
Network File System Version 4 C. Lever
Internet-Draft Oracle
Intended status: Informational February 3, 2020
Expires: August 6, 2020

Network File System Version 4 Requirements for Computational Storage
draft-cel-nfsv4-comp-stor-reqs-02

Abstract

 This document proposes an architecture to support Computational
 Storage using Network File System version 4 (NFS) files.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 6, 2020.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Lever Expires August 6, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft Computational Storage for NFS February 2020

Table of Contents

1. Introduction . 2
2. Computational Storage in Operation 3
2.1. Service Discovery . 3
2.2. Service Configuration 3
2.3. Service Operation . 4

3. Security Considerations 4
4. IANA Considerations . 5
5. References . 5
5.1. Normative References 5
5.2. Informative References 5

 Acknowledgments . 6
 Author's Address . 6

1. Introduction

 In traditional computing architectures, stored data is dormant.
 Computational storage brings computing power closer to data storage
 to leverage a high-bandwidth link between the compute resource and
 data-at-rest, or to reduce interrupt or data bandwidth needed between
 storage and host. Reducing the movement of large data objects lowers
 power consumption and increases opportunities for parallelism.

 There are already several pervasive usage scenarios suited to
 computation offloaded to storage:

 Search: Examples include SQL offload, a machine learning inference
 engine co-located with its dataset, or performing a "find"
 operation without pulling an entire filesystem's data to a client.

 Data Transformation: Examples include compression, transcoding, and
 encryption.

 Data Management: This might be a control plane that permits
 administrative actions such as instantiating a transfer to cold
 storage, integrity measurement (scrubbing), or creating a snapshot
 of a particular file.

 In some cases, computational storage is a computational service that
 is available as a direct offload for a host CPU. The source and sink
 data both reside in the host's memory. For NFS, however, the mission
 of computational storage techniques is to reduce network utilization
 between an NFS server and its clients. Here, the source and sink are
 files on NFS servers. The operation of the computational service can
 be entirely invisible to applications running on NFS clients.

Lever Expires August 6, 2020 [Page 2]

Internet-Draft Computational Storage for NFS February 2020

 NFSv4.2 [RFC7862] already applies this approach -- features new to
 NFSv4.2 include copy offload and file initialization (ALLOCATE), both
 of which are intended to prevent extra data round-trips between
 clients and server.

 Computational storage is an emerging technology already offered by
 several companies, including Samsung and HPE. A suitable
 introduction appears in [TORA]. The purpose of the current document
 is to provide a framework for discussing and reasoning about
 computational storage relative to the NFS protocol and typical NFS
 deployments.

2. Computational Storage in Operation

 For various reasons, we do not want to require changes to the NFS
 protocol to expose computational storage resources. Instead, an NFS
 server host can advertise RPC programs that allow NFS clients to
 recognize and configure the NFS server's computational services. The
 services operate on data stored on that server.

 We begin by defining the term Computational Storage Service (CSS) to
 mean a network service that performs computation on data where the
 service and the data it operates upon are tightly associated with a
 storage target.

2.1. Service Discovery

 Typically a CSS configuration facility registers with the NFS
 server's rpcbind service [RFC1833] to advertise its listening port
 and RPC program number. Administrative clients or users then contact
 this service to configure it for use.

 A CSS that has no administrative interface must also advertise its
 presence on the NFS server via this mechanism.

2.2. Service Configuration

 Computational Storage Services have varying degrees of
 configurability. A so-called Fixed Computational Storage Service
 provides one or a few specific pre-determined functions (e.g.,
 encryption).

 A Programmable Computational Storage Service is a more general-
 purpose service that must be provided with a program before the CSS
 becomes usable (e.g., an operating system image or an FPGA bit file).

 A configuration program exposes the parameters of a specific CSS via
 RPC. Such configuration might include the selection of encryption

https://datatracker.ietf.org/doc/html/rfc7862
https://datatracker.ietf.org/doc/html/rfc1833

Lever Expires August 6, 2020 [Page 3]

Internet-Draft Computational Storage for NFS February 2020

 algorithms or keys, or the specification of regular expressions or
 prepared SQL statements. The input dataset or a destination for
 results might also be specified.

 The primary class of input and output parameters for configuration
 programs are objects (e.g., files and directories) that exist in a
 filesystem shared via NFS. When they are local, a CSS can reference
 such objects by filehandle and optionally a range of bytes. A CSS
 references a remote object using either an NFS URI (defined in

Section 2.8.1 of [RFC7532]) or a tuple consisting of a network
 address and a filehandle.

2.3. Service Operation

 There are two alternative modes of operation:

 Transparent: Once configured, a CSS's operation occurs behind NFS
 READ and WRITE operations, and is not directly visible to NFS
 clients. For instance, an NFS server might perform data reduction
 (e.g., deduplication) or encryption-at-rest without exposing these
 transformations to clients.

