
Workgroup: Network File System Version 4

Internet-Draft:

draft-cel-nfsv4-hash-tree-interchange-

format-01

Published: 28 May 2021

Intended Status: Standards Track

Expires: 29 November 2021

Authors: C. Lever, Ed.

Oracle

Attestation of File Content using an X.509 Certificate

Abstract

This document describes a compact open format for transporting and

storing an abbreviated form of a cryptographically signed hash tree.

Receivers use this representation to reconstitute the hash tree and

verify the integrity of file content protected by that tree.

An X.509 certificate encapsulates and protects the hash tree

metadata and provides cryptographic provenance. Therefore this

document updates the Internet X.509 certificate profile specified in

RFC 5280.

This note is to be removed before publishing as an RFC.

Discussion of this draft occurs on the NFSv4 working group mailing

list (nfsv4@ietf.org), archived at https://mailarchive.ietf.org/

arch/browse/nfsv4/. Working Group information is available at

https://datatracker.ietf.org/wg/nfsv4/about/.

Submit suggestions and changes as pull requests at https://

github.com/chucklever/i-d-hash-tree-interchange-format. Instructions

are on that page.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

¶

¶

¶

¶

¶

¶

¶

¶

https://mailarchive.ietf.org/arch/browse/nfsv4/
https://mailarchive.ietf.org/arch/browse/nfsv4/
https://datatracker.ietf.org/wg/nfsv4/about/
https://github.com/chucklever/i-d-hash-tree-interchange-format
https://github.com/chucklever/i-d-hash-tree-interchange-format
https://datatracker.ietf.org/drafts/current/

This Internet-Draft will expire on 29 November 2021.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Combining These Solutions

1.2. Efficient Content Verification

1.3. Related Work

2. Requirements Language

3. Hash Tree Metadata

4. File Provenance Certificates

4.1. Root Hash

4.2. Divergence Factor

4.3. Tree Height

4.4. Block Size

4.5. Salt Value

4.6. Validating Certificates and their Signatures

5. Implementation Status

6. Security Considerations

6.1. X.509 Certificate Vulnerabilities

6.2. Hash Tree Collisions and Pre-Image Attacks

6.3. File Content Vulnerabilities

7. IANA Considerations

7.1. Object Identifiers for Hash Tree Metadata

8. References

8.1. Normative References

8.2. Informative References

Acknowledgments

Author's Address

1. Introduction

Linear hashing is a common technique for protecting the integrity of

data. A fixed-size hash, or digest, is computed over the bytes in a

¶

¶

¶

https://trustee.ietf.org/license-info

data set using a deterministic and collision-resistant algorithm. An

example of such an algorithm is [FIPS.180-4].

Filesystem designers often employ this technique to protect the

integrity of both individual files and filesystem metadata. For

instance, to protect an individual file's integrity, the filesystem

computes a digest from the beginning of its content to its end. The

filesystem then stores that digest along with the file content. The

integrity of that digest can be further protected by

cryptographically signing it. The filesystem recomputes the digest

when the file is retrieved and compares the locally-computed digest

with the saved digest to verify the file content.

Over time, linear hashing has proven to be an inadequate fit with

the way filesystems manage file content. A content verifier must

read the entire file to validate its digest. Reading whole files is

not onerous for small files, but reading a large file every time its

digest needs verification quickly becomes costly.

Filesystems read files from persistent storage in small pieces

(blocks) on demand to manage large files efficiently. When memory is

short, the system evicts these data blocks and then reads them again

when needed later. There is no physical guarantee that a subsequent

read of a particular block will give the same result as an earlier

one. Thus the initial verification of a file's becomes stale,

sometimes quickly.

To address this shortcoming, some have turned to hash trees

[Merkle88]. A hash tree leaf node contains the linear hash of a

portion of the protected content. Interior nodes in a hash tree

contain hashes of the nodes below them, up to the root node which

stores a hash of everything in the tree. Validating a leaf node

means validating only the portion of the file content protected by

that node and its parents in the hash tree.

Hash trees present a new challenge, however. Even when signed, a

single linear hash is the same size no matter how much content it

protects. The size of a hash tree, however, increases

logarithmically with the size of the content it protects.

Transporting and storing a hash tree can therefore be unwieldy. It

is particularly a problem for legacy storage formats that do not

have mechanisms to handle extensive amounts of variably-sized

metadata. Software distribution and packaging formats might not be

flexible enough to transport this possibly large amount of integrity

data. Backup mechanisms such as tar or rsync might be unable to

handle variably-sized metadata per file.

