
Internet Draft D. Cavuto
Intended status: Experimental AT&T
Expires: May 2010 M. Apte
 Juniper Networks
 S. Jain
 Juniper Networks
 M. Murthy
 Juniper Networks
 November 10, 2009

DTCP: Dynamic Tasking Control Protocol
draft-cavuto-dtcp-03.txt

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

 This Internet-Draft will expire on May 10, 2010.

Copyright and License Notice

 Copyright (c) 2009 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Cavuto Expires May 10, 2010 [Page 1]

Internet-Draft draft-cavuto-dtcp-03.txt November 2009

 the Trust Legal Provisions and are provided without warranty as
 described in the BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST,
 AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES,
 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT
 THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY
 IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
 PURPOSE.

Abstract

 Dynamic Tasking Control Protocol is a message-based interface by
 which an authorized client may connect to a server -- usually a
 network element (NE) or security policy enforcement point (PEP) --
 and issue dynamic requests for data. These tasking requests contain,
 among other parameters, packet matching criteria that may apply to
 certain packets flowing through that network element. The primary
 intent of the tasking request is to instruct that network element to
 send copies of packets matching those criteria to a destination
 (usually via tunneling) for further inspection or other action. The
 protocol contains a security architecture to address client or server
 spoofing as well as replay prevention. The protocol assumes that
 multiple clients may simultaneously control a single server.

https://datatracker.ietf.org/doc/html/draft-cavuto-dtcp-03.txt

Cavuto Expires May 10, 2010 [Page 2]

Internet-Draft draft-cavuto-dtcp-03.txt November 2009

Table of Contents

1. Introduction...5
1.1. Operational Modes...5
1.2. Performance Considerations................................6
1.3. Conventions used in this document.........................6

2. Definitions..7
2.1. Server..7
2.2. Client..7
2.3. Control Source..7
2.4. Content Destination.......................................7
2.5. Criteria..7

3. Overview of Operation..8
3.1. Request-Response Paradigm.................................8
3.2. Asynchronous Notifications................................9
3.3. Data Delivery Mechanism..................................10

4. Security Model..10
4.1. No Information Exposure..................................10
4.2. Independence of Control Sources..........................11
4.3. Control Source to Content Destination Access Control.....11
4.4. Per-Message Security Mechanisms..........................11

4.4.1. Sequence Number.....................................11
4.4.1.1. Sequence Number Negative Window................12

4.4.2. Hashing Message Authentication Code (HMAC)..........13
5. Application-Layer Message Formats.............................14

5.1. Request General Format...................................14
5.2. Response General Format..................................15
5.3. Notification General Format..............................15
5.4. Add Request..15

5.4.1. Criteria Timeouts...................................17
5.5. Add Response...17
5.6. Delete Request...18
5.7. Delete Response..19
5.8. Refresh Request..20
5.9. Refresh Response...20
5.10. List Request..21
5.11. List Response...22
5.12. NoOp Request..23
5.13. NoOp Response...23
5.14. Restart Notification....................................24
5.15. Rollover Notification...................................24
5.16. NoOp Notification.......................................24
5.17. Timeout Notification....................................24
5.18. Congestion Notification.................................25
5.19. CongestionDelete Notification...........................25
5.20. DuplicatesDropped Notification..........................26

6. Miscellaneous...26

https://datatracker.ietf.org/doc/html/draft-cavuto-dtcp-03.txt

6.1. Special treatment of response to List request............26
6.2. Error or Exception Conditions............................28
6.3. Extensions in ABNF.......................................29
6.4. Current Version..29

Cavuto Expires May 10, 2010 [Page 3]

Internet-Draft draft-cavuto-dtcp-03.txt November 2009

6.5. No specific port...29
6.6. Unimplemented Protocol Methods and Parameters............29
6.7. Version Mismatches.......................................30

6.7.1. DTCP Client version exceeds DTCP Server version.....31
6.7.2. DTCP Server version exceeds DTCP Client version.....31

7. Message Payload Examples......................................31
7.1. Successful ADD Request and Response Payload..............31

8. Formal Syntax...33
9. Security Considerations.......................................40
10. IANA Considerations..40
11. Conclusions..40
12. Acknowledgments..40

 APPENDIX A: Prior Implementation.................................41
A.1. Version Number...41
A.2. Response to List request.................................41
A.3. Changes in Response Codes................................41
A.4. IP Version 6...42
A.5. Sequence Number Negative Window..........................42
A.6. Version Mismatches.......................................42

 APPENDIX B: DTCP Vendor-Specific Extensions......................43
B.1. Juniper Networks: "Flow-Tap".............................43

B.1.1. "Flow-Tap" DTCP Extensions..........................43
B.1.2. "Flow-Tap" extension ABNF...........................44

13. References...46
13.1. Normative References....................................46
13.2. Informative References..................................46

https://datatracker.ietf.org/doc/html/draft-cavuto-dtcp-03.txt

Cavuto Expires May 10, 2010 [Page 4]

Internet-Draft draft-cavuto-dtcp-03.txt November 2009

1. Introduction

 The Dynamic Tasking Control Protocol (DTCP) is a mechanism used to
 dynamically control network elements in the course of performing a
 security or other analysis on a transient network event.

 Network Security personnel typically have little visibility into the
 very networks they are monitoring. Routers and switches have awkward
 mechanisms such as port mirroring and cFlowd to enable personnel some
 meager view into the traffic flowing through a device.

 However, when a security incident does happen to be detected, the
 security analysis staff struggles to gain more insight as to the
 actual content of the incident, via inference from these tools. This
 is a time-consuming and cumbersome task.

 cFlowd [9] and other aggregation mechanisms provide only session-
 level statistics about the event, and fail to provide any view into
 the actual packet data. In contrast, wholesale backhauling of port-
 mirrored data is often cumbersome (and expensive) to set up, since it
 requires pre-provisioned free bandwidth on wide-area links, and often
 additional network hardware to implement.

 The intent of DTCP is to provide a simple mechanism by which a third-
 party device can interact with a network element or security policy-
 enforcement-point (PEP) that normally processes packetized network
 data, and in that interaction cause the PEP to take some action
 (usually copy) on a defined subset of that packet data to be
 forwarded for further inspection and analysis.

 packet +---+ packet
 data ->---|NE |--->- data
 +---+
 ^ |
 | |
 DTCP ----+ +---> copy of selected packet data

 Figure 1 - DTCP interacting with a network element.

 The Network Element (NE) or PEP may be a firewall or proxy server, or
 some other non-security-specific network element, such as a router or
 a switch. This is illustrated in Figure 1.

1.1. Operational Modes

 The primary operation in DTCP is the specification of the filter
 criteria used to select or filter packets. DTCP is designed to work
 in an IPv4 environment, and accordingly all selection criteria are

https://datatracker.ietf.org/doc/html/draft-cavuto-dtcp-03.txt

 chosen from IPv4 and higher-layer protocol definitions. Note that
 current DTCP syntax is limited to L3 and L4, but could be expanded to
 higher layers. Basic filter criteria definitions have semantic (if

Cavuto Expires May 10, 2010 [Page 5]

Internet-Draft draft-cavuto-dtcp-03.txt November 2009

 not syntactic) similarity to well-known router access-control lists
 (ACLs) or firewall rulesets.

 The primary operational mode of DTCP is the "copy" mode, whereby the
 controlled network element forwards the packet towards its intended
 destination, and also makes a copy of that packet, which it forwards
 towards a preconfigured collection and analysis center. In this mode,
 the original packet flow is not interrupted. DTCP makes no provisions
 for the potential performance impact on the network element when
 performing this function; obviously a negligible impact is most
 desirable.

 DTCP also supports optional modes for purely redirecting the packet
 data (instead of making a copy of it), as well as blocking packet
 data. These modes, if implemented, can provide additional
 functionality for network security personnel, who may have decided
 that particular traffic is disallowed on the network and wishes to
 interrupt the selected flow of traffic.

 Of critical distinction to DTCP is the basic paradigm that DTCP does
 NOT involve a "reprovisioning" or "reconfiguration" of the controlled
 device. DTCP is by its very nature transient; controlled devices
 should not attempt to maintain DTCP state in a non-volatile storage
 system.

1.2. Performance Considerations

 It is envisioned that the controlling side of DTCP will be
 implemented by both human-interactive systems and automated systems.
 Since controlled Network Element MUST be able to respond to automated
 requests at a potentially high rate (due to floods or other attacks),
 the protocol implies a high performance requirement during the
 "criteria specification" phase of the interaction. In particular, the
 response time of the Network Element to respond to the DTCP request
 to monitor data is of considerable importance, as the traffic
 intended to be monitored may be short-lived.

 While concrete performance requirements are outside the scope of this
 document, implementers are urged to focus performance on this part of
 the client-server interaction.

1.3. Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC-2119 [1].

https://datatracker.ietf.org/doc/html/draft-cavuto-dtcp-03.txt
https://datatracker.ietf.org/doc/html/rfc2119

Cavuto Expires May 10, 2010 [Page 6]

Internet-Draft draft-cavuto-dtcp-03.txt November 2009

2. Definitions

 The following sections define terms that have special significance
 within the DTCP context.

2.1. Server

 The DTCP Server is the PEP or network element that controls the data
 of interest. The DTCP Server will be controlled in turn via DTCP. The
 Server is responsible for maintaining state of DTCP Client Requests,
 and forwarding data accordingly. Usually the DTCP Server will be
 implemented on a firewall or router (or an accessory device attached
 to one). The Server generally Responds to Requests, and can also
 initiate Asynchronous Notifications. One Server generally services
 more than one Client.

2.2. Client

 The DTCP Client is an arbitrary host that initiates Requests to the
 Server via DTCP.

2.3. Control Source

 A Control Source is the instantiation of one DTCP Client, with
 respect to a given Server. Each Control Source is preconfigured and
 pre-authorized on a given Server to be able to interact with it via
 DTCP. Control Sources may also receive Asynchronous Notifications.
 There may be many Control Sources configured on a given Server.

 A Control Source MUST NOT be identified by IP address; rather,
 Control Sources are identified by user-configured character strings.

2.4. Content Destination

 A Content Destination is the recipient of the extracted data, once it
 is forwarded by the server. Content Destinations are also
 preconfigured on the server.

 A Content Destination MUST NOT be identified by IP address; rather,
 Content Destinations are identified by user-configured character
 strings.

2.5. Criteria

 The Criteria is the list of matching conditions under which a packet
 is selected and acted upon by the server. Criteria are specified in
 requests from the client to the server, which maintains a list of
 active criteria for each client.

https://datatracker.ietf.org/doc/html/draft-cavuto-dtcp-03.txt

Cavuto Expires May 10, 2010 [Page 7]

Internet-Draft draft-cavuto-dtcp-03.txt November 2009

3. Overview of Operation

 This section describes the basic interaction between the DTCP
 elements, as well as the protocol message flows.

3.1. Request-Response Paradigm

 The basic model for DTCP is a request-response message exchange
 paradigm, where the server waits for messages on a specific UDP port
 from authorized Control Sources. When a request message arrives, the
 server processes the request, performs the necessary internal state
 change as per the request, and then sends a reply message.

