
Network Working Group M. Cavage
Internet-Draft Oracle
Intended status: Standards Track M. Sporny
Expires: October 26, 2019 Digital Bazaar
 April 24, 2019

Signing HTTP Messages
draft-cavage-http-signatures-11

Abstract

 When communicating over the Internet using the HTTP protocol, it can
 be desirable for a server or client to authenticate the sender of a
 particular message. It can also be desirable to ensure that the
 message was not tampered with during transit. This document
 describes a way for servers and clients to simultaneously add
 authentication and message integrity to HTTP messages by using a
 digital signature.

Feedback

 WARNING: DO NOT IMPLEMENT THIS SPECIFICATION AND PUSH THE CODE INTO
 PRODUCTION. THIS VERSION OF THE SPECIFICATION IS ONLY FOR
 EXPERIMENTAL IMPLEMENTATIONS.

 This version (draft-cavage-http-signatures-11) is experimental and
 implementers should be aware that a number of new features have been
 introduced in this version that change previous algorithms in subtle
 but important ways. Namely, there is now a backwards-compatible way
 to modify the signature string construction algorithm, as well as two
 new Signature Parameters to enable web browser-based clients to
 include a signature creation and expiration timestamp. The new
 features are designed to be fully backwards compatible. Older
 features have been deprecated, but are still supported in the
 algorithms described by this specification. There are no plans to
 remove deprecated features from the specification to ensure backwards
 compatability for implementations dating back to 2013. Test vectors
 still need to be added for the new algorithms and digital signature
 types such as Ed25519.

 This specification is a joint work product of the W3C Digital
 Verification Community Group [1] and the W3C Credentials Community
 Group [2]. Feedback related to this specification should logged in
 the issue tracker [3] or be sent to public-credentials@w3.org [4].

Cavage & Sporny Expires October 26, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/draft-cavage-http-signatures-11

Internet-Draft Signing HTTP Messages April 2019

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 26, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Table of Contents

1. Introduction . 3
1.1. Using Signatures in HTTP Requests 4
1.2. Using Signatures in HTTP Responses 5

2. The Components of a Signature 5
2.1. Signature Parameters 5
2.1.1. keyId . 5
2.1.2. signature . 5
2.1.3. algorithm . 6
2.1.4. created . 6
2.1.5. expires . 6
2.1.6. headers . 6

2.2. Ambiguous Parameters 7
2.3. Signature String Construction 7
2.4. Creating a Signature 9
2.5. Verifying a Signature 10

3. The 'Signature' HTTP Authentication Scheme 10
3.1. Authorization Header 10

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Cavage & Sporny Expires October 26, 2019 [Page 2]

Internet-Draft Signing HTTP Messages April 2019

3.1.1. Initiating Signature Authorization 11
3.1.2. RSA Example . 11
3.1.3. HMAC Example . 12

4. The 'Signature' HTTP Header 12
4.1. Signature Header . 13
4.1.1. RSA Example . 13
4.1.2. HMAC Example . 14

5. References . 14
5.1. Normative References 14
5.2. Informative References 15
5.3. URIs . 16

Appendix A. Security Considerations 17
Appendix B. Extensions . 17
Appendix C. Test Values . 17
C.1. Default Test . 18
C.2. Basic Test . 19
C.3. All Headers Test . 19

Appendix D. Acknowledgements 20
Appendix E. IANA Considerations 20
E.1. Signature Authentication Scheme 20
E.2. HTTP Signatures Algorithms Registry 20

 Authors' Addresses . 22

1. Introduction

 This protocol extension is intended to provide a simple and standard
 way for clients to sign HTTP messages.

 HTTP Authentication [RFC2617] defines Basic and Digest authentication
 mechanisms, TLS 1.2 [RFC5246] defines cryptographically strong
 transport layer security, and OAuth 2.0 [RFC6749] provides a fully-
 specified alternative for authorization of web service requests.
 Each of these approaches are employed on the Internet today with
 varying degrees of protection. However, none of these schemes are
 designed to cryptographically sign the HTTP messages themselves,
 which is required in order to ensure end-to-end message integrity.
 An added benefit of signing the HTTP message for the purposes of end-
 to-end message integrity is that the client can be authenticated
 using the same mechanism without the need for multiple round-trips.

 Several web service providers have invented their own schemes for
 signing HTTP messages, but to date, none have been standardized.
 While there are no techniques in this proposal that are novel beyond
 the previous art, it is useful to standardize a simple and
 cryptographically strong mechanism for digitally signing HTTP
 messages.

 This specification presents two mechanisms with distinct purposes:

https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6749

Cavage & Sporny Expires October 26, 2019 [Page 3]

Internet-Draft Signing HTTP Messages April 2019

 1. The "Signature" scheme which is intended primarily to allow a
 sender to assert the contents of the message sent are correct and
 have not been altered during transmission or storage in a way
 that alters the meaning expressed in the original message as
 signed. Any party reading the message (the verifier) may
 independently confirm the validity of the message signature.
 This scheme is agnostic to the client/server direction and can be
 used to verify the contents of either HTTP requests, HTTP
 reponses, or both.

 2. The "Authorization" scheme which is intended primarily to allow a
 sender to request access to a resource or resources by proving
 that they control a secret key. This specification allows for
 this both with a shared secret (using HMAC) or with public/
 private keys. The "Authorization" scheme is typically used in
 authentication processes and not directly for message signing.
 As a consequence `Authorization` header is normally generated
 (and the message signed) by the HTTP client and the message
 verified by the HTTP server.

1.1. Using Signatures in HTTP Requests

 It is common practice to protect sensitive website and API
 functionality via authentication mechanisms. Often, the entity
 accessing these APIs is a piece of automated software outside of an
 interactive human session. While there are mechanisms like OAuth and
 API secrets that are used to grant API access, each have their
 weaknesses such as unnecessary complexity for particular use cases or
 the use of shared secrets which may not be acceptable to an
 implementer. Shared secrets also prohibit any possibility for non-
 repudiation, while secure transports such as TLS do not provide for
 this at all.