¶

¶

¶

¶

¶

¶

¶

Moreover, we can readily extend network file storage protocols to

exchange a hash tree associated with every file. However, to support

such extensions, file servers and the ecosystems where they run must

be updated to manage and store this metadata. Thus it is not merely

an issue of enriching a file storage protocol to handle a new

metadata type.

1.1. Combining These Solutions

The root hash of a hash tree is itself a fixed-size piece of

metadata similar to a linear hash. The only disadvantage is that a

verifier must reconstitute the hash tree using the root hash and the

file content. However, if the verifier caches each tree on local

trusted storage, that is as good as storing the whole tree. The

verifier can then use the locally cached tree to validate portions

of the file it protects without reading each file repeatedly from

remote or untrusted durable storage.

To further insulate a root hash from unwanted change, an attestor

can protect it with a cryptographic signature. This cryptographic

protection then additionally covers the entire hash tree and the

file content it protects.

This integrity protection is independent of the file's storage

format and its underlying durable media. The file (and the root hash

that protects it) can be copied, transmitted over networks, or

backed up and restored while it remains protected end-to-end.

1.2. Efficient Content Verification

We now have a small fixed-size piece of metadata that can protect

potentially huge files. The trade-off is that the verifier must

reconstitute the hash tree during installation or on-demand. File

systems or remote filesystem clients can store or cache

reconstituted trees in:

Volatile or non-volatile memory

A secure database

A private directory on a local filesystem

A named attribute or stream associated with the file

An easily accessible copy of a file's hash tree enables frequent

verification of file content. Frequent verification protects that

content against unwanted changes due to local storage or copying

errors, malicious activity, or data retention issues. When

verification is efficient, it can take place as often as during

every file read operation.

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

¶

The current document's unique contribution is the use of an X.509 v3

certificate to encapsulate the representation of a hash tree. The

purpose of encapsulation is to enable the hash tree metadata to be

exchanged and recognized broadly in the Internet community.

Therefore each certificate has to:

Cryptographically protect the integrity of the hash tree metadata

Bind the hash tree metadata to the authenticated identity of the

file content's attestor

Provide for a broadly-supported standard set of cryptographic

algorithms

Represent the hash tree data in a commonly recognized format that

is independent of storage media

1.3. Related Work

Granted in 1982, expired US patent 4309569 [Merkle82] covers the

construction of a tree of digests. Initially, these "Merkle trees"

helped improve the security of digital signatures. Later they were

used in storage integrity applications such as [Mykletun06]. They

have also found their way into other domains. [RFC6962], published

in 2013, uses Merkle trees to manage log auditing, for example.

A Tiger tree is a form of a hash tree often used by P2P protocols to

verify a file's integrity while in transit. The Tree Hash EXchange

format [THEX03]. enables the transmission of whole Tiger trees in an

XML format. The current document proposes similar usage where a

sidecar hash tree protects file content but reduces the integrity

metadata's size.

2. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

3. Hash Tree Metadata

Reconstituting a hash tree (as opposed to building a more generic

directed graph of hashes) requires the protected content, a basic

set of metadata, and an understanding of how to use the metadata to

reconstitute the hash tree:

The algorithm used to compute the tree's digests

¶

* ¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

* ¶

The divergence factor (defined as one for a hash list and two for

binary hash trees)

The tree height (from root to the lowest leaf node)

The block size covered by each leaf node in the tree

An optional salt value

More research might be needed to cover recent innovations in hash

tree construction; in particular, the use of prefixes to prevent

second pre-image attacks.

The digest algorithm used to construct the hash tree MUST match the

digest algorithm used to sign the certificate. Thus if SHA-2 is used

to construct the hash tree, the certificate signature is created

with SHA-2. The verifier then uses SHA-2 when validating the

certificate signature and reconstituting the hash tree. The object

identifiers for the supported algorithms and the methods for

encoding public key materials (public key and parameters) are

specified in [RFC3279], [RFC4055], and [RFC4491].

The block size value of the tree is specified in octets. For

example, if the block size is 4096, then each leaf node of the hash

tree digests 4096 octets of the protected file (aligned on 4096-

octet boundaries).

The internal nodes are digests constructed from the hashes of two

adjacent child nodes up to the root node (further detail needed

here). The tree's height is the distance, counted in nodes, from the

root to the lowest leaf node.

The leaf nodes are ordered (left to right) by the file offset of the

block they protect. Thus, the left-most leaf node represents the

first block in the file, and the right-most leaf node represents the

final block in the file.