 Note that although DTCP is specified as a message-based protocol, it
 is designed and specified here to operate via single UDP/IP packets,
 for performance reasons. While it is certainly possible for DTCP to
 be operated over TCP/IP for reliable connections, such use is
 unexplored as yet, and any implementation-specific decisions made are
 unspecified herein. This document is written assuming that UDP will
 be used as the Layer-4 transport mechanism.

 A DTCP Server MUST allocate at least ONE IP address and ONE UDP port
 for inbound connections from clients. Each DTCP Client MUST be
 statically configured with at least ONE IP address and ONE UDP port
 representing the server.

 There is no mechanism defined that ensures proper configuration
 between DTCP Clients and servers for requests and responses.

 In general, each request and each reply are a single UDP message,
 contained within a single IP packet. Since IP packets may be
 fragmented during delivery, each DTCP endpoint MUST be capable of IP
 fragment reassembly.

 An IP packet containing a DTCP Request message from a client to a
 server MUST have the following attributes properly set:

 o Destination IP Address MUST equal an IP address of a DTCP Server;
 o IP Protocol MUST equal 17 (UDP);
 o Destination UDP Port MUST equal a UDP port being listened on by
 the respective DTCP Server.

 The DTCP Server MUST NOT rely on the source IP address or source UDP
 port of inbound request packets for any identification or
 authentication of the message.

 An IP packet containing a DTCP Reply message from a server to a
 client MUST have the following attributes properly set:

https://datatracker.ietf.org/doc/html/draft-cavuto-dtcp-03.txt

 o Source IP Address MUST equal the Destination IP Address of the IP
 packet containing the Request;

Cavuto Expires May 10, 2010 [Page 8]

Internet-Draft draft-cavuto-dtcp-03.txt November 2009

 o Destination IP address MUST equal the Source IP Address of the IP
 packet containing the Request;
 o IP Protocol MUST equal 17 (UDP);
 o Destination UDP port MUST equal the Source UDP port of the UDP
 message containing the Request;
 o Source UDP port MUST equal the Destination UDP port of the UDP
 message containing the Request.

 There is no specific UDP port registered for DTCP; rather, each DTCP
 Server SHOULD permit the user to configure the port or set of ports
 on which it will listen for inbound DTCP requests. Additionally, a
 DTCP Server MAY choose to implement address or other filters on the
 source of inbound client requests; however, this is optional and
 implementation specific. (Recall that clients are identified by
 strings, NOT IP addresses.)

3.2. Asynchronous Notifications

 Notifications are sent out by the DTCP Server to a set of statically
 preconfigured DTCP Clients who wish to receive notifications of
 asynchronous events. Such messages are sent to IP addresses that have
 been preconfigured therein.

 A DTCP Client MAY provide a mechanism for accepting and processing
 Notifications. The DTCP Server MUST be preconfigured with an IP
 address and UDP port for each DTCP Client that wishes to receive
 Notifications.

 There is no mechanism defined that ensures proper configuration
 between DTCP Clients and servers for Notifications.

 An IP packet containing a DTCP Notification message from a server to
 a client MUST have the following attributes properly set:

 o Destination IP address MUST equal the configured DTCP Client IP
 address;
 o IP Protocol MUST equal 17 (UDP);
 o Destination UDP port MUST equal the configured DTCP Client UDP
 port.

 A future enhancement to this document may be to provide a mechanism
 for clients to dynamically self-register for notifications.

 A DTCP Server SHOULD include a configuration parameter for each
 configured Control Source to indicate the Notification Version for
 that Control Source. If such a parameter is configured for a given
 Control Source, all Asynchronous Notifications sent from the DTCP
 Server to that Control Source MUST precisely match the Notification
 Version configured for that Control Source. Additionally, if such a

https://datatracker.ietf.org/doc/html/draft-cavuto-dtcp-03.txt

 parameter is configured for a given Control Source, the DTCP Server
 MUST NOT send Asynchronous Notifications to that Control Source that
 do not exist in the DTCP specification indicated for that Control

Cavuto Expires May 10, 2010 [Page 9]

Internet-Draft draft-cavuto-dtcp-03.txt November 2009

 Source. Finally, the DTCP Server MUST ensure that Asynchronous
 Notifications whose formats have been modified in newer versions of
 DTCP are properly formatted to meet the older DTCP specification
 version indicated for that Control Source.

 Note that in general the DTCP Server SHOULD accept requests from a
 DTCP Client using a DTCP Version other than that specified in the
 Notification Version for that client.

 If the DTCP Server is unable to meet these requirements, upon
 receiving a request from a DTCP Client with a mismatching version, it
 MUST return a a "505 DTCP Version not supported" error message *using
 the highest version supported by the DTCP Server*, and discontinue
 processing of that request.

 It is recommended, however, that the DTCP Server reject such a state
 at configuration time rather than at run time.

3.3. Data Delivery Mechanism

 Since the original packet IP header is not originally addressed to
 the intended Content Destination, each DTCP Server implementation
 MUST provide a mechanism for delivery of redirected data packets to
 appropriate Content Destinations. This explicitly includes IP
 checksums and IP TTL, as well as any higher-layer headers -- which
 SHOULD NOT be altered once captured -- but may not include MAC or
 lower-layer checksums.

 DTCP explicitly does not specify the mechanism of data delivery to
 the Content Destination. Such a delivery mechanism is implementation-
 specific, and is outside the scope of this document.

 As an example, Servers could utilize such technologies as VLAN
 tagging or IP tunneling to deliver entire unaltered data packets to
 Content Destinations.

4. Security Model

 Since DTCP is, by design, a security protocol, it is imperative that
 it be resistant to malicious use.

4.1. No Information Exposure

 DTCP was designed with the explicit paradigm that only information
 intentionally available to a given Control Source is ever exposed to
 that Control Source. For example: the existence of other Control
 Sources, or Content Destinations to which it has no access MUST NOT

https://datatracker.ietf.org/doc/html/draft-cavuto-dtcp-03.txt

 be exposed to a given Control Source, e.g. via notifications or error
 messages. Also, the server MUST NOT respond to any message that fails

Cavuto Expires May 10, 2010 [Page 10]

Internet-Draft draft-cavuto-dtcp-03.txt November 2009

 its security checks. This basic paradigm MUST be upheld in DTCP
 Server implementations.

4.2. Independence of Control Sources

 DTCP may be implemented on network elements providing service to
 different customers. If each customer is allowed access to the DTCP
 Server, they MUST NOT be aware that another customer is using the
 DTCP Server. More specifically, neither customer's use (or misuse) of
 the DTCP Server can affect the other customer's use of it.

 Limits on service-affecting actions that may be taken by a DTCP
 Client are outside the scope of this document.

4.3. Control Source to Content Destination Access Control

 A DTCP Server SHOULD provide a mechanism by which each configured
 Control Source is granted access to one or more Content Destinations.

4.4. Per-Message Security Mechanisms

 The primary motivation behind the per-message security mechanisms is
 to provide both message integrity as well as source authenticity.
 Additionally, providing insulation against replay-type attacks is
 also a motivation, though secondary.

 DTCP currently provides no mechanism for confidentiality. If
 confidentiality is required, it is recommended that DTCP messages be
 sent via a secure transport.

 Note: Authentication failures, defined as a failure of
 these per-message security mechanisms, MUST NOT be
 reported to the DTCP Client. They SHOULD be logged on
 the DTCP server, and possibly acted upon by
 administration staff.

4.4.1. Sequence Number

 Every message initiated by a DTCP Client MUST contain a sequence
 number. The request sequence number is an unsigned 64-bit whole
 number chosen arbitrarily by the client and maintained by the server
 persistently for each Control Source. All requests from a given
 Control Source MUST contain a monotonically-increasing sequence
 number. The sequence number for each successive request may increment
 by no more than 256. The stored last-valid sequence number shall only
 be updated upon receipt of a valid, authentic message.

 A reply message to a valid request MUST contain the identical
 sequence number as the associated request.

https://datatracker.ietf.org/doc/html/draft-cavuto-dtcp-03.txt

 Other than as specified below in "Sequence Number Negative Window",
 repetition of the last sequence number, or an invalid (non-

Cavuto Expires May 10, 2010 [Page 11]

Internet-Draft draft-cavuto-dtcp-03.txt November 2009

 monotonically-increasing) sequence number, in an otherwise-valid
 message MUST result in the message being dropped and a security
 violation being logged, except when the sequence number wraps over
 zero due to bit-field-length constraints.

 Rollover of the sequence number shall only be permitted when the MSB
 of the current sequence number is all-ones; otherwise this shall be
 considered a security violation. A rollover of the sequence number
 shall cause both an asynchronous notification message to be sent to
 any configured static address(es) for the respective Control Source
 as well as a log message to be generated.

 It is suggested that clients do whatever possible to persistently
 store the current sequence number as there is no DTCP method by which
 to reset the current sequence number.

 DTCP Servers SHOULD provide some mechanism for manually resetting the
 sequence number for a given client.

 Additionally, DTCP Servers SHOULD implement a Negative Window feature
 as specified in the following section.

4.4.1.1. Sequence Number Negative Window

 Under high load, a multithreaded DTCP client may send multiple
 requests (with properly incrementing sequence numbers) to the DTCP
 Server without waiting for each reply to come back individually.
 Because packets may be reordered through the network, they may arrive
 at the DTCP Server out of order.

 For example, the DTCP client may send:

 o Request 1 (Seq = 1)
 o Request 2 (Seq = 2)
 o Request 3 (Seq = 3)

 But due to network reordering, the DTCP Server may receive:

 o Request 1 (Seq = 1)
 o Request 3 (Seq = 3)
 o Request 2 (INVALID)

 Unfortunately, the specification of the sequence number above will
 make Request 2 invalid, because once Request 3 is processed, the
 stored sequence number in the DTCP Server for that Client has been
 incremented to 3.

 Therefore to correct this problem, the DTCP Server SHOULD include a
 "negative" window as well as the required "positive" window for

https://datatracker.ietf.org/doc/html/draft-cavuto-dtcp-03.txt

 sequence numbers, and keep track of received sequence numbers within
 that negative window. However, in order to maintain the replay-
 protection afforded by the sequence number in the first place, any

Cavuto Expires May 10, 2010 [Page 12]

Internet-Draft draft-cavuto-dtcp-03.txt November 2009

 DTCP Server implementing a negative window MUST also implement
 tracking of particular sequence numbers received within the union of
 both windows, and MUST NOT respond to any requests containing a
 sequence number already received.

 If the received sequence number is in the negative window, the DTCP
 Server would simply store that sequence number as seen from that
 particular DTCP Client and process the packet. If the sequence number
 of the packet is in the positive window, the new positive and
 negative window would begin and end at this packet's sequence number
 respectively with the window sizes remaining the same. So a DTCP
 packet with sequence number within the negative window but that has
 not been seen (or anywhere within the positive window) is valid.

4.4.2. Hashing Message Authentication Code (HMAC)

 A DTCP Server MUST store a statically-provisioned secret key for each
 configured client. This key is manually shared with each DTCP Client.
 Each request and response message MUST contain, as the last entry, a
 parameter called Authentication-Info, whose value is the HMAC
 algorithm specified in RFC-2104 [2] of the rest of the message
 payload (including the sequence number) generated using a SHA-1 [3]
 digest and the secret key. This digest is expressed in hexadecimal
 notation ([0-9a-f]), using 40 UTF-8 [4] characters to express the
 160-bit SHA-1 hash.