 Digital signatures are widely used to provide authentication and
 integrity assurances without the need for shared secrets. They also
 do not require a round-trip in order to authenticate the client, and
 allow the integrity of a message to be verified independently of the
 transport (e.g. TLS). A server need only have an understanding of
 the key (e.g. through a mapping between the key being used to sign
 the content and the authorized entity) to verify that a message was
 signed by that entity.

 When optionally combined with asymmetric keys associated with an
 identity, this specification can also enable authentication of a
 client and server with or without prior knowledge of each other.

Cavage & Sporny Expires October 26, 2019 [Page 4]

Internet-Draft Signing HTTP Messages April 2019

1.2. Using Signatures in HTTP Responses

 HTTP messages are routinely altered as they traverse the
 infrastrcture of the Internet, for mostly benign reasons. Gateways
 and proxies add, remove and alter headers for operational reasons, so
 a sender cannot rely on the recipient receiving exactly the message
 transmitted. By allowing a sender to sign specified headers, and
 recipient or intermediate system can confirm that the original intent
 of the sender is preserved, and including a Digest header can also
 verify the message body is not modified. This allows any recipient
 to easily confirm both the sender's identity, and any incidental or
 malicious changes that alter the content or meaning of the message.

2. The Components of a Signature

 There are a number of components in a signature that are common
 between the 'Signature' HTTP Authentication Scheme and the
 'Signature' HTTP Header. This section details the components of the
 digital signature paremeters common to both schemes.

2.1. Signature Parameters

 The following section details the Signature Parameters.

2.1.1. keyId

 REQUIRED. The `keyId` field is an opaque string that the server can
 use to look up the component they need to validate the signature. It
 could be an SSH key fingerprint, a URL to machine-readable key data,
 an LDAP DN, etc. Management of keys and assignment of `keyId` is out
 of scope for this document. Implementations MUST be able to discover
 metadata about the key from the `keyId` such that they can determine
 the type of digital signature algorithm to employ when creating or
 verifying signatures.

2.1.2. signature

 REQUIRED. The `signature` parameter is a base 64 encoded digital
 signature, as described in RFC 4648 [RFC4648], Section 4 [5]. The
 client uses the `algorithm` and `headers` Signature Parameters to
 form a canonicalized `signing string`. This `signing string` is then
 signed with the key associated with `keyId` and the algorithm
 corresponding to `algorithm`. The `signature` parameter is then set
 to the base 64 encoding of the signature.

https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc4648#section-4

Cavage & Sporny Expires October 26, 2019 [Page 5]

Internet-Draft Signing HTTP Messages April 2019

2.1.3. algorithm

 RECOMMENDED. The `algorithm` parameter is used to specify the
 signature string construction mechanism. Valid values for this
 parameter can be found in the HTTP Signatures Algorithms Registry [6]
 and MUST NOT be marked "deprecated". Implementers SHOULD derive the
 digital signature algorithm used by an implementation from the key
 metadata identified by the `keyId` rather than from this field. If
 `algorithm` is provided and differs from the key metadata identified
 by the `keyId`, for example `rsa-sha256` but an EdDSA key is
 identified via `keyId`, then an implementation MUST produce an error.
 Implementers should note that previous versions of the `algorithm`
 parameter did not use the key information to derive the digital
 signature type and thus could be utilized by attackers to expose
 security vulnerabilities.

2.1.4. created

 RECOMMENDED. The `created` field expresses when the signature was
 created. The value MUST be a Unix timestamp integer value. A
 signature with a `created` timestamp value that is in the future MUST
 NOT be processed. Using a Unix timestamp simplifies processing and
 avoids timezone management required by specifications such as

RFC3339. Subsecond precision is not supported. This value is useful
 when clients are not capable of controlling the `Date` HTTP Header
 such as when operating in certain web browser environments.

2.1.5. expires

 OPTIONAL. The `expires` field expresses when the signature ceases to
 be valid. The value MUST be a Unix timestamp integer value. A
 signatures with a `expires` timestamp value that is in the past MUST
 NOT be processed. Using a Unix timestamp simplifies processing and
 avoid timezone management existing in RFC3339. Subsecod precision is
 allowed using decimal notation.

2.1.6. headers

 OPTIONAL. The `headers` parameter is used to specify the list of
 HTTP headers included when generating the signature for the message.
 If specified, it SHOULD be a lowercased, quoted list of HTTP header
 fields, separated by a single space character. If not specified,
 implementations MUST operate as if the field were specified with a
 single value, `(created)`, in the list of HTTP headers. Note:

 1. The list order is important, and MUST be specified in the order
 the HTTP header field-value pairs are concatenated together

https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3339

Cavage & Sporny Expires October 26, 2019 [Page 6]

Internet-Draft Signing HTTP Messages April 2019

 during Signature String Construction (Section 2.3) used during
 signing and verifying.

 2. A `headers` parameter value without any headers MAY be provided,
 but since it results in a signature of an empty string it is of
 almost no utility and SHOULD NOT be used. This is distinct from
 not specifying a `headers` parameter at all.

2.2. Ambiguous Parameters

 If any of the parameters listed above are erroneously duplicated in
 the associated header field, then the last parameter defined MUST be
 used. Any parameter that is not recognized as a parameter, or is not
 well-formed, MUST be ignored.

2.3. Signature String Construction

 A signed HTTP message needs to be tolerant of some trivial
 alterations during transmission as it goes through gateways, proxies,
 and other entities. These changes are often of little consequence
 and very benign, but also often not visible to or detectable by
 either the sender or the recipient. Simply signing the entire
 message that was transmitted by the sender is therefore not feasible:
 Even very minor changes would result in a signature which cannot be
 verified.

 This specification allows the sender to select which headers are
 meaningful by including their names in the `headers` Signature
 Parameter. The headers appearing in this parameter are then used to
 construct the intermediate Signature String, which is the data that
 is actually signed.