Some explanation of the salt value goes here.

Further, when computing each digest, an extra byte might be prefixed

to the pre-digested content to reduce the possibility of a second-

preimage attack.

4. File Provenance Certificates

RFC Editor: In the following subsections, please replace the letters

II once IANA has allocated this value. Furthermore, please remove

this Editor's Note before this document is published.

*

¶

* ¶

* ¶

* ¶

¶

¶

¶

¶

¶

¶

¶

¶

X.509 certificates are specified in [X.509]. The current document

extends the Internet X.509 certificate profile specified in

[RFC5280] to represent file content protected by hash tree metadata.

File provenance certificates are end-entity certificates. The

certificate's signature identifies the attestor and

cryptographically protects the hash tree metadata.

The Subject field MUST be an empty sequence. The SubjectAltName list

carries a filename and the root hash, encoded in a new otherName

type-ID, shown below. The current document requests allocation of

this new type-ID on the id-on arc, defined in Section 2 of

[RFC7299]. The following subsections describe how the fields in this

new type-ID are used.

<CODE BEGINS>

 id-pkix OBJECT IDENTIFIER ::=

 { iso(1) identified-organization(3) dod(6) internet(1)

 security(5) mechanisms(5) pkix(7) }

 id-on OBJECT IDENTIFIER ::= { id-pkix 8 }

 id-on-fileContentAttestation OBJECT IDENTIFIER ::= { id-on II }

 FileContentAttestation ::= SEQUENCE {

 treeRootDigest OCTET STRING,

 treeDivergenceFactor INTEGER (1..2),

 treeHeight INTEGER,

 treeBlockSize INTEGER,

 treeSaltValue OCTET STRING

 }

<CODE ENDS>

4.1. Root Hash

The root digest field stores the digest that appears at the root of

the represented Merkle tree. The digest appears as a hexadecimal

integer.

4.2. Divergence Factor

The value in the tree divergence factor field represents the maximum

number of children nodes each node has in the represented Merkle

tree. A value of two, for example, means each node (except the leaf

nodes) has no more than two children.

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc7299#section-2

4.3. Tree Height

The tree height field stores the distance from the represented

Merkle tree's root node to its lowest leaf node. A value of one, for

example, means the tree has a single level at the root.

4.4. Block Size

The block size field contains the number of file content bytes

represented by each digest (node) in the Merkle tree. A typical

value is 4096, meaning each node in the tree contains a digest of up

to 4096 bytes, starting on 4096-byte boundaries.

4.5. Salt Value

The tree salt value is a hexadecimal integer combined with the

digest values in some way that I have to look up. If the tree salt

value is zero, salting is not to be used when reconstituting the

represented Merkle tree.

4.6. Validating Certificates and their Signatures

When validating a certificate containing hash tree metadata,

validation MUST include the verification rules per Section 6 of

[RFC5280].

The validator reconstitutes a hash tree using the presented file

content and the hash tree metadata in the certificate. If the root

hash of the reconstituted hash tree does not match the value

contained in the treeRootHash, then the validation fails.

5. Implementation Status

This section is to be removed before publishing as an RFC.

This section records the status of known implementations of the

protocol defined by this specification at the time of posting of

this Internet-Draft, and is based on a proposal described in

[RFC7942]. The description of implementations in this section is

intended to assist the IETF in its decision processes in progressing

drafts to RFCs.

Please note that the listing of any individual implementation here

does not imply endorsement by the IETF. Furthermore, no effort has

been spent to verify the information presented here that was

supplied by IETF contributors. This is not intended as, and must not

be construed to be, a catalog of available implementations or their

features. Readers are advised to note that other implementations may

exist.

¶

¶

¶

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc5280#section-6

Overt corruption:

Silent corruption:

There are no known implementations of the X.509 certificate

extensions described in the current document.

6. Security Considerations

6.1. X.509 Certificate Vulnerabilities

The file content and hash tree can be unpacked and then resigned by

someone who participates in the same web of trust as the original

content creator. Verifiers should consult appropriate certificate

revocation databases as part of validating attestor signatures to

mitigate this form of attack.

6.2. Hash Tree Collisions and Pre-Image Attacks

A typical attack against digest algorithms is a collision attack.

The usual mitigation for this form of attack is choosing a hash

algorithm known to be strong. Implementers SHOULD choose amongst

digest algorithms that are known to be resistant to pre-image

attacks. See [RFC4270] for a discussion of attacks on digest

algorithms typically used in Internet protocols.