 Original Message: text
 Secret Key: K
 HMAC: hash = SHA1HMAC(K, text)
 New Message: text + "Authentication-Info: " + hash

 Figure 2 - Generating the message HMAC from the original message.

 The shared secret key MUST NOT be sent in any DTCP message.

 The precise algorithm, excerpted here from RFC-2104 for reference
 purposes (using SHA-1 as the hashing function H and byte length B=64)
 is as follows:

 We define two fixed and different strings ipad and opad as follows
 (the 'i' and 'o' are mnemonics for inner and outer):
 ipad = the byte 0x36 repeated B times
 opad = the byte 0x5C repeated B times.

 To compute HMAC over the data `text' we perform
 H(K XOR opad, H(K XOR ipad, text))

https://datatracker.ietf.org/doc/html/draft-cavuto-dtcp-03.txt
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc2104

Cavuto Expires May 10, 2010 [Page 13]

Internet-Draft draft-cavuto-dtcp-03.txt November 2009

5. Application-Layer Message Formats

 In general, the best source for the message formats is the Formal
 Syntax specified below. The following prose is provided for
 informational purposes and implementation guidelines. Where apparent
 syntactic conflicts exist, the Formal Syntax is defined to be
 correct.

 DTCP messages are formatted in human-readable CRLF-delimited UTF-8
 text format, using a mechanism similar to HTTP [5] or SIP [6]. Each
 message begins with an initial "command" line, followed by an
 optional series of parameter-value lines. Each token in the command
 line as well as each option line is separated by one or more white
 space characters. The entire message MUST end with two CRLFs.

 The final token in any line MAY have whitespace before its
 terminating CRLF, but is not so required, and is not so reflected in
 the ABNF. DTCP servers SHOULD ignore extra whitespace between the
 final token and the terminating CRLF, but MUST return a Syntax Error
 otherwise.

 Parameter names are specified in mixed case, but MUST be matched
 regardless of case.

 Control characters or other unprintable characters in the parameter
 value may be indicated by a backslash (\) followed by precisely three
 digits indicating the UTF-8 value for the character, possibly
 including leading zeros. The backslash notation may be used to
 express any character, including whitespace. Backslash notation is
 explicitly forbidden from being interpreted as either an inter-token
 delimiter or an inter-parameter delimiter.

 DTCP Clients and server MUST NOT rely upon the order of parameters
 within the DTCP message, since it is not guaranteed (other than the
 final "Authentication-Info" parameter as noted below).

 Every DTCP message MUST contain the "Authentication-Info" parameter,
 and it MUST be the final parameter in the message. Any parameters in
 any DTCP message following the Authentication-Info parameter MUST be
 disregarded.

 If a parameter appears multiple times, the behavior is undefined and
 not guaranteed; however, if a parameter does show up multiple times,
 the endpoint SHOULD take the value of the first occurrence and
 disregard any successive occurrences.

5.1. Request General Format

 Each client-to-server message in DTCP begins with a single request

https://datatracker.ietf.org/doc/html/draft-cavuto-dtcp-03.txt

 command line with the following format:

 <command> <protocol-version-specifier> CRLF

Cavuto Expires May 10, 2010 [Page 14]

Internet-Draft draft-cavuto-dtcp-03.txt November 2009

 The command line is followed by one or more parameter-value pairs,
 comprising the message body. The message is terminated by two CRLFs.

 A DTCP request MUST contain the Sequence Number and the Control
 Source ID parameters.

5.2. Response General Format

 Each server-to-client response message in DTCP shall begin with a
 single response line with the following format:

 <protocol-version-specifier> <response-code> <response-text> CRLF

 where the response-code is a three-digit numeric value, and the
 response-text is an arbitrary-length text string intended to be
 human-readable. The response line is followed by one or more
 parameter-value pairs comprising the message body. The message is
 terminated by two CRLFs.

 Responses to successful requests MUST contain the response-code "200"
 and the response-text "OK".

 A DTCP response MUST contain the Sequence Number parameter. A DTCP
 response MUST also contain the Timestamp parameter.

5.3. Notification General Format

 Each server-to-client notification message in the control protocol
 shall begin with a single response line with the following format:

 <protocol-version-specifier> <response-code> <response-text> CRLF

 where the response-code is a three-digit numeric value, and the
 response-text is an arbitrary-length text string intended to be
 human-readable. The response line is followed by one or more
 parameter-value pairs comprising the message body. The message is
 terminated by two CRLFs.

 A DTCP notification message MUST contain the Timestamp parameter.

5.4. Add Request

 The Add request specifies a new filter criteria to be merged with the
 existing tasking list for a given Control Source and Content
 Destination (regardless of order added). Any missing parameters in
 the request will inferred to be a wildcard or "don't care". The Add
 request MAY be accompanied by one or more of the following required
 filter criterion parameters:

https://datatracker.ietf.org/doc/html/draft-cavuto-dtcp-03.txt

 o Source IP address, range or IP + bitmask, or wildcard
 o Destination IP address, range, or IP + bitmask, or wildcard
 o IP Protocol or range, or wildcard

Cavuto Expires May 10, 2010 [Page 15]

Internet-Draft draft-cavuto-dtcp-03.txt November 2009

 o Source Layer-4 Port or range, or wildcard (parameter only
 meaningful when IP protocol range includes protocols 6 or 17)
 o Destination Layer-4 Port or range, or wildcard (parameter only
 meaningful when IP protocol range includes 6 or 17)
 o ICMP Type or range, or wildcard (parameter only meaningful when IP
 protocol range includes protocol 1)
 o ICMP Code or range, or wildcard (parameter only meaningful when IP
 protocol range includes protocol 1)

 A wildcard in a given field implies that any value will match it
 (i.e. "don't care").

 Additionally, the Add request MUST contain one or more of the
 following parameters:

 o Timeout specified in seconds idle (maximum one day)
 o Timeout specified in seconds total (maximum one day)
 o Timeout specified in packets (maximum 64 bits)
 o Timeout specified in bytes (maximum 64 bits)
 o Flag: Static, which indicates that this criterion will never
 timeout and persist until explicitly deleted. All other timeouts
 shall be ignored if a STATIC flag is present.

 Additionally, the Add request may contain one or more of the
 following parameters:

 o Relative Priority (unsigned integer, minimum value 1) (optional,
 defaults to 1)
 o Flag: Send Timeout Async (optional), which will cause the server
 to send a Asynchronous Notification when the criterion times out
 for any reason.
 o Action (optional), which specifies whether the packet stream
 identified by the criterion will be a) copied to the Content
 Destination and also forwarded to its original intended
 destination ("Copy"), b) copied but not forwarded ("Redirect"), or
 c) not copied and not forwarded ("Block"). By default, Action is
 "Copy".

 Finally, the Add request MUST contain the following control protocol
 parameters:

 o Control Source Identifier
 o Content Destination Identifier
 o Sequence number (MUST be monotonically increasing for each request
 from a given Control Source)
 o HMAC authenticator (MUST span message payload, plus secret key)

 Although not explicitly expressed in the request, the DTCP Server
 MUST maintain the date/time of each filter criterion successfully

https://datatracker.ietf.org/doc/html/draft-cavuto-dtcp-03.txt

 added. This time is the local DTCP Server time, either maintained
 independently by the server or synchronized via NTP.

Cavuto Expires May 10, 2010 [Page 16]

Internet-Draft draft-cavuto-dtcp-03.txt November 2009

5.4.1. Criteria Timeouts

 Timeouts are required for each filter criterion added. These timeouts
 may be specified in any of four formats: seconds-idle, seconds-total,
 bytes, or packets. Any combination of these four timeouts may be used
 in a filter criterion as long as at least one is used.

 Once a criterion is added, the timeouts will begin decrementing as
 appropriate. Only the timeouts that are specified in the request will
 be used for timing-out that criterion. When any active timeout is
 decremented to zero, the DTCP Server will automatically delete the
 filter criterion. For each Control Source, if enabled, when a
 criterion times-out and is deleted, timeout notifications will be
 sent to any statically-configured Notification Destination(s)
 associated with that Control Source.

 A criterion may be added as STATIC. Any such criterion shall persist
 in the active state unless and until explicitly deleted or deleted
 due to congestion, provided the DTCP Server maintains its normal
 operational state. (See section 5.18 Congestion Notification for more
 information on congestion and timeouts.)

 If all timeout values are zero and the criterion is not marked
 STATIC, the DTCP Server MUST return Error 433 (Improper Timeout
 Specification) and the criterion must not be added. For STATIC
 criteria, the DTCP Server MUST ignore the all timeout values.

 If the server fails, STATIC rules may be lost. Any Control Source
 that uses STATIC criteria SHOULD attempt to ensure that such criteria
 are still up and active following any maintenance or failure event on
 the server.

5.5. Add Response

 The response to a successful Add request will consist of the
 following parameters:

 o Criteria ID

 The Criteria ID will be persistent for the duration of that request,
 until it is removed explicitly by the client, or is removed
 implicitly by either timeout or some failure of the DTCP Server. The
 Criteria ID MUST uniquely identify that particular filter criterion
 for that particular Control Source (and be agnostic to the Content
 Destination).

 DTCP Servers MUST ensure that generated Criteria ID are unique for
 all currently-active requests for a given Control Source.

https://datatracker.ietf.org/doc/html/draft-cavuto-dtcp-03.txt

 Ideally, the Criteria ID SHOULD be globally unique across Control
 Sources, but this is not strictly required (since all requests will
 always be from a particular Control Source).

Cavuto Expires May 10, 2010 [Page 17]

Internet-Draft draft-cavuto-dtcp-03.txt November 2009

 DTCP Servers SHOULD provide unique Criteria IDs for new requests,
 even if old ones have been deleted resulting in a fragmented ID
 space. This prevents race conditions that can cause inconsistent
 behavior e.g., a criterion specified in an Add request gets the same
 Criterion Id as a recently deleted criterion (deleted due to
 timeout), and before the delete notification could reach the Control
 Source, it sends out an explicit delete request for the old
 criterion, which when received by the DTCP Server would delete the
 recently added criterion, which is clearly undesirable.

 This response MUST also include the following parameters:

 o Timestamp
 o Sequence number (MUST match the sequence number for the request)
 o HMAC authenticator (MUST span message payload, plus secret key)

 Responses to unsuccessful Add requests may take any of the following
 forms:

 o Syntax Error
 o Improper Filter Criterion Specification
 o Unknown Destination Identifier
 o Invalid Timeout Specification
 o Improper Authentication (logged, but never sent to client)
 o Invalid Sequence Number (logged, but never sent to client)
 o Unknown Control Source Identifier (logged, but never sent to
 client)

5.6. Delete Request

 The Delete request removes a particular filter criterion (or
 optionally all filter criteria) for the particular Control Source.
 The Delete request MUST take precisely one of the following
 parameters:

 o Criteria ID or list of ranges of Criteria IDs
 o Content Destination Identifier

 Additionally, the Delete request may contain one or more of the
 following parameters:

 o Flag: Static, which indicates that criteria added as STATIC should
 be deleted as well. (optional) If this flag is omitted, STATIC
 criteria MUST NOT be deleted.