 In order to generate the string that is signed with a key, the client
 MUST use the values of each HTTP header field in the `headers`
 Signature Parameter, in the order they appear in the `headers`
 Signature Parameter. It is out of scope for this document to dictate
 what header fields an application will want to enforce, but
 implementers SHOULD at minimum include the `(request-target)` and
 `(created)` header fields if `algorithm` does not start with `rsa`,
 `hmac`, or `ecdsa`. Otherwise, `(request-target)` and `date` SHOULD
 be included in the signature.

 To include the HTTP request target in the signature calculation, use
 the special `(request-target)` header field name. To include the
 signature creation time, use the special `(created)` header field
 name. To include the signature expiration time, use the special
 `(expires)` header field name.

Cavage & Sporny Expires October 26, 2019 [Page 7]

Internet-Draft Signing HTTP Messages April 2019

 1. If the header field name is `(request-target)` then generate the
 header field value by concatenating the lowercased :method, an
 ASCII space, and the :path pseudo-headers (as specified in
 HTTP/2, Section 8.1.2.3 [7]). Note: For the avoidance of doubt,
 lowercasing only applies to the :method pseudo-header and not to
 the :path pseudo-header.

 2. If the header field name is `(created)` and the `algorithm`
 parameter starts with `rsa`, `hmac`, or `ecdsa` an implementation
 MUST produce an error. If the `created` Signature Parameter is
 not specified, or is not an integer, an implementation MUST
 produce an error. Otherwise, the header field value is the
 integer expressed by the `created` signature parameter.

 3. If the header field name is `(expires)` and the `algorithm`
 parameter starts with `rsa`, `hmac`, or `ecdsa` an implementation
 MUST produce an error. If the `expires` Signature Parameter is
 not specified, or is not an integer, an implementation MUST
 produce an error. Otherwise, the header field value is the
 integer expressed by the `created` signature parameter.

 4. Create the header field string by concatenating the lowercased
 header field name followed with an ASCII colon `:`, an ASCII
 space ` `, and the header field value. Leading and trailing
 optional whitespace (OWS) in the header field value MUST be
 omitted (as specified in RFC7230 [RFC7230], Section 3.2.4 [8]).

 1. If there are multiple instances of the same header field, all
 header field values associated with the header field MUST be
 concatenated, separated by a ASCII comma and an ASCII space
 `, `, and used in the order in which they will appear in the
 transmitted HTTP message.

 2. If the header value (after removing leading and trailing
 whitespace) is a zero-length string, the signature string
 line correlating with that header will simply be the
 (lowercased) header name, an ASCII colon `:`, and an ASCII
 space ` `.

 3. Any other modification to the header field value MUST NOT be
 made.

 4. If a header specified in the headers parameter is malformed
 or cannot be matched with a provided header in the message,
 the implementation MUST produce an error.

 5. If value is not the last value then append an ASCII newline `\n`.

https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7230#section-3.2.4

Cavage & Sporny Expires October 26, 2019 [Page 8]

Internet-Draft Signing HTTP Messages April 2019

 To illustrate the rules specified above, assume a `headers` parameter
 list with the value of `(request-target) (created) host date cache-
 control x-emptyheader x-example` with the following HTTP request
 headers:

 GET /foo HTTP/1.1
 Host: example.org
 Date: Tue, 07 Jun 2014 20:51:35 GMT
 X-Example: Example header
 with some whitespace.
 X-EmptyHeader:
 Cache-Control: max-age=60
 Cache-Control: must-revalidate

 For the HTTP request headers above, the corresponding signature
 string is:

 (request-target): get /foo
 (created): 1402170695
 host: example.org
 date: Tue, 07 Jun 2014 20:51:35 GMT
 cache-control: max-age=60, must-revalidate
 x-emptyheader:
 x-example: Example header with some whitespace.

2.4. Creating a Signature

 In order to create a signature, a client MUST:

 1. Use the `headers` and `algorithm` values as well as the contents
 of the HTTP message, to create the signature string.

 2. Use the key associated with `keyId` to generate a digital
 signature on the signature string.

 3. The `signature` is then generated by base 64 encoding the output
 of the digital signature algorithm.

 For example, assume that the `algorithm` value is "hs2019" and the
 `keyId` refers to an EdDSA public key. This would signal to the
 application that the signature string construction mechanism is the
 one defined in Section 2.3: Signature String Construction [9], the
 signature string hashing function is SHA-512, and the signing
 algorithm is Ed25519 as defined in RFC 8032 [RFC8032], Section 5.1:
 Ed25519ph, Ed25519ctx, and Ed25519. The result of the signature
 creation algorithm should result in a binary string, which is then
 base 64 encoded and placed into the `signature` value.

https://datatracker.ietf.org/doc/html/rfc8032
https://datatracker.ietf.org/doc/html/rfc8032#section-5.1

Cavage & Sporny Expires October 26, 2019 [Page 9]

Internet-Draft Signing HTTP Messages April 2019

2.5. Verifying a Signature

 In order to verify a signature, a server MUST:

 1. Use the received HTTP message, the `headers` value, and the
 Signature String Construction (Section 2.3) algorithm to recreate
 the signature.

 2. The `algorithm`, `keyId`, and base 64 decoded `signature` listed
 in the Signature Parameters are then used to verify the
 authenticity of the digital signature. Note: The application
 verifying the signature MUST derive the digital signature
 algorithm from the metadata associated with the `keyId` and MUST
 NOT use the value of `algorithm` from the signed message.

 If a header specified in the `headers` value of the Signature
 Parameters (or the default item `(created)` where the `headers` value
 is not supplied) is absent from the message, the implementation MUST
 produce an error.