Hash trees are subject to a particular type of collision attack

called a "second pre-image attack". Digest values in intermediate

nodes in a hash tree are generated from lower nodes. Executing a

collision attack to replace a subtree with content that hashes to

the same value does not change the root hash value and is more

manageable than replacing all of a file's content. This kind of

attack can occur independently of the strength of the tree's hash

algorithm. The tree height is included in the signed metadata to

mitigate this form of attack.

6.3. File Content Vulnerabilities

There are two broad categories of attacks on mechanisms that protect

the integrity of file content:

An attacker makes the file's content dubious or

unusable (depending on the end system's security policies) by

corrupting either the file's content or its protective metadata

in a detectable manner.

An attacker alters the file's content and its

protective metadata in synchrony such that any changes remain

undetected.

The goal of the current document's mechanism is to turn as many

instances of the latter as possible into the former, which are more

likely to identify corrupted content before it is consumed.

¶

¶

¶

¶

¶

¶

¶

¶

[RFC2119]

[RFC3279]

7. IANA Considerations

RFC Editor: In the following subsections, please replace RFC-TBD

with the RFC number assigned to this document, and please replace II

with the number assigned to this new type-ID. Furthermore, please

remove this Editor's Note before this document is published.

7.1. Object Identifiers for Hash Tree Metadata

Following the "Specification Required" policy as defined in

Section 4.6 of [RFC8126], the author of the current document

requests several new type-ID OIDs on the id-on arc defined in

Section 2 of [RFC7299]. The registry for this arc is maintained at

the following URL: https://www.iana.org/assignments/smi-numbers/smi-

numbers.xhtml#smi-numbers-1.3.6.1.5.5.7.8

Following [RFC5280], the current document requests newly-defined

objects in the following subsections using 1988 ASN.1 notation.

<CODE BEGINS>

 id-pkix OBJECT IDENTIFIER ::=

 { iso(1) identified-organization(3) dod(6) internet(1)

 security(5) mechanisms(5) pkix(7) }

 id-on OBJECT IDENTIFIER ::= { id-pkix 8 }

 id-on-fileContentAttestation OBJECT IDENTIFIER ::= { id-on II }

<CODE ENDS>

IANA should use the current document (RFC-TBD) as the reference for

these new entries.

8. References

8.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Bassham, L., Polk, W., and R. Housley, "Algorithms and

Identifiers for the Internet X.509 Public Key

Infrastructure Certificate and Certificate Revocation

List (CRL) Profile", RFC 3279, DOI 10.17487/RFC3279,

April 2002, <https://www.rfc-editor.org/info/rfc3279>.

¶

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc8126#section-4.6
https://rfc-editor.org/rfc/rfc7299#section-2
https://www.iana.org/assignments/smi-numbers/smi-numbers.xhtml#smi-numbers-1.3.6.1.5.5.7.8
https://www.iana.org/assignments/smi-numbers/smi-numbers.xhtml#smi-numbers-1.3.6.1.5.5.7.8
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3279

[RFC4055]

[RFC4491]

[RFC5280]

[RFC7942]

[RFC8126]

[RFC8174]

[X.509]

[FIPS.180-4]

Schaad, J., Kaliski, B., and R. Housley, "Additional

Algorithms and Identifiers for RSA Cryptography for use

in the Internet X.509 Public Key Infrastructure

Certificate and Certificate Revocation List (CRL)

Profile", RFC 4055, DOI 10.17487/RFC4055, June 2005,

<https://www.rfc-editor.org/info/rfc4055>.

Leontiev, S., Ed. and D. Shefanovski, Ed., "Using the

GOST R 34.10-94, GOST R 34.10-2001, and GOST R 34.11-94

Algorithms with the Internet X.509 Public Key

Infrastructure Certificate and CRL Profile", RFC 4491,

DOI 10.17487/RFC4491, May 2006, <https://www.rfc-

editor.org/info/rfc4491>.

Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,

Housley, R., and W. Polk, "Internet X.509 Public Key

Infrastructure Certificate and Certificate Revocation

List (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May

2008, <https://www.rfc-editor.org/info/rfc5280>.

Sheffer, Y. and A. Farrel, "Improving Awareness of

Running Code: The Implementation Status Section", BCP

205, RFC 7942, DOI 10.17487/RFC7942, July 2016, <https://

www.rfc-editor.org/info/rfc7942>.