 If a single Criteria ID or list of ranges Criteria IDs is specified,
 the respective criterion/criteria is/are removed from the list of
 filter conditions that apply for that Control Source.

https://datatracker.ietf.org/doc/html/draft-cavuto-dtcp-03.txt

 If a Content Destination Identifier is specified, all criteria are
 removed from the list of filter conditions to that particular Content
 Destination for that Control Source, except for STATIC criteria --

Cavuto Expires May 10, 2010 [Page 18]

Internet-Draft draft-cavuto-dtcp-03.txt November 2009

 unless the STATIC flag is specified. (Note that any other criteria
 specified by any other Control Sources MUST remain unaffected.)

 Additionally, the Delete request MUST contain the following
 parameters:

 o Control Source Identifier
 o Sequence number (MUST be monotonically increasing for each request
 from a given Control Source)
 o HMAC authenticator (MUST span message payload, plus secret key)

5.7. Delete Response

 The response to a successful Delete will consist of the following
 parameter:

 o Number of Criteria Deleted

 This parameter is an integer specifying the total number of filter
 criteria that were actually deleted. The number will be precisely 1
 if a single, valid Criteria ID is supplied in the Delete request. If
 multiple valid Criteria IDs are supplied, the number of criteria
 actually deleted will be returned.

 If any individual Criteria ID is invalid, the entire response will
 return an error and no action shall be taken by the server for any
 supplied Criteria ID. If a Content Destination Identifier is
 supplied, the number of criteria deleted shall be equal to the total
 number of active filter criteria from the requesting Control Source
 to that particular Content Destination. If no such criteria exist,
 the DTCP Server will return a successful delete response (with
 criteria deleted parameter set to zero).

 When a range is specified, any existing criteria matching the
 Criteria ID in that range (inclusive) will be deleted and the true
 number of criteria deleted (including possibly zero) will be
 returned.

 Trying to delete a STATIC criterion without the STATIC flag in the
 Delete request will result in that criterion NOT being deleted. Such
 a deletion attempt will return a success (non-error) response,
 including the actual number of criteria deleted (which may be zero).

 This response MUST also include the following parameters:

 o Timestamp
 o Sequence number (MUST match the sequence number for the request)
 o HMAC authenticator (MUST span message payload, plus secret key)

https://datatracker.ietf.org/doc/html/draft-cavuto-dtcp-03.txt

 Responses to unsuccessful Delete requests may take any of the
 following forms:

Cavuto Expires May 10, 2010 [Page 19]

Internet-Draft draft-cavuto-dtcp-03.txt November 2009

 o Syntax Error
 o Unknown Criteria ID
 o Unknown Destination Identifier
 o Improper Authentication (logged, but never sent to client)
 o Invalid Sequence Number (logged, but never sent to client)
 o Unknown Control Source Identifier (logged, but never sent to
 client)

5.8. Refresh Request

 The Refresh request updates the timeout for a particular filter
 criterion or set of filter criteria (or optionally all filter
 criteria) for the particular Control Source assigned to a particular
 Content Destination. This is used to maintain active criteria that
 are in danger of timing-out based on the original Add request. The
 updated timeout will replace the current remaining timeout, NOT be
 added to it. The Refresh request MUST take precisely one of the
 following parameters:

 o Criteria ID or list of ranges of Criteria IDs
 o Content Destination Identifier

 Additionally, the Refresh request MUST contain one or more of the
 following parameters:

 o Timeout specified in seconds total
 o Timeout specified in seconds idle
 o Timeout specified in packets
 o Timeout specified in bytes

 (Note that a Refresh request MUST NOT be used to make an existing
 filter criterion STATIC. A criterion MUST be added explicitly as
 STATIC in its original Add.)

 Finally, the Refresh request MUST contain the following parameters:

 o Control Source Identifier
 o Sequence number (MUST be monotonically increasing for each request
 from a given Control Source)
 o HMAC authenticator (MUST span message payload, plus secret key)

5.9. Refresh Response

 The response to a successful Refresh will consist of the following
 parameters:

 o Number of Criteria Refreshed

 This parameter is an integer specifying the total number of filter

https://datatracker.ietf.org/doc/html/draft-cavuto-dtcp-03.txt

 criteria that were actually updated. The number will be precisely 1
 if a single, valid Criteria ID is supplied. If multiple valid
 Criteria ID are supplied, the number of criteria updated will be

Cavuto Expires May 10, 2010 [Page 20]

Internet-Draft draft-cavuto-dtcp-03.txt November 2009

 returned, and that will equal the number of supplied Criteria IDs. If
 any Criteria ID is invalid, the entire response will return an error
 and no action shall be taken by the server for any supplied Criteria
 ID. If a Content Destination Identifier is supplied, the number of
 criteria updated shall be equal to the total number of active filter
 criteria from the requesting Control Source to that particular
 Content Destination, including zero (which will NOT return an error).

 This response MUST also include the following parameters:

 o Timestamp
 o Sequence number (MUST match the sequence number for the request)
 o HMAC authenticator (MUST span message payload, plus secret key)

 Responses to unsuccessful Refresh requests may take any of the
 following forms:

 o Syntax Error
 o Invalid Timeout Specification
 o Unknown Criteria ID
 o Unknown Destination Identifier
 o Improper Authentication (logged, but never sent to client)
 o Invalid Sequence Number (logged, but never sent to client)
 o Unknown Control Source Identifier (logged, but never sent to
 client)

5.10. List Request

 The List request makes no change on the DTCP Server, but returns a
 list of all criteria that a particular Control Source has added. The
 Control Source may request this list on the basis of Content
 Destination, Criteria ID, or overall (for that particular Control
 Source). The List request takes the following parameters:

 o Content Destination Identifier (optional)
 o Criteria ID or List of ranges of Criteria IDs (optional)
 o Flag: Statistics / Criteria / All

 If neither of the optional parameters is included, the server MUST
 reply with the full set of criteria associated with that Control
 Source.

 Additionally, the List request MUST contain the following parameters:

 o Control Source Identifier
 o Sequence number (MUST be monotonically increasing for each request
 from a given Control Source)
 o HMAC authenticator (MUST span message payload, plus secret key)

https://datatracker.ietf.org/doc/html/draft-cavuto-dtcp-03.txt

Cavuto Expires May 10, 2010 [Page 21]

Internet-Draft draft-cavuto-dtcp-03.txt November 2009

5.11. List Response

 The response to a successful List will consist of a formatted list --
 essentially a table -- of filter criteria and related parameters.

 Fields will be included and excluded depending on the presence and
 the value of Stats/Criteria/All entry in the request as noted in
 square brackets [] following the value listed below. Each entry in
 the List list shall contain the following fields as specified in the
 original criteria:

 o Control Source Identifier
 o Control Source IP Address
 o Content Destination Identifier
 o Criteria ID
 o Date/Time added
 o Specified Source IP address, range or IP + bitmask , or wildcard
 [Criteria]
 o Specified Destination IP address, range, or IP + bitmask, or
 wildcard [Criteria]
 o IP Protocol or range, or wildcard [Criteria]
 o Source Layer-4 Port or range, or wildcard (parameter only
 meaningful when IP protocol range includes protocols 6 or 17)
 [Criteria]
 o Destination Layer-4 Port or range, or wildcard (parameter only
 meaningful when IP protocol range includes 6 or 17) [Criteria]
 o ICMP Type or range, or wildcard (parameter only meaningful when IP
 protocol range includes protocol 1) [Criteria]
 o ICMP Code or range, or wildcard (parameter only meaningful when IP
 protocol range includes protocol 1) [Criteria]
 o Timeout specified in seconds total [Criteria]
 o Timeout specified in seconds idle [Criteria]
 o Timeout specified in packets [Criteria]
 o Timeout specified in bytes [Criteria]

 The List list shall also contain the following statistical
 information based on each criterion:

 o An ordinal counter to specify the position of this entry in the
 context of the list
 o An integer specifying the total number of entries in the list
 o Timeout remaining in seconds total [Stats]
 o Timeout remaining in seconds idle [Stats]
 o Timeout remaining in packets [Stats]
 o Timeout remaining in bytes [Stats]
 o An indication if the timeout is STATIC
 o Last 10-second average bandwidth, in bits/second [Stats]
 o Total number of packets that have matched this Criteria [Stats]

https://datatracker.ietf.org/doc/html/draft-cavuto-dtcp-03.txt

 o Total number of bytes that have matched this Criteria [Stats]
 o Total times this rule has been Refreshed [Stats]
 o Date/Time of last Refresh [Stats]

Cavuto Expires May 10, 2010 [Page 22]

Internet-Draft draft-cavuto-dtcp-03.txt November 2009

 This response MUST also include the following parameters:

 o Timestamp
 o Sequence number (MUST match the sequence number for the request)
 o HMAC authenticator (MUST span message payload, plus secret key)

 Responses to unsuccessful List requests may take any of the following
 forms:

 o Syntax Error
 o Unknown Destination Identifier
 o Unknown Criteria ID
 o Improper Authentication (logged, but never sent to client)
 o Invalid Sequence Number (logged, but never sent to client)
 o Unknown Control Source Identifier (logged, but never sent to
 client)

 Important Note: the response to the List message, in particular all
 entries in the generated table, SHOULD be internally consistent and
 atomic, regardless of the activity in progress at the time of and
 during the course of transmission of the message. The data SHOULD
 represent a snapshot of the relevant information at the quantum in
 time that the List message is processed.

5.12. NoOp Request

 This request takes no action on the server whatsoever, other than
 returning a successful response. The sole purpose of this command is
 to verify the end-to-end application-layer connectivity between a
 Control Source and the DTCP Server. The NoOp request may contain the
 following parameter:

 o Flag: SendAsync

 See 5.13 NoOp Response for a description of the SendAsync flag.

 Additionally, the NoOp request MUST contain the following parameters:

 o Control Source Identifier
 o Sequence number (MUST be monotonically increasing for each request
 from a given Control Source)
 o HMAC authenticator (MUST span message payload, plus secret key)

5.13. NoOp Response

 The response to a successful NoOp will consist of a successful
 response message indicator, and contain the following parameters:

 o Timestamp

https://datatracker.ietf.org/doc/html/draft-cavuto-dtcp-03.txt

 o Sequence number (MUST match the sequence number for the request)
 o HMAC authenticator (MUST span message payload, plus secret key)

Cavuto Expires May 10, 2010 [Page 23]

Internet-Draft draft-cavuto-dtcp-03.txt November 2009

 If the SendAsync parameter is specified in the NoOp request, the
 server shall cause an asynchronous notification message to be sent to
 any configured notification destinations for that particular Control
 Source.