 For example, assume that the `algorithm` value was "hs2019" and and
 the `keyId` refers to an EdDSA public key. This would signal to the
 application that the signature string construction mechanism is the
 one defined in Section 2.3: Signature String Construction [10], the
 signature string hashing function is SHA-512, and the signing
 algorithm is Ed25519 as defined in RFC 8032 [RFC8032], Section 5.1:
 Ed25519ph, Ed25519ctx, and Ed25519. The result of the signature
 verification algorithm should result in a successful verification
 unless the headers protected by the signature were tampered with in
 transit.

3. The 'Signature' HTTP Authentication Scheme

 The "Signature" authentication scheme is based on the model that the
 client must authenticate itself with a digital signature produced by
 either a private asymmetric key (e.g., RSA) or a shared symmetric key
 (e.g., HMAC).

 The scheme is parameterized enough such that it is not bound to any
 particular key type or signing algorithm.

3.1. Authorization Header

 The client is expected to send an Authorization header (as defined in
RFC 7235 [RFC7235], Section 4.1 [11]) where the "auth-scheme" is

 "Signature" and the "auth-param" parameters meet the requirements
 listed in Section 2: The Components of a Signature.

https://datatracker.ietf.org/doc/html/rfc8032
https://datatracker.ietf.org/doc/html/rfc8032#section-5.1
https://datatracker.ietf.org/doc/html/rfc7235
https://datatracker.ietf.org/doc/html/rfc7235#section-4.1

Cavage & Sporny Expires October 26, 2019 [Page 10]

Internet-Draft Signing HTTP Messages April 2019

 The rest of this section uses the following HTTP request as an
 example.

 POST /foo HTTP/1.1
 Host: example.org
 Date: Tue, 07 Jun 2014 20:51:35 GMT
 Content-Type: application/json
 Digest: SHA-256=X48E9qOokqqrvdts8nOJRJN3OWDUoyWxBf7kbu9DBPE=
 Content-Length: 18

 {"hello": "world"}

 Note that the use of the `Digest` header field is per RFC 3230
[RFC3230], Section 4.3.2 [12] and is included merely as a

 demonstration of how an implementer could include information about
 the body of the message in the signature. The following sections
 also assume that the "rsa-key-1" keyId asserted by the client is an
 identifier meaningful to the server.

3.1.1. Initiating Signature Authorization

 A server may notify a client when a resource is protected by
 requiring a signature. To initiate this process, the server will
 request that the client authenticate itself via a 401 response [13]
 code. The server may optionally specify which HTTP headers it
 expects to be signed by specifying the `headers` parameter in the
 WWW-Authenticate header. For example:

 HTTP/1.1 401 Unauthorized
 Date: Thu, 08 Jun 2014 18:32:30 GMT
 Content-Length: 1234
 Content-Type: text/html
 WWW-Authenticate: Signature
 realm="Example",headers="(request-target) (created)"

 ...

3.1.2. RSA Example

 The authorization header and signature would be generated as:

 Authorization: Signature keyId="rsa-key-1",algorithm="hs2019",
 headers="(request-target) (created) host digest content-length",
 signature="Base64(RSA-SHA512(signing string))"

 The client would compose the signing string as:

https://datatracker.ietf.org/doc/html/rfc3230
https://datatracker.ietf.org/doc/html/rfc3230#section-4.3.2

Cavage & Sporny Expires October 26, 2019 [Page 11]

Internet-Draft Signing HTTP Messages April 2019

 (request-target): post /foo\n
 (created): 1402174295
 host: example.org\n
 digest: SHA-256=X48E9qOokqqrvdts8nOJRJN3OWDUoyWxBf7kbu9DBPE=\n
 content-length: 18

 Note that the '\n' symbols above are included to demonstrate where
 the new line character should be inserted. There is no new line on
 the final line of the signing string. Each HTTP header above is
 displayed on a new line to provide better readability of the example.

 For an RSA-based signature, the authorization header and signature
 would then be generated as:

 Authorization: Signature keyId="rsa-key-1",algorithm="hs2019",
 headers="(request-target) (created) host digest content-length",
 signature="Base64(RSA-SHA512(signing string))"

3.1.3. HMAC Example

 For an HMAC-based signature without a list of headers specified, the
 authorization header and signature would be generated as:

 Authorization: Signature keyId="hmac-key-1",algorithm="hs2019",
 headers="(request-target) (created) host digest content-length",
 signature="Base64(HMAC-SHA512(signing string))"

 The only difference between the RSA Example and the HMAC Example is
 the digital signature algorithm that is used. The client would
 compose the signing string in the same way as the RSA Example above:

 (request-target): post /foo\n
 (created): 1402174295
 host: example.org\n
 digest: SHA-256=X48E9qOokqqrvdts8nOJRJN3OWDUoyWxBf7kbu9DBPE=\n
 content-length: 18

4. The 'Signature' HTTP Header

 The "Signature" HTTP Header provides a mechanism to link the headers
 of a message (client request or server response) to a digital
 signature. By including the "Digest" header with a properly
 formatted digest, the message body can also be linked to the
 signature. The signature is generated and verified either using a
 shared secret (e.g. HMAC) or public/private keys (e.g. RSA, EC).
 This allows the receiver and/or any intermediate system to
 immediately or later verify the integrity of the message. When the
 signature is generated with a private key it can also provide a

Cavage & Sporny Expires October 26, 2019 [Page 12]

Internet-Draft Signing HTTP Messages April 2019

 measure of non-repudiation, though a full implementation of a non-
 repudiatable statement is beyond the scope of this specification and
 highly dependent on implementation.

 The "Signature" scheme can also be used for authentication similar to
 the purpose of the 'Signature' HTTP Authentication Scheme
 (Section 3). The scheme is parameterized enough such that it is not
 bound to any particular key type or signing algorithm.

4.1. Signature Header

 The sender is expected to transmit a header (as defined in RFC 7230
[RFC7230], Section 3.2 [14]) where the "field-name" is "Signature",

 and the "field-value" contains one or more "auth-param"s (as defined
 in RFC 7235 [RFC7235], Section 4.1 [15]) where the "auth-param"
 parameters meet the requirements listed in Section 2: The Components
 of a Signature.