Cotton, M., Leiba, B., and T. Narten, "Guidelines for

Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017, <https://

www.rfc-editor.org/info/rfc8126>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

International Telephone and Telegraph Consultative

Committee, "ITU-T X.509 - Information technology - The

Directory: Public-key and attribute certificate

frameworks.", ISO/IEC 9594-8, CCITT Recommendation X.509,

October 2019.

8.2. Informative References

National Institute of Standards and Technology, "Secure

Hash Standard, Federal Information Processing Standards

Publication FIPS PUB 180-4", FIPS PUB 180-4, DOI 10.6028/

https://www.rfc-editor.org/info/rfc4055
https://www.rfc-editor.org/info/rfc4491
https://www.rfc-editor.org/info/rfc4491
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc7942
https://www.rfc-editor.org/info/rfc7942
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8174

[Merkle82]

[Merkle88]

[Mykletun06]

[RFC4270]

[RFC6962]

[RFC7299]

[THEX03]

NIST.FIPS.180-4, August 2015, <https://doi.org/10.6028/

NIST.FIPS.180-4>.

Merkle, R., "Method of providing digital signatures", US

Patent Office 4309569, January 1982.

Merkle, R., "A Digital Signature Based on a Conventional

Encryption Function", Advances in Cryptography CRYPTO

'87, Lecture Notes in Computer Science 293, pp. 369-378,

DOI 10.1007/3-540-48184-2_32, ISBN 978-3-540-18796-7,

1988, <https://doi.org/10.1007/3-540-48184-2_32>.

Mykletun, E., Maithili, M., and G. Tsudik, "Providing

Authentication and Integrity in Outsourced Databases

using Merkle Hash Tree's", ACM Transactions on Storage,

DOI 10.1145/1149976.1149977, May 2006, <https://doi.org/

10.1145/1149976.1149977>.

Hoffman, P. and B. Schneier, "Attacks on Cryptographic

Hashes in Internet Protocols", RFC 4270, DOI 10.17487/

RFC4270, November 2005, <https://www.rfc-editor.org/info/

rfc4270>.

Laurie, B., Langley, A., and E. Kasper, "Certificate

Transparency", RFC 6962, DOI 10.17487/RFC6962, June 2013,

<https://www.rfc-editor.org/info/rfc6962>.

Housley, R., "Object Identifier Registry for the PKIX

Working Group", RFC 7299, DOI 10.17487/RFC7299, July

2014, <https://www.rfc-editor.org/info/rfc7299>.

Chapweske, J. and G. Mohr, "Tree Hash EXchange format

(THEX)", 4 March 2003, <http://www.nuke24.net/docs/2003/

draft-jchapweske-thex-02.html>.

Acknowledgments

The editor is grateful to Bill Baker, Eric Biggers, James Bottomley,

Russ Housley, Benjamin Kaduk, Rick Macklem, Greg Marsden, Paul

Moore, Martin Thomson, and Mimi Zohar for their input and support.

Finally, special thanks to Transport Area Directors Martin Duke and

Zaheduzzaman Sarker, NFSV4 Working Group Chairs David Noveck and

Brian Pawlowski, and NFSV4 Working Group Secretary Thomas Haynes for

their guidance and oversight.

Author's Address

Charles Lever (editor)

Oracle Corporation

¶

¶

https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1145/1149976.1149977
https://doi.org/10.1145/1149976.1149977
https://www.rfc-editor.org/info/rfc4270
https://www.rfc-editor.org/info/rfc4270
https://www.rfc-editor.org/info/rfc6962
https://www.rfc-editor.org/info/rfc7299
http://www.nuke24.net/docs/2003/draft-jchapweske-thex-02.html
http://www.nuke24.net/docs/2003/draft-jchapweske-thex-02.html

United States of America

Email: chuck.lever@oracle.com

mailto:chuck.lever@oracle.com

	Attestation of File Content using an X.509 Certificate
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Combining These Solutions
	1.2. Efficient Content Verification
	1.3. Related Work

	2. Requirements Language
	3. Hash Tree Metadata
	4. File Provenance Certificates
	4.1. Root Hash
	4.2. Divergence Factor
	4.3. Tree Height
	4.4. Block Size
	4.5. Salt Value
	4.6. Validating Certificates and their Signatures

	5. Implementation Status
	6. Security Considerations
	6.1. X.509 Certificate Vulnerabilities
	6.2. Hash Tree Collisions and Pre-Image Attacks
	6.3. File Content Vulnerabilities

	7. IANA Considerations
	7.1. Object Identifiers for Hash Tree Metadata

	8. References
	8.1. Normative References
	8.2. Informative References

	Acknowledgments
	Author's Address