5.14. Restart Notification

 The Restart notification shall be sent from the server to any
 configured notification-recipient when the system experiences a
 failure such that all the filter criteria are lost. The Restart
 notification shall contain the following parameters:

 o Restart Reason, a text string indicating the reason for the
 restart, if known
 o Timestamp
 o HMAC authenticator (MUST span message payload, plus secret key)

5.15. Rollover Notification

 The Rollover notification shall be sent from the server to any
 configured notification-recipient when the server experiences a
 sequence-number rollover. The Rollover notification shall contain the
 following parameters:

 o Timestamp
 o HMAC authenticator (MUST span message payload, plus secret key)

5.16. NoOp Notification

 The NoOp notification shall be sent from the server to any configured
 notification-recipient when the DTCP Server receives a NoOp message
 with the SendAsync parameter present. The NoOp notification shall
 contain the following parameters:

 o Timestamp
 o HMAC authenticator (MUST span message payload, plus secret key)

5.17. Timeout Notification

 The Timeout notification shall be sent from the server to the
 appropriate notification-recipient(s) when the server times out a
 filter criterion on any one of its configured timeout parameters and
 the criterion contains a SendTimeoutAsync parameter.

 The Timeout notification shall contain the following parameters:

 o Criteria ID, to indicate the particular criteria that has timed
 out
 o Timeout specified in seconds total [omit if unconfigured]

https://datatracker.ietf.org/doc/html/draft-cavuto-dtcp-03.txt

 o Timeout remaining in seconds total [omit if unconfigured]
 o Timeout specified in seconds idle [omit if unconfigured]
 o Timeout remaining in seconds idle [omit if unconfigured]

Cavuto Expires May 10, 2010 [Page 24]

Internet-Draft draft-cavuto-dtcp-03.txt November 2009

 o Timeout specified in packets [omit if unconfigured]
 o Timeout remaining in packets [omit if unconfigured]
 o Timeout specified in bytes [omit if unconfigured]
 o Timeout remaining in bytes [omit if unconfigured]
 o Timestamp
 o HMAC authenticator (MUST span message payload, plus secret key)

5.18. Congestion Notification

 The Congestion notification shall be sent from the server to any
 configured notification-recipient when the total 10-second average
 data rate (in bits/second) summed over all active filter criteria to
 a configured Content Destination exceeds the configured soft limit
 for that destination. The Congestion notification shall contain the
 following parameters:

 o Content Destination ID, to indicate the particular destination
 experiencing excessive bandwidth
 o Current total 10-second average Bandwidth, in bits/second
 o Configured SoftLimit Threshold, in bits/second
 o Configured HardLimit Threshold, in bits/second
 o Timestamp
 o HMAC authenticator (MUST span message payload, plus secret key)

 Note that since multiple Control Sources may be responsible for this
 overload, this Notification MUST be sent to all configured Control
 Sources that have currently-active filter criteria to this particular
 Content Destination.

5.19. CongestionDelete Notification

 The CongestionDelete notification shall be sent from the server to
 any configured notification-recipient when the total 10-second
 average data rate (in bits/second) summed over all active filter
 criteria to a configured Content Destination exceeds the configured
 hard limit for that destination, causing the DTCP Server to begin
 purging filter criteria. The CongestionDelete notification shall
 contain the following parameters:

 o Content Destination ID
 o List of Criteria ID purged
 o Timestamp
 o HMAC authenticator (MUST span message payload, plus secret key)

 CongestionDelete messages MUST be specifically and uniquely sent to
 all configured notification-recipients for the Control Sources to
 which they apply. To be clear: a given Control Source notification-
 recipient MUST only receive CongestionDelete messages containing
 Criteria ID created by that Control Source.

https://datatracker.ietf.org/doc/html/draft-cavuto-dtcp-03.txt

Cavuto Expires May 10, 2010 [Page 25]

Internet-Draft draft-cavuto-dtcp-03.txt November 2009

5.20. DuplicatesDropped Notification

 The DuplicatesDropped notification shall be sent from the server to
 any configured notification-recipient when capacity has been exceeded
 in such a way as to cause packets matching criteria added by the
 corresponding Control Source to be dropped. This notification will be
 sent periodically as long as packets continue to be dropped. The
 DuplicatesDropped notification shall contain the following
 parameters:

 o Content Destination ID
 o Applicable CriteriaID pertaining to Dropped Packets
 o Total Number of Dropped Packets
 o Sum of Bytes contained in Dropped Packets
 o Timestamp
 o HMAC authenticator (MUST span message payload, plus secret key)

 DuplicatesDropped messages MUST be specifically and uniquely sent to
 all configured notification-recipients for the Control Sources to
 which they apply.

6. Miscellaneous

6.1. Special treatment of response to List request

 The List request inherently provides unique functionality with
 respect to the messaging architecture of DTCP. All other requests
 result in reasonably terse replies, which can be encapsulated in, at
 worst, a few IP packets.

 However, the List request will generate an arbitrary amount of reply
 data, since it could contain all requests that are still active, up
 to the limit of the device. This section specifically describes how
 responses to the List request are sent.

 a) The full reply to the List request MAY consist of multiple
 packets. Each packet will contain a single "Response" element;
 therefore, each packet will have a single Status-Line and a single
 trailer (Authentication-Info) terminated by 2xCRLF. A UDP packet MUST
 NOT contain more than ONE "Response" element.

 b) A "Response" element in each packet shall contain zero or more
 "List-Resp-Entry" elements (in "List-Resp-Parameters"). Each filter
 criteria is encoded into a single "List-Resp-Entry" element. The
 sequence number MUST be identical for all "Response" elements in a
 multi-packet reply.

https://datatracker.ietf.org/doc/html/draft-cavuto-dtcp-03.txt

 c) Each "List-Resp-Entry" element MUST contain the following two
 elements: "Criteria-Num" and "Criteria-Count". "Criteria-Num" MUST be
 valued as an enumeration starting with 1 (one) and incrementing by

Cavuto Expires May 10, 2010 [Page 26]

Internet-Draft draft-cavuto-dtcp-03.txt November 2009

 one for each "List-Resp-Entry" sent. "Criteria-Count" SHOULD be set
 to the total number of matching Criteria in the given particular LIST
 response (see below for potential exceptions).

 d) Therefore, a full reply to the List request shall consist of as
 many "List-Resp-Entry" elements as necessary to fully transmit the
 List, divided into multiple packets as described above.

 e) DTCP Servers SHOULD ensure that each "List-Resp-Entry" element is
 not divided across multiple IP packets.

 f) DTCP Clients can use the simple test (Criteria-Num==Criteria-
 Count) to determine if they've received the last packet in the
 series. However, in order to ensure that all packets were received
 (and, respectively, all List-Resp-Entry elements), the DTCP Client
 MUST traverse through the list of Criteria-Count to ensure it's
 complete from 1 to XX where XX==Criteria-Num==Criteria-Count.

 g) At the UDP layer, all packets in the response MUST contain
 identical UDP port numbers. DTCP Clients SHOULD maintain their socket
 open until either all expected Response messages are received, or a
 timeout occurs.

 h) If the List request matches no criteria, but does not supply
 invalid Criteria-IDs, the "Response" element will contain zero "List-
 Resp-Entry" elements.

 i) DTCP Servers MAY simplify their implementation by only including a
 single "List-Resp-Entry" element in each "Response" element (and
 therefore in each packet).

 j) DTCP Servers MAY simplify their implementation by transmitting the
 "Criteria-Count" element in each List-Resp-Entry element as ZERO (0)
 until the final element is sent, whereupon it is set to the proper
 value.

 A List response that matches 3 criteria may look as follows:

 =============== First UDP packet
 DTCP header
 Seq: A
 criteria-id: x ; this is the first List-Resp-Entry element
 ...
 criteria-num: 1
 criteria-count: 3
 criteria-id: y ; this is the second List-Resp-Entry element
 ...
 criteria-num: 2
 criteria-count: 3

https://datatracker.ietf.org/doc/html/draft-cavuto-dtcp-03.txt

 HMAC
 ================

Cavuto Expires May 10, 2010 [Page 27]

Internet-Draft draft-cavuto-dtcp-03.txt November 2009

 =============== Second UDP packet
 DTCP header
 Seq: A
 criteria-id: z ; this is the third List-Resp-Entry element
 ...
 criteria-num: 3
 criteria-count: 3
 HMAC
 ================

 If the list request matches no criteria, it will look as follows:

 =============== First UDP packet
 DTCP header
 Seq: B
 HMAC
 ================

6.2. Error or Exception Conditions

 Errors in DTCP requests are reported in response messages via any
 Response-Code other than "200" (OK). When such error or exception
 condition exists, the server SHOULD attempt to indicate the precise
 nature of the error or exception using the Error-Parameters element.
 This behavior, though helpful, is not strictly required by the
 protocol.

 For example, if a Delete request contained a specific Criteria-ID not
 currently active in the server, the response error message MUST begin
 with a 431 - Unknown Criteria ID response line. The server SHOULD
 also add the Criteria-ID parameter indicating the unknown Criteria
 ID.

 Again, note that authentication failures MUST NOT be reported in
 response messages; they MUST be silently dropped.

 The DTCP Server MUST attempt to provide the most specific error
 message to report the specific error or exception condition. When the
 request message meets any of the following conditions, if no such
 specific error message exists, the server MAY return a 400 (Bad
 Request) error:

 o Missing required fields
 o Parse failure
 o Parameters beyond range

 In these cases, the server SHOULD include the specific line from the
 request that caused the condition using the Error-Parameters element.

https://datatracker.ietf.org/doc/html/draft-cavuto-dtcp-03.txt

Cavuto Expires May 10, 2010 [Page 28]

Internet-Draft draft-cavuto-dtcp-03.txt November 2009

6.3. Extensions in ABNF

 Extension placeholders are provided in the formal syntax for the
 definition of future methods, parameters, and response-codes. Vendors
 SHOULD NOT define implementation-specific extensions; rather, such
 extensions SHOULD be brought to the DTCP working group for inclusion
 into the protocol, to ensure interoperability.

 However, in order to provide faster extensions to the protocol, the
 "X-" extension parameter construct has been borrowed from other
 protocols, including SIP and SMTP.

 The DTCP Server or the DTCP Client MAY include an arbitrary
 parameter-value pair, as long as the parameter is preceded by the
 character string "X-", and all other parameter-value conventions are
 followed.

 The sender of such extension parameters MUST NOT rely on the
 recipient correctly processing those values.

 The recipient of such extension parameters MAY process the values as
 appropriate upon receipt, but MUST discard without error those
 extension parameters that it does not recognize.

6.4. Current Version

 The current version string for this release of the DTCP protocol is:

 DTCP/0.7

6.5. No specific port

 While it is common practice to register and/or publish a TCP or UDP
 port for applications that define them as a layer-4 transport, DTCP
 has no specific UDP ports predefined. This is intended both to allow
 flexibility for implementers and users, as well as to make it more
 difficulty to detect DTCP messages on untrusted networks.

6.6. Unimplemented Protocol Methods and Parameters

 Some DTCP Server vendors have indicated their interest in supporting
 a subset of the functionality specified here, due to their position
 in the security space. Additionally, some constructs (arbitrary
 lists, in particular) add complexity to implementations that may not
 require that complexity.

 To address this need, rather than adding complexity by changing the
 grammar to indicate optional sections, specific error messages have
 been added to indicate to the client that the server cannot process

https://datatracker.ietf.org/doc/html/draft-cavuto-dtcp-03.txt

 the request in its current format. Depending on the request, the
 client might be able to reformat that request into one that the
 server implementation is able to process.