 The rest of this section uses the following HTTP request as an
 example.

 POST /foo HTTP/1.1
 Host: example.org
 Date: Tue, 07 Jun 2014 20:51:35 GMT
 Content-Type: application/json
 Digest: SHA-256=X48E9qOokqqrvdts8nOJRJN3OWDUoyWxBf7kbu9DBPE=
 Content-Length: 18

 {"hello": "world"}

 The following sections assume that the "rsa-key-1" keyId provided by
 the signer is an identifier meaningful to the server.

4.1.1. RSA Example

 The signature header and signature would be generated as:

 Signature: keyId="rsa-key-1",algorithm="hs2019",
 created=1402170695, expires=1402170995,
 headers="(request-target) (created) (expires)
 host date digest content-length",
 signature="Base64(RSA-SHA256(signing string))"

 The client would compose the signing string as:

https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7230#section-3.2
https://datatracker.ietf.org/doc/html/rfc7235
https://datatracker.ietf.org/doc/html/rfc7235#section-4.1

Cavage & Sporny Expires October 26, 2019 [Page 13]

Internet-Draft Signing HTTP Messages April 2019

 (request-target): post /foo\n
 (created): 1402170695
 (expires): 1402170995
 host: example.org\n
 digest: SHA-256=X48E9qOokqqrvdts8nOJRJN3OWDUoyWxBf7kbu9DBPE=\n
 content-length: 18

 Note that the '\n' symbols above are included to demonstrate where
 the new line character should be inserted. There is no new line on
 the final line of the signing string. Each HTTP header above is
 displayed on a new line to provide better readability of the example.

 For an RSA-based signature, the authorization header and signature
 would then be generated as:

 Signature: keyId="rsa-key-1",algorithm="hs2019",created=1402170695,
 headers="(request-target) (created) host digest content-length",
 signature="Base64(RSA-SHA512(signing string))"

4.1.2. HMAC Example

 For an HMAC-based signature without a list of headers specified, the
 authorization header and signature would be generated as:

 Signature: keyId="hmac-key-1",algorithm="hs2019",created=1402170695,
 headers="(request-target) (created) host digest content-length",
 signature="Base64(HMAC-SHA512(signing string))"

 The only difference between the RSA Example and the HMAC Example is
 the signature algorithm that is used. The client would compose the
 signing string in the same way as the RSA Example above:

 (request-target): post /foo\n
 (created): 1402170695
 host: example.org\n
 digest: SHA-256=X48E9qOokqqrvdts8nOJRJN3OWDUoyWxBf7kbu9DBPE=\n
 content-length: 18

5. References

5.1. Normative References

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <https://www.rfc-editor.org/info/rfc4648>.

https://datatracker.ietf.org/doc/html/rfc4648
https://www.rfc-editor.org/info/rfc4648

Cavage & Sporny Expires October 26, 2019 [Page 14]

Internet-Draft Signing HTTP Messages April 2019

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [RFC7235] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Authentication", RFC 7235,
 DOI 10.17487/RFC7235, June 2014,
 <https://www.rfc-editor.org/info/rfc7235>.

5.2. Informative References

 [RFC2617] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S.,
 Leach, P., Luotonen, A., and L. Stewart, "HTTP
 Authentication: Basic and Digest Access Authentication",

RFC 2617, DOI 10.17487/RFC2617, June 1999,
 <https://www.rfc-editor.org/info/rfc2617>.

 [RFC3230] Mogul, J. and A. Van Hoff, "Instance Digests in HTTP",
RFC 3230, DOI 10.17487/RFC3230, January 2002,

 <https://www.rfc-editor.org/info/rfc3230>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC6234] Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
 (SHA and SHA-based HMAC and HKDF)", RFC 6234,
 DOI 10.17487/RFC6234, May 2011,
 <https://www.rfc-editor.org/info/rfc6234>.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
RFC 6749, DOI 10.17487/RFC6749, October 2012,

 <https://www.rfc-editor.org/info/rfc6749>.

 [RFC8017] Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A. Rusch,
 "PKCS #1: RSA Cryptography Specifications Version 2.2",

RFC 8017, DOI 10.17487/RFC8017, November 2016,
 <https://www.rfc-editor.org/info/rfc8017>.

 [RFC8032] Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital
 Signature Algorithm (EdDSA)", RFC 8032,
 DOI 10.17487/RFC8032, January 2017,
 <https://www.rfc-editor.org/info/rfc8032>.

https://datatracker.ietf.org/doc/html/rfc7230
https://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/rfc7235
https://www.rfc-editor.org/info/rfc7235
https://datatracker.ietf.org/doc/html/rfc2617
https://www.rfc-editor.org/info/rfc2617
https://datatracker.ietf.org/doc/html/rfc3230
https://www.rfc-editor.org/info/rfc3230
https://datatracker.ietf.org/doc/html/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc6234
https://www.rfc-editor.org/info/rfc6234
https://datatracker.ietf.org/doc/html/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://datatracker.ietf.org/doc/html/rfc8017
https://www.rfc-editor.org/info/rfc8017
https://datatracker.ietf.org/doc/html/rfc8032
https://www.rfc-editor.org/info/rfc8032

Cavage & Sporny Expires October 26, 2019 [Page 15]

