Reschke, and Michael
 Richardson.

Appendix E. IANA Considerations

E.1. Signature Authentication Scheme

 The following entry should be added to the Authentication Scheme
 Registry located at http://www.iana.org/assignments/http-authschemes
 [18]

 Authentication Scheme Name: Signature
 Reference: [RFC_THIS_DOCUMENT], Section 2.

http://www.iana.org/assignments/http-authschemes

Cavage & Sporny Expires May 19, 2018 [Page 16]

Internet-Draft Signing HTTP Messages November 2017

 Notes (optional): The Signature scheme is designed for clients to
 authenticate themselves with a server.

E.2. Signature Algorithm Registry

 The following initial entries should be added to the Signature
 Algorithm Registry to be created and maintained at (the suggested
 URI) http://www.iana.org/assignments/signature-algorithms [19]:

 Editor's note: The references in this section are problematic as many
 of the specifications that they refer to are too implementation
 specific, rather than just pointing to the proper signature and
 hashing specifications. A better approach might be just specifying
 the signature and hashing function specifications, leaving
 implementers to connect the dots (which are not that hard to
 connect).

 Algorithm Name: rsa-sha1
 Reference: RFC 6376 [RFC6376], Section 3.3.1
 Status: deprecated

 Algorithm Name: rsa-sha256
 Reference: RFC 6376 [RFC6376], Section 3.3.2
 Status: active

 Algorithm Name: hmac-sha256
 Reference: HS256 in JOSE JSON Web Algorithms
 [I-D.ietf-jose-json-web-algorithms], Section 3.2
 Status: active

 Algorithm Name: ecdsa-sha256
 Reference: ES256 in JOSE JSON Web Algorithms
 [I-D.ietf-jose-json-web-algorithms], Section 3.4
 Status: active

Authors' Addresses

 Mark Cavage
 Oracle
 500 Oracle Parkway
 Redwood Shores, CA 94065
 US

 Phone: +1 415 400 0626
 Email: mcavage@gmail.com
 URI: http://www.oracle.com/

http://www.iana.org/assignments/signature-algorithms
https://datatracker.ietf.org/doc/html/rfc6376
https://datatracker.ietf.org/doc/html/rfc6376#section-3.3.1
https://datatracker.ietf.org/doc/html/rfc6376
https://datatracker.ietf.org/doc/html/rfc6376#section-3.3.2
http://www.oracle.com/

Cavage & Sporny Expires May 19, 2018 [Page 17]

Internet-Draft Signing HTTP Messages November 2017

 Manu Sporny
 Digital Bazaar
 203 Roanoke Street W.
 Blacksburg, VA 24060
 US

 Phone: +1 540 961 4469
 Email: msporny@digitalbazaar.com
 URI: http://manu.sporny.org/

Cavage & Sporny Expires May 19, 2018 [Page 18]

http://manu.sporny.org/