Cavuto Expires May 10, 2010 [Page 29]

Internet-Draft draft-cavuto-dtcp-03.txt November 2009

 In order to be compliant with this protocol, the following rules
 apply:

 a) If a vendor chooses not to implement one or more DTCP Methods,
 when responding to a request containing one of the unsupported
 methods, the DTCP Server MUST send a "501 Not Implemented" Response
 error message, and discontinue processing of that request.

 b) If a vendor chooses not to implement a list element, when
 responding to a request containing such a list, the DTCP Server MUST
 send a "501 Not Implemented" Response error message, and discontinue
 processing of that request.

 c) If a vendor chooses not to implement one or more specific
 parameters or parameter value options in a request, the DTCP Server
 MUST send a "501 Not Implemented" Response error message, and
 discontinue processing of that request.

 d) The DTCP Server SHOULD include the method, parameter, or value
 which caused the "501 Not Implemented" error to be sent, within the
 error response message (to be consistent with 6.4 above)

 e) The DTCP Server SHOULD support prior versions of DTCP. However, if
 the vendor chooses not to implement prior versions of the protocol,
 the DTCP Server MUST send a "505 DTCP Version not supported" error
 message, and discontinue processing of that request.

 The onus is on the client to determine if it can reformat the message
 to make it acceptable to the particular DTCP Server implementation.

6.7. Version Mismatches

 The intent of this section is to clarify any ambiguity arising from
 mismatches between DTCP versions supported by the DTCP Client and the
 DTCP Server. In practice is has been observed that unintended
 consequences have arisen by leaving the implementation vague, so it
 was decided that clarifing at least a set of reccomendations, if not
 rising to the level of requirements, will help guide DTCP
 implementations and help ensure interoperability.

 Two possible cases of mismatch exist: when the client exceeds the
 server version, and when the server exceeds the client version. They
 are handled separately, but the motivation in each case is to permit
 maximum compatibility.

 In this case, versions are compared numerically, with a single digit
 after decimal point. For example: 0.4 is greater than 0.2, 1.9 is
 greater than 1.4, and 3.1 is greater than 2.9

https://datatracker.ietf.org/doc/html/draft-cavuto-dtcp-03.txt

Cavuto Expires May 10, 2010 [Page 30]

Internet-Draft draft-cavuto-dtcp-03.txt November 2009

6.7.1. DTCP Client version exceeds DTCP Server version

 If the DTCP Client attempts to make a request to a DTCP Server using
 a DTCP version greater than that supported by the DTCP Server, the
 DTCP Server MUST return a "505 DTCP Version not supported" error
 message using the GREATEST DTCP version supported by the DTCP Server,
 and discontinue processing of that request. It has not way of knowing
 what new parameters might exist in a newer version of the protocol
 and simply has to abandon processing altogether.

 In this case, the onus is on the DTCP Client to revert to an older
 version of the protocol specification to talk with this DTCP Server
 to ensure that its request is properly handled.

6.7.2. DTCP Server version exceeds DTCP Client version

 It is expected that a given DTCP Server will support a range of DTCP
 protocol specification versions, for interoperability purposes.

 If the DTCP Server receives a request from a DTCP Server using a DTCP
 version lesser than the most current version supported by the DTCP
 Server, the server SHOULD attempt to process that response using the
 semantics of the earlier specification, and MUST reply using the
 precise DTCP version included in the request.

 If the DTCP server is unable to do this, the DTCP Server MUST return
 a "505 DTCP Version not supported" error message using the LEAST DTCP
 version supported by the DTCP Server, and discontinue processing of
 that request

 Asynchronous Notifications sent to a client using an earlier version
 are addressed in Section 3.2 (Asynchronous Notifications).

7. Message Payload Examples

 Note: These are only examples of message payloads, and are not
 intended to illustrate the full breadth of the protocol. Also, please
 note that the Authentication-Info shown are correct if each line is
 terminated with CRLF as specified and the key "secret" is used.
 (Terminating CRLFs are not shown.)

7.1. Successful ADD Request and Response Payload

 Following is an example of the UDP payload for an Add request:

https://datatracker.ietf.org/doc/html/draft-cavuto-dtcp-03.txt

Cavuto Expires May 10, 2010 [Page 31]

Internet-Draft draft-cavuto-dtcp-03.txt November 2009

 ADD DTCP/0.6
 Source-Address: 192.168.10.4
 Dest-Address: 10.1.1.1-10.1.1.10
 Protocol: 6,17
 Dest-Port: 53
 Timeout-Idle: 600
 Action: Copy
 Priority: 2
 Flags: SendAsync
 Cdest-ID: cdst_b
 Csource-ID: csrc_a
 Seq: 3827443
 Authentication-Info: 28eb606458ba46160d7a59da48763020f5aef9f5

 Following is the UDP payload of one potential successful response to
 that Add request:

 DTCP/0.6 200 OK
 Criteria-ID: 38224
 Seq: 3827443
 Timestamp: 2005-01-01 12:01:01.111
 Authentication-Info: 38099d03fcb5b12a849b36f9bdccc757303fafd0

 7.2 Unsuccessful DELETE Request and Response Payload

 Following is an example of the UDP payload for an Delete request:

 DELETE DTCP/0.6
 Criteria-ID: 55331
 Csource-ID: csrc_d
 Flags: Static
 Seq: 2655371
 Authentication-Info: 6af62247a2b59a2a06e0ca08ec5a80a644e2cd67

 Following is the UDP payload of one potential unsuccessful response
 to that Delete request:

 DTCP/0.6 431 Unknown Criteria ID
 Criteria-ID: 55331
 Seq: 2655371
 Timestamp: 2005-02-02 12:02:02.222
 Authentication-Info: 5de4552e98832c2d2c3a9ffa8a2958c967b4e1e8

 This delete request was unsuccessful because the Criteria ID supplied
 did not exist. Note that the error-causing parameter is included
 within the reply to assist in debugging.

https://datatracker.ietf.org/doc/html/draft-cavuto-dtcp-03.txt

Cavuto Expires May 10, 2010 [Page 32]

Internet-Draft draft-cavuto-dtcp-03.txt November 2009

8. Formal Syntax

 All of the mechanisms specified in this document are described in
 both prose and an Augmented Backus-Naur Form (ABNF) defined in RFC

4234 [7]. Section 6.1 of RFC 4234 defines a set of core rules that
 are used by this specification, and not repeated here. Implementers
 need to be familiar with the notation and content of RFC 4234 in
 order to understand this specification. Certain basic rules are in
 uppercase, such as SP, LWS, HTAB, CRLF, DIGIT, ALPHA, etc.

 Note that while much of this syntax is taken from the Session
 Initiation Protocol (SIP), some of its constructs have been
 simplified for this application here. Where appropriate, these
 digressions have been noted with comments.

 The following core definitions appear throughout the formal syntax:

 COL = *(WSP) ":" *(WSP) ; used in parameter-value pair
 NPCHAR = "\" 3DIGIT ; used to express ctrl-chars
 DSTRING = *(VCHAR / NPCHAR) ; no embedded whitespace
 WC = "*" ; wildcard character for matching
 NOT = "!" ; invert character for matching
 N64BITNUM = 1*20DIGIT
 N32BITNUM = 1*10DIGIT
 N16BITNUM = 1*5DIGIT
 N8BITNUM = 1*3DIGIT
 DAYSEC = 1*5DIGIT
 IPv4address = 1*3DIGIT "." 1*3DIGIT "." 1*3DIGIT "." 1*3DIGIT
 TEXT = 1*(1*(VCHAR) WSP) ; includes whitespace
 DTCP-Time = 4DIGIT "-" 2DIGIT "-" 2DIGIT SP 2DIGIT ":"
 2DIGIT ":" 2DIGIT "." 3DIGIT
 ; This is ISO date/time: YYYY-MM-DD sp HH:MM:SS.TTT

 Additionally, the following definitions are excerpted from RFC 3986
 [8]:

 IPv6address = 6(h16 ":") ls32
 / "::" 5(h16 ":") ls32
 / [h16] "::" 4(h16 ":") ls32
 / [*1(h16 ":") h16] "::" 3(h16 ":") ls32
 / [*2(h16 ":") h16] "::" 2(h16 ":") ls32
 / [*3(h16 ":") h16] "::" h16 ":" ls32
 / [*4(h16 ":") h16] "::" ls32
 / [*5(h16 ":") h16] "::" h16
 / [*6(h16 ":") h16] "::"

 ls32 = (h16 ":" h16) / IPv4address
 ; least-significant 32 bits of address

https://datatracker.ietf.org/doc/html/draft-cavuto-dtcp-03.txt
https://datatracker.ietf.org/doc/html/rfc4234
https://datatracker.ietf.org/doc/html/rfc4234
https://datatracker.ietf.org/doc/html/rfc4234#section-6.1
https://datatracker.ietf.org/doc/html/rfc4234
https://datatracker.ietf.org/doc/html/rfc3986

 h16 = 1*4HEXDIG
 ; 16 bits of address represented in hexadecimal

Cavuto Expires May 10, 2010 [Page 33]

Internet-Draft draft-cavuto-dtcp-03.txt November 2009

 Here begins the formal syntax:

 DTCP-Message = Request / Response / Notification

 Request = Request-Line
 (Add-Req-Parameters
 / Delete-Req-Parameters
 / Refresh-Req-Parameters
 / List-Req-Parameters
 / Noop-Req-Parameters)
 *(extension-parameter)
 Csource-ID
 Seq
 Authentication-Info
 CRLF

 Response = Status-Line
 ((Add-Resp-Parameters
 / Delete-Resp-Parameters
 / Refresh-Resp-Parameters
 / List-Resp-Parameters
 / Noop-Resp-Parameters) / Error-Parameters)
 *(extension-parameter)
 Timestamp
 Seq ; note absence of Csource-ID
 Authentication-Info
 CRLF

 Notification = Status-Line
 (Restart-Notif-Parameters
 / Rollover-Notif-Parameters
 / Noop-Notif-Parameters
 / Timeout-Notif-Parameters
 / Congestion-Notif-Parameters
 / CongDel-Notif-Parameters)
 *(extension-parameter)
 Timestamp
 Authentication-Info ; note absence of Seq
 CRLF

 DTCP-Version = "DTCP" "/" 1*DIGIT "." 1*DIGIT

 Status-Line = DTCP-Version SP Status-Code SP Reason-Phrase CRLF
 Request-Line = Method SP DTCP-Version CRLF

 Method = "ADD" / "DELETE" / "REFRESH" / "LIST" / "NOOP"
 / extension-method

 extension-method = DSTRING

https://datatracker.ietf.org/doc/html/draft-cavuto-dtcp-03.txt

 Status-Code = Provisional
 / Success

Cavuto Expires May 10, 2010 [Page 34]

Internet-Draft draft-cavuto-dtcp-03.txt November 2009

 / Redirection
 / Request-Failure
 / Server-Failure
 / Global-Failure
 / extension-code