 Verbal: Clients use a separate RPC protocol to initiate requests or
 capture results when the results are expected to be small or are
 not appropriate for storing into a file. This mode of operation
 is useful for invoking search operations over large datasets where
 the results might be a small set of filehandles with byte ranges.

 Serialization might be necessary to prevent an offload agent from
 colliding with accesses by standard NFS clients. A client might open
 the input file or hold a delegation for this purpose.

 Alternatively, the NFS protocol might provide no serialization.
 Applications themselves would be responsible for maintaining the
 integrity of the input datasets during offloaded operations.

3. Security Considerations

 NFS storage is typically deployed on open networks rather than in
 environments with restricted access, such as a PCIe bus or a
 dedicated storage fabric. In such open environments, administrators
 must focus extra attention on security. In particular:

 o Remote access to configuration and computational results must be
 authenticated and authorized. The ONC RPC protocol itself
 [RFC5531] has such authentication mechanisms, including mechanisms
 that use cryptography [RFC7861].

https://datatracker.ietf.org/doc/html/rfc7532#section-2.8.1
https://datatracker.ietf.org/doc/html/rfc5531
https://datatracker.ietf.org/doc/html/rfc7861

Lever Expires August 6, 2020 [Page 4]

Internet-Draft Computational Storage for NFS February 2020

 o There must be a mechanism for authorizing offload agents to access
 file data on behalf of authenticated users.

 o A trust relationship must exist between clients and servers. For
 example, how would clients be certain that the server has actually
 encrypted a file's content?

 o NFS servers must schedule the use of Computational Storage
 Services fairly to prevent denial-of-service.

4. IANA Considerations

 This document has no IANA actions.

5. References

5.1. Normative References

 [RFC1833] Srinivasan, R., "Binding Protocols for ONC RPC Version 2",
RFC 1833, DOI 10.17487/RFC1833, August 1995,

 <https://www.rfc-editor.org/info/rfc1833>.

 [RFC5531] Thurlow, R., "RPC: Remote Procedure Call Protocol
 Specification Version 2", RFC 5531, DOI 10.17487/RFC5531,
 May 2009, <https://www.rfc-editor.org/info/rfc5531>.

 [RFC7532] Lentini, J., Tewari, R., and C. Lever, Ed., "Namespace
 Database (NSDB) Protocol for Federated File Systems",

RFC 7532, DOI 10.17487/RFC7532, March 2015,
 <https://www.rfc-editor.org/info/rfc7532>.

5.2. Informative References

 [RFC7861] Adamson, A. and N. Williams, "Remote Procedure Call (RPC)
 Security Version 3", RFC 7861, DOI 10.17487/RFC7861,
 November 2016, <https://www.rfc-editor.org/info/rfc7861>.

 [RFC7862] Haynes, T., "Network File System (NFS) Version 4 Minor
 Version 2 Protocol", RFC 7862, DOI 10.17487/RFC7862,
 November 2016, <https://www.rfc-editor.org/info/rfc7862>.

 [TORA] Torabzadehkashi, M., Rezaei, S., HeydariGorji, A.,
 Bobarshad, H., Alves, V., and N. Bagherzadeh,
 "Computational storage: an efficient and scalable platform
 for big data and HPC applications", Journal of Big Data 6,
 100, DOI 10.1186/s40537-019-0265-5, November 2019.

https://datatracker.ietf.org/doc/html/rfc1833
https://www.rfc-editor.org/info/rfc1833
https://datatracker.ietf.org/doc/html/rfc5531
https://www.rfc-editor.org/info/rfc5531
https://datatracker.ietf.org/doc/html/rfc7532
https://www.rfc-editor.org/info/rfc7532
https://datatracker.ietf.org/doc/html/rfc7861
https://www.rfc-editor.org/info/rfc7861
https://datatracker.ietf.org/doc/html/rfc7862
https://www.rfc-editor.org/info/rfc7862

Lever Expires August 6, 2020 [Page 5]

Internet-Draft Computational Storage for NFS February 2020

Acknowledgments

 The author is grateful to Bill Baker, Greg Marsden, and Jim Williams
 of Oracle, Glenn Watkins of HPE, and Stephen Bates of Eideticom for
 their input and support of this work.

 Special thanks go to Transport Area Director Magnus Westerlund, NFSV4
 Working Group Chairs David Noveck, Brian Pawlowski, and Spencer
 Shepler, and NFSV4 Working Group Secretary Thomas Haynes for their
 support.

Author's Address

 Charles Lever
 Oracle Corporation
 United States of America

 Email: chuck.lever@oracle.com

Lever Expires August 6, 2020 [Page 6]