Internet-Draft Signing HTTP Messages April 2019

5.3. URIs

 [1] https://w3c-dvcg.github.io/

 [2] https://w3c-ccg.github.io/

 [3] https://github.com/w3c-dvcg/http-signatures/issues

 [4] mailto:public-credentials@w3.org

 [5] https://tools.ietf.org/html/rfc4648#section-4

 [6] #hsa-registry

 [7] https://tools.ietf.org/html/rfc7540#section-8.1.2.3

 [8] https://tools.ietf.org/html/rfc7230#section-3.2.4

 [9] #canonicalization

 [10] #canonicalization

 [11] https://tools.ietf.org/html/rfc7235#section-2.1

 [12] https://tools.ietf.org/html/rfc3230#section-4.3.2

 [13] https://tools.ietf.org/html/rfc7235#section-3.1

 [14] https://tools.ietf.org/html/rfc7230#section-3.2

 [15] https://tools.ietf.org/html/rfc7235#section-4.1

 [16] https://web-payments.org/specs/source/http-signatures-audit/

 [17] https://web-payments.org/specs/source/http-signature-nonces/

 [18] https://web-payments.org/specs/source/http-signature-trailers/

 [19] https://www.iana.org/assignments/http-auth-scheme-signature

 [20] https://www.iana.org/assignments/http-authschemes

 [21] https://www.iana.org/assignments/shm-algorithms

 [22] #canonicalization

 [23] #canonicalization

https://w3c-dvcg.github.io/
https://w3c-ccg.github.io/
https://github.com/w3c-dvcg/http-signatures/issues
https://tools.ietf.org/html/rfc4648#section-4
https://tools.ietf.org/html/rfc7540#section-8.1.2.3
https://tools.ietf.org/html/rfc7230#section-3.2.4
https://tools.ietf.org/html/rfc7235#section-2.1
https://tools.ietf.org/html/rfc3230#section-4.3.2
https://tools.ietf.org/html/rfc7235#section-3.1
https://tools.ietf.org/html/rfc7230#section-3.2
https://tools.ietf.org/html/rfc7235#section-4.1
https://web-payments.org/specs/source/http-signatures-audit/
https://web-payments.org/specs/source/http-signature-nonces/
https://web-payments.org/specs/source/http-signature-trailers/
https://www.iana.org/assignments/http-auth-scheme-signature
https://www.iana.org/assignments/http-authschemes
https://www.iana.org/assignments/shm-algorithms

Cavage & Sporny Expires October 26, 2019 [Page 16]

Internet-Draft Signing HTTP Messages April 2019

 [24] #canonicalization

 [25] #canonicalization

 [26] #canonicalization

Appendix A. Security Considerations

 There are a number of security considerations to take into account
 when implementing or utilizing this specification. A thorough
 security analysis of this protocol, including its strengths and
 weaknesses, can be found in Security Considerations for HTTP
 Signatures [16].

Appendix B. Extensions

 This specification was designed to be simple, modular, and
 extensible. There are a number of other specifications that build on
 this one. For example, the HTTP Signature Nonces [17] specification
 details how to use HTTP Signatures over a non-secured channel like
 HTTP and the HTTP Signature Trailers [18] specification explains how
 to apply HTTP Signatures to streaming content. Developers that
 desire more functionality than this specification provides are urged
 to ensure that an extension specification doesn't already exist
 before implementing a proprietary extension.

 If extensions to this specification are made by adding new Signature
 Parameters, those extension parameters MUST be registered in the
 Signature Authentication Scheme Registry. The registry will be
 created and maintained at (the suggested URI)

https://www.iana.org/assignments/http-auth-scheme-signature [19]. An
 example entry in this registry is included below:

 Signature Parameter: nonce
 Reference to specification: [HTTP_AUTH_SIGNATURE_NONCE], Section XYZ.
 Notes (optional): The HTTP Signature Nonces specification details
 how to use HTTP Signatures over a unsecured channel like HTTP.

Appendix C. Test Values

 WARNING: THESE TEST VECTORS ARE OLD AND POSSIBLY WRONG. THE NEXT
 VERSION OF THIS SPECIFICATION WILL CONTAIN THE PROPER TEST VECTORS.

 The following test data uses the following RSA 2048-bit keys, which
 we will refer to as `keyId=Test` in the following samples:

https://www.iana.org/assignments/http-auth-scheme-signature

Cavage & Sporny Expires October 26, 2019 [Page 17]

Internet-Draft Signing HTTP Messages April 2019

 -----BEGIN PUBLIC KEY-----
 MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDCFENGw33yGihy92pDjZQhl0C3
 6rPJj+CvfSC8+q28hxA161QFNUd13wuCTUcq0Qd2qsBe/2hFyc2DCJJg0h1L78+6
 Z4UMR7EOcpfdUE9Hf3m/hs+FUR45uBJeDK1HSFHD8bHKD6kv8FPGfJTotc+2xjJw
 oYi+1hqp1fIekaxsyQIDAQAB
 -----END PUBLIC KEY-----

 -----BEGIN RSA PRIVATE KEY-----
 MIICXgIBAAKBgQDCFENGw33yGihy92pDjZQhl0C36rPJj+CvfSC8+q28hxA161QF
 NUd13wuCTUcq0Qd2qsBe/2hFyc2DCJJg0h1L78+6Z4UMR7EOcpfdUE9Hf3m/hs+F
 UR45uBJeDK1HSFHD8bHKD6kv8FPGfJTotc+2xjJwoYi+1hqp1fIekaxsyQIDAQAB
 AoGBAJR8ZkCUvx5kzv+utdl7T5MnordT1TvoXXJGXK7ZZ+UuvMNUCdN2QPc4sBiA
 QWvLw1cSKt5DsKZ8UETpYPy8pPYnnDEz2dDYiaew9+xEpubyeW2oH4Zx71wqBtOK
 kqwrXa/pzdpiucRRjk6vE6YY7EBBs/g7uanVpGibOVAEsqH1AkEA7DkjVH28WDUg
 f1nqvfn2Kj6CT7nIcE3jGJsZZ7zlZmBmHFDONMLUrXR/Zm3pR5m0tCmBqa5RK95u
 412jt1dPIwJBANJT3v8pnkth48bQo/fKel6uEYyboRtA5/uHuHkZ6FQF7OUkGogc
 mSJluOdc5t6hI1VsLn0QZEjQZMEOWr+wKSMCQQCC4kXJEsHAve77oP6HtG/IiEn7
 kpyUXRNvFsDE0czpJJBvL/aRFUJxuRK91jhjC68sA7NsKMGg5OXb5I5Jj36xAkEA
 gIT7aFOYBFwGgQAQkWNKLvySgKbAZRTeLBacpHMuQdl1DfdntvAyqpAZ0lY0RKmW
 G6aFKaqQfOXKCyWoUiVknQJAXrlgySFci/2ueKlIE1QqIiLSZ8V8OlpFLRnb1pzI
 7U1yQXnTAEFYM560yJlzUpOb1V4cScGd365tiSMvxLOvTA==
 -----END RSA PRIVATE KEY-----