 Reason-Phrase = TEXT ; differs from SIP
 extension-code = 3DIGIT

 Provisional = "130" ; Sequence Number Rollover (Notif)
 / "131" ; NoOp Notification (Notif)
 Success = "200" ; OK
 Redirection = "390" ; Criterion Timeout Delete (Notif)
 Request-Failure = "400" ; Bad Request
 / "430" ; Unknown Content Destination
 / "431" ; Unknown Criteria ID
 / "432" ; Improper Filter Specification
 / "433" ; Improper Timeout Specification
 / "497" ; Invalid Authentication
 ; (never sent to client)
 / "498" ; Invalid Sequence Number
 ; (never sent to client)
 / "499" ; Unknown Control Source Identifier
 ; (never sent to client)
 Server-Failure = "500" ; Server Internal Error
 / "501" ; Not Implemented
 / "505" ; DTCP Version not supported
 / "550" ; Max Criteria Limit Exceeded
 / "551" ; Max Content Destination Exceeded
 / "580" ; Congestion (Notif)
 / "598" ; Duplicate Packets Dropped (Notif)
 / "599" ; Server Restart (Notif)
 Global-Failure = "680" ; Criterion Congestion Delete (Notif)

 Error-Parameters = Cdest-ID
 / Criteria-ID
 / Filter-Block
 / Timeout-Block

 Add-Req-Parameters = Filter-Block Timeout-Block [Action]
 Option-Block [Flags] Cdest-ID

 Filter-Block = *(Filter-Element)
 Timeout-Block = *(Timeout-Element)
 TRemaining-Block = *(TRemaining-Element)
 Option-Block = *(Option-Element)
 Timeout-Required-Block = 1*(Timeout-Element)
 TRemaining-Required-Block = 1*(TRemaining-Element)

https://datatracker.ietf.org/doc/html/draft-cavuto-dtcp-03.txt

 Filter-Element = Source-Address
 / Dest-Address

Cavuto Expires May 10, 2010 [Page 35]

Internet-Draft draft-cavuto-dtcp-03.txt November 2009

 / Protocol
 / Source-Port
 / Dest-Port
 / ICMP-Type
 / ICMP-Code

 Timeout-Element = Timeout-Idle
 / Timeout-Total
 / Timeout-Packets
 / Timeout-Bytes

 TRemaining-Element = Remaining-Idle
 / Remaining-Total
 / Remaining-Packets
 / Remaining-Bytes

 Option-Element = Priority

 Add-Resp-Parameters = Criteria-ID

 Delete-Req-Parameters = ((Criteria-ID / Criteria-ID-Filter)
 Cdest-ID) [Flags]
 Delete-Resp-Parameters = Criteria-Count

 Refresh-Req-Parameters = ((Criteria-ID / Criteria-ID-Filter)
 Cdest-ID) Timeout-Required-Block
 Refresh-Resp-Parameters = Criteria-Count

 List-Req-Parameters = [((Criteria-ID / Criteria-ID-Filter)
 Cdest-ID)] [Flags]

 List-Resp-Parameters = *(List-Resp-Entry CRLF)

 List-Resp-Entry = Criteria-Count Criteria-Num Main-List
 [Criteria-List] [Stats-List]

 Main-List = Csource-ID Csource-Address Cdest-ID
 Criteria-ID Timestamp
 Criteria-List = *(Filter-Element) *(Timeout-Element) [Flags]
 Stats-List = TRemaining-Block Stats-Block

 Stats-Block = Average-Bandwidth Matching-Packets
 Matching-Bytes Num-Refresh Last-Refresh

 Noop-Req-Parameters = [Flags]
 Noop-Resp-Parameters = [] ; no parameters

 Restart-Notif-Parameters = Alert-Info
 Rollover-Notif-Parameters = [] ; no parameters

https://datatracker.ietf.org/doc/html/draft-cavuto-dtcp-03.txt

 Noop-Notif-Parameters = [] ; no parameters
 Timeout-Notif-Parameters = Criteria-ID
 / Timeout-Required-Block

Cavuto Expires May 10, 2010 [Page 36]

Internet-Draft draft-cavuto-dtcp-03.txt November 2009

 / TRemaining-Required-Block
 Congestion-Notif-Parameters = Cdest-ID Average-Bandwidth
 Alert-Bandwidth Max-Bandwidth
 CongDel-Notif-Parameters = Cdest-ID Criteria-ID-Filter

 extension-parameter = "X-" DSTRING COL DSTRING CRLF

 Csource-ID = "Csource-ID" COL DSTRING CRLF
 Seq = "Seq" COL N64BITNUM CRLF
 Authentication-Info = "Authentication-Info" COL 40HEXDIG CRLF
 ID-List = DSTRING *("," DSTRING)
 Cdest-ID = "Cdest-ID" COL ID-List CRLF
 Source-Address = "Source-Address" COL IPFilter CRLF
 Dest-Address = "Dest-Address" COL IPFilter CRLF
 Protocol = "Protocol" COL ProtFilter CRLF
 Source-Port = "Source-Port" COL PortFilter CRLF
 Dest-Port = "Dest-Port" COL PortFilter CRLF
 ICMP-Type = "ICMP-Type" COL ICMPFilter CRLF
 ICMP-Code = "ICMP-Code" COL ICMPFilter CRLF
 Timeout-Idle = "Timeout-Idle" COL DAYSEC CRLF
 Timeout-Total = "Timeout-Total" COL DAYSEC CRLF
 Timeout-Packets = "Timeout-Packets" COL N32BITNUM CRLF
 Timeout-Bytes = "Timeout-Bytes" COL N64BITNUM CRLF
 Priority = "Priority" COL N8BITNUM CRLF
 Criteria-ID = "Criteria-ID" COL N32BITNUM CRLF
 Criteria-ID-Filter = "Criteria-ID" COL CritFilter CRLF
 Criteria-Count = "Criteria-Count" COL N32BITNUM CRLF
 Criteria-Num = "Criteria-Num" COL N32BITNUM CRLF
 Csource-Address = "Csource-Address" COL (IPv4address /
 IPv6address) CRLF
 Timestamp = "Timestamp" COL DTCP-Time CRLF
 Remaining-Idle = "Remaining-Idle" COL DAYSEC CRLF
 Remaining-Total = "Remaining-Total" COL DAYSEC CRLF
 Remaining-Packets = "Remaining-Packets" COL N32BITNUM CRLF
 Remaining-Bytes = "Remaining-Bytes" COL N64BITNUM CRLF
 Average-Bandwidth = "Average-Bandwidth" COL N64BITNUM CRLF
 Matching-Packets = "Matching-Packets" COL N64BITNUM CRLF
 Matching-Bytes = "Matching-Bytes" COL N64BITNUM CRLF
 Num-Refresh = "Num-Refresh" COL N32BITNUM CRLF
 Last-Refresh = "Last-Refresh" COL DTCP-Time CRLF
 Alert-Info = "Alert-Info" COL TEXT CRLF
 Alert-Bandwidth = "Alert-Bandwidth" COL N64BITNUM CRLF
 Max-Bandwidth = "Max-Bandwidth" COL N64BITNUM CRLF
 Action = "Action" COL ActionEntry CRLF

 ActionEntry = "Copy"
 / "Block"
 / "Redirect"

https://datatracker.ietf.org/doc/html/draft-cavuto-dtcp-03.txt

 / extension-action

 extension-action = DSTRING

Cavuto Expires May 10, 2010 [Page 37]

Internet-Draft draft-cavuto-dtcp-03.txt November 2009

 Flags = "Flags" COL FlagEntry *("," FlagEntry) CRLF

 FlagEntry = "Static"
 / "SendAsync"
 / "Stats"
 / "Criteria"
 / "Both"

 IPFilter = [NOT] IPEntry *("," [WSP] [NOT] IPEntry)

 ProtFilter = [NOT] ProtEntry *("," [WSP] [NOT] ProtEntry)

 PortFilter = [NOT] PortEntry *("," [WSP] [NOT] PortEntry)

 ICMPFilter = [NOT] ICMPEntry *("," [WSP] [NOT] ICMPEntry)

 CritFilter = [NOT] CritEntry *("," [WSP] [NOT] CritEntry)

 IPEntry = IPv4Entry
 / IPv6Entry

 IPv4Entry = IPv4address ; Single Entry
 / IPv4address "/" N8BITNUM ; Address/mask
 / IPv4address "-" IPv4address ; Range
 / IPv4address "-" WC ; Range to UBOUND
 / WC "-" IPv4address ; LBOUND to Range
 / WC ; Pure Wildcard

 IPv6Entry = IPv6address ; Single Entry
 / IPv6address "/" N8BITNUM ; Address/mask
 / IPv6address "-" IPv6address ; Range
 / IPv6address "-" WC ; Range to UBOUND
 / WC "-" IPv6address ; LBOUND to Range
 / WC ; Pure Wildcard

 PortEntry = N16BITNUM ; Single Entry
 / N16BITNUM "-" N16BITNUM ; Range
 / N16BITNUM "-" WC ; Range to UBOUND
 / WC "-" N16BITNUM ; LBOUND to Range
 / WC ; Pure Wildcard

 ProtEntry = N8BITNUM ; Single Entry
 / N8BITNUM "-" N8BITNUM ; Range
 / N8BITNUM "-" WC ; Range to UBOUND
 / WC "-" N8BITNUM ; LBOUND to Range
 / WC ; Pure Wildcard

 ICMPEntry = N8BITNUM ; Single Entry

https://datatracker.ietf.org/doc/html/draft-cavuto-dtcp-03.txt

 / N8BITNUM "-" N8BITNUM ; Range
 / N8BITNUM "-" WC ; Range to UBOUND
 / WC "-" N8BITNUM ; LBOUND to Range

Cavuto Expires May 10, 2010 [Page 38]

Internet-Draft draft-cavuto-dtcp-03.txt November 2009

 / WC ; Pure Wildcard

 CritEntry = N64BITNUM ; Single Entry
 / N64BITNUM "-" N64BITNUM ; Range
 / N64BITNUM "-" WC ; Range to UBOUND
 / WC "-" N64BITNUM ; LBOUND to Range
 / WC ; Pure Wildcard

https://datatracker.ietf.org/doc/html/draft-cavuto-dtcp-03.txt

Cavuto Expires May 10, 2010 [Page 39]

Internet-Draft draft-cavuto-dtcp-03.txt November 2009

9. Security Considerations

 DTCP empowers network security personnel to monitor packet data
 transitioning through a network element. As such, it is a powerful
 protocol that can cause any network data to be redirected to a
 arbitrary location for inspection. Consequently, it is of greatest
 criticality that any DTCP Servers fully implement the security model
 outlined in this draft. Failure to do so could result in malicious
 individuals either obtaining unauthorized access to data or
 interruption of data transmission.

10. IANA Considerations

 This document has no actions for IANA.

11. Conclusions

 This protocol has undergone extensive testing and several rounds of
 refinements. The resulting protocol is highly effective at meeting
 its goals of providing a real-time mechanism to inspect raw packets
 containing security-related events traversing a network in real-time.

12. Acknowledgments

 Thanks to all at AT&T and Juniper Networks who provided testing and
 support for this experimental protocol!

 The authors would specifically like to thank Joju Chevookaran, and
 Saravanan Deenadayalan from Juniper since they have not only worked
 hard on the implementation, but also on the some of the enhancements
 (specially VRF support, input/out interface filters etc).

 Also, Rick Suntag, Michael Nanashko, and Michael St. Angelo from AT&T
 all deserve special note for extensive testing as well as excellent
 protocol definition suggestions and corrections.