 All examples use this request:

 POST /foo?param=value&pet=dog HTTP/1.1
 Host: example.com
 Date: Sun, 05 Jan 2014 21:31:40 GMT
 Content-Type: application/json
 Digest: SHA-256=X48E9qOokqqrvdts8nOJRJN3OWDUoyWxBf7kbu9DBPE=
 Content-Length: 18

 {"hello": "world"}

C.1. Default Test

 If a list of headers is not included, the date is the only header
 that is signed by default for rsa-sha256. The string to sign would
 be:

 date: Sun, 05 Jan 2014 21:31:40 GMT

 The Authorization header would be:

 Authorization: Signature keyId="Test",algorithm="rsa-sha256",
 signature="SjWJWbWN7i0wzBvtPl8rbASWz5xQW6mcJmn+ibttBqtifLN7Sazz
 6m79cNfwwb8DMJ5cou1s7uEGKKCs+FLEEaDV5lp7q25WqS+lavg7T8hc0GppauB
 6hbgEKTwblDHYGEtbGmtdHgVCk9SuS13F0hZ8FD0k/5OxEPXe5WozsbM="

Cavage & Sporny Expires October 26, 2019 [Page 18]

Internet-Draft Signing HTTP Messages April 2019

 The Signature header would be:

 Signature: keyId="Test",algorithm="rsa-sha256",
 signature="SjWJWbWN7i0wzBvtPl8rbASWz5xQW6mcJmn+ibttBqtifLN7Sazz
 6m79cNfwwb8DMJ5cou1s7uEGKKCs+FLEEaDV5lp7q25WqS+lavg7T8hc0GppauB
 6hbgEKTwblDHYGEtbGmtdHgVCk9SuS13F0hZ8FD0k/5OxEPXe5WozsbM="

C.2. Basic Test

 The minimum recommended data to sign is the (request-target), host,
 and date. In this case, the string to sign would be:

 (request-target): post /foo?param=value&pet=dog
 host: example.com
 date: Sun, 05 Jan 2014 21:31:40 GMT

 The Authorization header would be:

 Authorization: Signature keyId="Test",algorithm="rsa-sha256",
 headers="(request-target) host date",
 signature="qdx+H7PHHDZgy4y/Ahn9Tny9V3GP6YgBPyUXMmoxWtLbHpUnXS
 2mg2+SbrQDMCJypxBLSPQR2aAjn7ndmw2iicw3HMbe8VfEdKFYRqzic+efkb3
 nndiv/x1xSHDJWeSWkx3ButlYSuBskLu6kd9Fswtemr3lgdDEmn04swr2Os0="

C.3. All Headers Test

 A strong signature including all of the headers and a digest of the
 body of the HTTP request would result in the following signing
 string:

 (request-target): post /foo?param=value&pet=dog
 host: example.com
 date: Sun, 05 Jan 2014 21:31:40 GMT
 content-type: application/json
 digest: SHA-256=X48E9qOokqqrvdts8nOJRJN3OWDUoyWxBf7kbu9DBPE=
 content-length: 18

 The Authorization header would be:

 Authorization: Signature keyId="Test",algorithm="rsa-sha256",
 created=1402170695, expires=1402170699,
 headers="(request-target) (created) (expires)
 host date content-type digest content-length",
 signature="vSdrb+dS3EceC9bcwHSo4MlyKS59iFIrhgYkz8+oVLEEzmYZZvRs
 8rgOp+63LEM3v+MFHB32NfpB2bEKBIvB1q52LaEUHFv120V01IL+TAD48XaERZF
 ukWgHoBTLMhYS2Gb51gWxpeIq8knRmPnYePbF5MOkR0Zkly4zKH7s1dE="

 The Signature header would be:

Cavage & Sporny Expires October 26, 2019 [Page 19]

Internet-Draft Signing HTTP Messages April 2019

 Signature: keyId="Test",algorithm="rsa-sha256",
 created=1402170695, expires=1402170699,
 headers="(request-target) (created) (expires)
 host date content-type digest content-length",
 signature="vSdrb+dS3EceC9bcwHSo4MlyKS59iFIrhgYkz8+oVLEEzmYZZvRs
 8rgOp+63LEM3v+MFHB32NfpB2bEKBIvB1q52LaEUHFv120V01IL+TAD48XaERZF
 ukWgHoBTLMhYS2Gb51gWxpeIq8knRmPnYePbF5MOkR0Zkly4zKH7s1dE="

Appendix D. Acknowledgements

 The editor would like to thank the following individuals for feedback
 on and implementations of the specification (in alphabetical order):
 Mark Adamcin, Mark Allen, Paul Annesley, Karl Boehlmark, Stephane
 Bortzmeyer, Sarven Capadisli, Liam Dennehy, ductm54, Stephen Farrell,
 Phillip Hallam-Baker, Eric Holmes, Andrey Kislyuk, Adam Knight, Dave
 Lehn, Dave Longley, James H. Manger, Ilari Liusvaara, Mark
 Nottingham, Yoav Nir, Adrian Palmer, Lucas Pardue, Roberto Polli,
 Julian Reschke, Michael Richardson, Wojciech Rygielski, Adam Scarr,
 Cory J. Slep, Dirk Stein, Henry Story, Lukasz Szewc, Chris Webber,
 and Jeffrey Yasskin

Appendix E. IANA Considerations

E.1. Signature Authentication Scheme

 The following entry should be added to the Authentication Scheme
 Registry located at https://www.iana.org/assignments/http-authschemes
 [20]

 Authentication Scheme Name: Signature
 Reference: [RFC_THIS_DOCUMENT], Section 2.
 Notes (optional): The Signature scheme is designed for clients to
 authenticate themselves with a server.