 This document was prepared using 2-Word-v2.0.template.dot.

https://datatracker.ietf.org/doc/html/draft-cavuto-dtcp-03.txt

Cavuto Expires May 10, 2010 [Page 40]

Internet-Draft draft-cavuto-dtcp-03.txt November 2009

APPENDIX A: Prior Implementation

 This document fully and accurately describes the operation of
 DTCP/0.7 implementations. However, in development of this protocol,
 some implementations with working versions of the protocol were
 released. This appendix describes the differences between the
 DTCP/0.7 protocol specification documented herein and the prior
 DTCP/0.5 and DTCP/0.6 protocol specifications.

 Other than the changes documented in this appendix, the older
 protocol specifications precisely follow DTCP/0.7 described herein.
 This appendix is provided for backward-compatibility purposes only;
 all new implementations should ignore this appendix.

A.1. Version Number

 (Modifies section 6.4 Current Version)

 o The prior supported version string was exactly:
 DTCP/0.6

A.2. Response to List request

 (Modifies sections 5.11 List Response, 6.1 Special treatment of
 response to List request and 8 Formal Syntax)

 The following changes apply only to the elements involved in the
 Response message used in reply to the List action. Changes are both
 syntactic and semantic in nature.

 o The ABNF element called "Criteria-Num" in DTCP/0.7 did not exist
 in DTCP/0.5 and was not included in any DTCP message.
 o The ABNF element called "Criteria-Count" in DTCP/0.7 was called
 "Num-Criteria" in DTCP/0.5.
 o The "Num-Criteria" element was only included in the final UDP
 packet sent. This signals the end of the List response.

A.3. Changes in Response Codes

 1. 550: Max Criteria Limit Exceeded

 This error message is sent when the number of DTCP ADD requests
 received by the server exceeds the allowed limit. Error code 500 used
 in the earlier Flow-Tap implementations was not clear enough.

 2. 551: Max Content Destination Exceeded

 Server allows only a certain number of Content Destinations at any
 given time, and generates this error message when the server receives

https://datatracker.ietf.org/doc/html/draft-cavuto-dtcp-03.txt

 a DTCP ADD request that contains a new content destination after the
 number of Content Destinations on that server has already exceeded
 the allowable limit.

Cavuto Expires May 10, 2010 [Page 41]

Internet-Draft draft-cavuto-dtcp-03.txt November 2009

 3. 432: Improper Filter Specification

 Generated when an ADD request contains a combination of X-JTap-VRF-
 Name, X-JTap-Input-Interface, and X-JTap-Output-Interface fields.

A.4. IP Version 6

 The formal ABNF syntax has been updated to include IP Version 6 in
 parallel with IP Version 4 both in the filter criteria specification
 as well as ancillary addressing information. The intent was to permit
 the protocol to operate largely unmodified while allowing the use of
 IP Version 6 addressing information. Some implementations may not
 support this addressing mode.

A.5. Sequence Number Negative Window

 The Negative Window sequence number concept has been added to this
 version of DTCP to address empirical errors found when testing with a
 high rate of DTCP "ADD" messages over a non-trivial network.

A.6. Version Mismatches

 The section on Version Mismatches was added, to account for specific
 problems encountered during upgrade of either the client or the
 server. In particular, the draft was ambiguous on how the DTCP Server
 should behave when servicing clients of various versions.

https://datatracker.ietf.org/doc/html/draft-cavuto-dtcp-03.txt

Cavuto Expires May 10, 2010 [Page 42]

Internet-Draft draft-cavuto-dtcp-03.txt November 2009

APPENDIX B: DTCP Vendor-Specific Extensions

B.1. Juniper Networks: "Flow-Tap"

B.1.1. "Flow-Tap" DTCP Extensions

 In support of Flow-Tap functionality, the DTCP grammar has been
 extended to include new parameters defined below. In general, the
 purpose of these parameters is to allow a content destination to be
 configured on-demand, rather than pre-configured. General DTCP
 grammar does not provide this functionality, so we extend it herein.

 Note that "JTap-Failure" below is not a grammar tag; it just defines
 a new error value "901' that will be used to indicate any problems
 with the X-JTap parameters.

 1. X-JTap-Cdest-Dest-Address

 IP address(es) of Content destination(s) where the matching packets
 need to be sent out. User may specify maximum two IP addresses
 separated by a comma. This field MUST be present in the ADD request
 otherwise "JTAP-Failure" error will be generated.

 2. X-JTap-Cdest-Dest-Port

 UDP port number(s) of Content destination(s) where the matching
 packets need to be sent out. User may specify maximum two port
 numbers separated by a comma. This field MUST be present in the ADD
 request otherwise "JTAP-Failure" error will be generated.

 3. X-JTap-Cdest-TTL

 TTL value to be used in the forwarded packet. This is an optional
 field and default of 255 will be used if not specified

 4. X-JTap-Cdest-Source-Address

 Source IP address from which the forwarded packet needs to besent
 from This field MUST be present in the ADD request and "JTap-Failure"
 error will be generated if this is not specified

 5. X-JTap-Cdest-Source-Port

 Source UDP port from which the forwarded packet needs to be sent from

 This field MUST be present in the ADD request and "JTap-Failure"
 error will be generated if this is not specified.

 6. Changes in Cdest-ID

https://datatracker.ietf.org/doc/html/draft-cavuto-dtcp-03.txt

 Cdest-ID field enables you to specify more than one content
 destination by using a comma separated list. Currently, only two

Cavuto Expires May 10, 2010 [Page 43]

Internet-Draft draft-cavuto-dtcp-03.txt November 2009

 content destinations are supported. However, note that the number of
 entries in all the three fields, Cdest-ID, X-JTap-Cdest-Dest-Address
 and X-JTap-Cdest-Dest-Port, must be the same. That is, if you have
 only one entry in one of the fields, the other two can have only one
 entry each. Error message 432 is generated if the number of entries
 in these fields does not match with each other.

 7. X-JTap-VRF-Name

 OPTIONAL field to specify a VRF name. If it is specified, only the
 packets coming to the specified VRF will be monitored. "JTap-Failure"
 error will be generated if the VRF is not configured

 8. X-JTap-Input-Interface

 OPTIONAL field to specify a list of interfaces. If it is specified,
 it will be attached to respective input interface(s) instead of
 global Flow-Tap filters. This list may contain maximum 8 interfaces
 separated by comma. If the unit name of an interface is not
 specified, System will assume it as unit 0. "JTap-Failure" error will
 be generated if any one of the interfaces in the list is not
 configured

 9. X-JTap-Output-Interface

 OPTIONAL field to specify a list of interfaces. If it is specified,
 the filter will be attached to respective output interface(s) instead
 of global Flow-Tap filters. This list may contain maximum 8
 interfaces separated by comma. If the unit name of an interface is
 not specified, System will assume it as unit 0. "JTap-Failure" error
 will be generated if any one of the interfaces in the list is not
 configured

B.1.2. "Flow-Tap" extension ABNF

 IP-4-OR-6 = (IPv4address / IPv6address)
 ADDR-LIST = IP-4-OR-6 1*("," IP-4-OR-6)
 PORT-LIST = N16BITNUM 1*("," N16BITNUM)
 IFL = 3CHAR "-" 2*DIGIT "/" 1*DIGIT "/" 1*DIGIT ["." N16BITNUM]
 IFL-LIST8 = IFL 7*("," IFL)

 X-JTap-Cdest-Dest-Address = "X-JTap-Cdest-Dest-Address" COL ADDR-LIST
 CRLF
 X-JTap-Cdest-Dest-Port = "X-JTap-Cdest-Dest-Port" COL PORT-LIST
 CRLF
 X-JTap-Cdest-TTL = "X-JTap-Cdest-TTL" COL N8BITNUM CRLF
 X-JTap-Cdest-Source-Address = "X-JTap-Cdest-Source-Address" COL
 (IPv4address / IPv6address) CRLF
 X-JTap-Cdest-Source-Port = "X-JTap-Cdest-Source-Port" COL N16BITNUM

https://datatracker.ietf.org/doc/html/draft-cavuto-dtcp-03.txt

 CRLF
 X-JTap-VRF-Name = "X-JTap-VRF-Name" COL DSTRING CRLF
 X-JTap-Input-Interface = "X-JTap-Input-Interface" COL IFL-LIST8 CRLF

Cavuto Expires May 10, 2010 [Page 44]

Internet-Draft draft-cavuto-dtcp-03.txt November 2009

 X-JTap-Output-Interface = "X-JTap-Output-Interface" COL IFL-LIST8
 CRLF

https://datatracker.ietf.org/doc/html/draft-cavuto-dtcp-03.txt

Cavuto Expires May 10, 2010 [Page 45]

Internet-Draft draft-cavuto-dtcp-03.txt November 2009

13. References

13.1. Normative References

 [1] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [2] Krawczyk, H. et. al., "RFC 2104: HMAC: Keyed-Hashing for
 Message Authentication", RFC 2104, February 1997

 [3] FIPS 180-1, "Secure Hash Standard". May 10995.
 (http://www.itl.nist.gov/fipspubs/fip180-1.htm)

 [4] Yergeau, F., "UTF-8, a transformation format of ISO 10646", RFC
3629, November 2003

 [5] Berners-Lee, T., Fielding, R. and H. Frystyk, "Hypertext
 Transfer Protocol -- HTTP/1.0", RFC 1945, May 10996

 [6] Rosenberg, et al. "SIP: Session Initiation Protocol", RFC 3261,
 June 2002

 [7] Crocker, D. and Overell, P.(Editors), "Augmented BNF for Syntax
 Specifications: ABNF", RFC 5234, January 2008

 [8] Berners-Lee, T., Fielding, R. , Masinter L., "Uniform Resource
 Identifier (URI): Generic Syntax", RFC 3986, January 2005

13.2. Informative References

 [9] "CAIDA: The Cooperative Association for Internet Data Analysis"
 (http://www.caida.org/tools/measurement/cflowd/)

https://datatracker.ietf.org/doc/html/draft-cavuto-dtcp-03.txt
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc2104
http://www.itl.nist.gov/fipspubs/fip180-1.htm
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc1945
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc3986
http://www.caida.org/tools/measurement/cflowd/

Cavuto Expires May 10, 2010 [Page 46]

Internet-Draft draft-cavuto-dtcp-03.txt November 2009

Authors' Addresses

 David J. Cavuto
 AT&T
 200 Laurel Ave South #C2-3B10
 Middletown, NJ 07748
 USA

 Email: dcavuto@att.com

 Manoj S. Apte
 Juniper Networks
 1194 North Mathilda Avenue
 Sunnyvale, CA 94089
 USA

 Email: mapte@juniper.net

 Sandeep Jain
 Juniper Networks
 1194 North Mathilda Avenue
 Sunnyvale, CA 94089
 USA

 Email: sjain@juniper.net

 Muku Murthy
 Juniper Networks
 1194 North Mathilda Avenue
 Sunnyvale, CA 94089
 USA

 Email: muku@juniper.net

https://datatracker.ietf.org/doc/html/draft-cavuto-dtcp-03.txt

Cavuto Expires May 10, 2010 [Page 47]