E.2. HTTP Signatures Algorithms Registry

 The following initial entries should be added to the Canonicalization
 Algorithms Registry to be created and maintained at (the suggested
 URI) https://www.iana.org/assignments/shm-algorithms [21]:

 Editor's note: The references in this section are problematic as many
 of the specifications that they refer to are too implementation
 specific, rather than just pointing to the proper signature and
 hashing specifications. A better approach might be just specifying
 the signature and hashing function specifications, leaving
 implementers to connect the dots (which are not that hard to
 connect).

https://www.iana.org/assignments/http-authschemes
https://www.iana.org/assignments/shm-algorithms

Cavage & Sporny Expires October 26, 2019 [Page 20]

Internet-Draft Signing HTTP Messages April 2019

 Algorithm Name: hs2019
 Status: active
 Canonicalization Algorithm: [RFC_THIS_DOCUMENT], Section 2.3:
 Signature String Construction [22]
 Hash Algorithm: RFC 6234 [RFC6234], SHA-512 (SHA-2 with 512-bits of
 digest output)
 Digital Signature Algorithm: Derived from metadata associated with
 `keyId`. Recommend support for RFC 8017 [RFC8017], Section 8.1:
 RSASSA-PSS, RFC 6234 [RFC6234], Section 7.1: SHA-Based HMACs, ANSI
 X9.62-2005 ECDSA, P-256, and RFC 8032 [RFC8032], Section 5.1:
 Ed25519ph, Ed25519ctx, and Ed25519.

 Algorithm Name: rsa-sha1
 Status: deprecated, SHA-1 not secure.
 Canonicalization Algorithm: [RFC_THIS_DOCUMENT], Section 2.3:
 Signature String Construction [23]
 Hash Algorithm: RFC 6234 [RFC6234], SHA-1 (SHA-1 with 160-bits of
 digest output)
 Digital Signature Algorithm: RFC 8017 [RFC8017], Section 8.2: RSASSA-
 PKCS1-v1_5

 Algorithm Name: rsa-sha256
 Status: deprecated, specifying signature algorithm enables attack
 vector.
 Canonicalization Algorithm: [RFC_THIS_DOCUMENT], Section 2.3:
 Signature String Construction [24]
 Hash Algorithm: RFC 6234 [RFC6234], SHA-256 (SHA-2 with 256-bits of
 digest output)
 Digital Signature Algorithm: RFC 8017 [RFC8017], Section 8.1: RSASSA-
 PSS

 Algorithm Name: hmac-sha256
 Status: deprecated, specifying signature algorithm enables attack
 vector.
 Canonicalization Algorithm: [RFC_THIS_DOCUMENT], Section 2.3:
 Signature String Construction [25]
 Hash Algorithm: RFC 6234 [RFC6234], SHA-256 (SHA-2 with 256-bits of
 digest output)
 Message Authentication Code Algorithm: RFC 6234 [RFC6234],
 Section 7.1: SHA-Based HMACs

 Algorithm Name: ecdsa-sha256
 Status: deprecated, specifying signature algorithm enables attack
 vector.
 Canonicalization Algorithm: [RFC_THIS_DOCUMENT], Section 2.3:
 Signature String Construction [26]
 Hash Algorithm: RFC 6234 [RFC6234], SHA-256 (SHA-2 with 256-bits of
 digest output)

https://datatracker.ietf.org/doc/html/rfc6234
https://datatracker.ietf.org/doc/html/rfc6234
https://datatracker.ietf.org/doc/html/rfc8017
https://datatracker.ietf.org/doc/html/rfc8017#section-8.1
https://datatracker.ietf.org/doc/html/rfc6234
https://datatracker.ietf.org/doc/html/rfc6234#section-7.1
https://datatracker.ietf.org/doc/html/rfc8032
https://datatracker.ietf.org/doc/html/rfc8032#section-5.1
https://datatracker.ietf.org/doc/html/rfc6234
https://datatracker.ietf.org/doc/html/rfc6234
https://datatracker.ietf.org/doc/html/rfc8017
https://datatracker.ietf.org/doc/html/rfc8017#section-8.2
https://datatracker.ietf.org/doc/html/rfc6234
https://datatracker.ietf.org/doc/html/rfc6234
https://datatracker.ietf.org/doc/html/rfc8017
https://datatracker.ietf.org/doc/html/rfc8017#section-8.1
https://datatracker.ietf.org/doc/html/rfc6234
https://datatracker.ietf.org/doc/html/rfc6234
https://datatracker.ietf.org/doc/html/rfc6234
https://datatracker.ietf.org/doc/html/rfc6234#section-7.1
https://datatracker.ietf.org/doc/html/rfc6234#section-7.1
https://datatracker.ietf.org/doc/html/rfc6234
https://datatracker.ietf.org/doc/html/rfc6234

Cavage & Sporny Expires October 26, 2019 [Page 21]

Internet-Draft Signing HTTP Messages April 2019

 Digital Signature Algorithm: ANSI X9.62-2005 ECDSA, P-256

Authors' Addresses

 Mark Cavage
 Oracle
 500 Oracle Parkway
 Redwood Shores, CA 94065
 US

 Phone: +1 415 400 0626
 Email: mcavage@gmail.com
 URI: https://www.oracle.com/

 Manu Sporny
 Digital Bazaar
 203 Roanoke Street W.
 Blacksburg, VA 24060
 US

 Phone: +1 540 961 4469
 Email: msporny@digitalbazaar.com
 URI: https://manu.sporny.org/

https://www.oracle.com/
https://manu.sporny.org/

Cavage & Sporny Expires October 26, 2019 [Page 22]

