
Network File System Version 4                                   C. Lever
Internet-Draft                                                    Oracle
Intended status: Experimental                            January 9, 2018
Expires: July 13, 2018

Improving the Performance and Reliability of RPC Replies on RPC-over-
RDMA Transports

draft-cel-nfsv4-rpcrdma-reliable-reply-02

Abstract

   RPC transports such as RPC-over-RDMA Version One require reply
   buffers to be in place before an RPC Call is sent.  However, Upper
   Layer Protocols sometimes have difficulty estimating the expected
   maximum size of RPC replies.  This introduces the risk that an RPC
   Reply message can overrun reply resources provided by the requester,
   preventing delivery of the message, through no fault of the
   requester.  This document describes a mechanism that eliminates the
   need for pre-allocation of reply resources for unpredictably large
   replies.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on July 13, 2018.

Copyright Notice

   Copyright (c) 2018 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents

Lever                     Expires July 13, 2018                 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info


Internet-Draft        RPC-Over-RDMA Reliable Reply          January 2018

   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
2.  Requirements Language . . . . . . . . . . . . . . . . . . . .   3
3.  Problem Statement . . . . . . . . . . . . . . . . . . . . . .   3
3.1.  Reply Chunk Overrun . . . . . . . . . . . . . . . . . . .   4
3.2.  Reply Size Calculation  . . . . . . . . . . . . . . . . .   4
3.3.  Requester Registration Costs  . . . . . . . . . . . . . .   5
3.4.  Denial of Service . . . . . . . . . . . . . . . . . . . .   5
3.5.  Estimating Transport Header Size  . . . . . . . . . . . .   6

4.  Responder-Provided Read Chunks  . . . . . . . . . . . . . . .   6
4.1.  Specification . . . . . . . . . . . . . . . . . . . . . .   7

5.  Analysis  . . . . . . . . . . . . . . . . . . . . . . . . . .   9
5.1.  Benefits  . . . . . . . . . . . . . . . . . . . . . . . .   9
5.2.  Costs . . . . . . . . . . . . . . . . . . . . . . . . . .  10
5.3.  Selecting a Reply Mechanism . . . . . . . . . . . . . . .  11
5.4.  Implementation Complexity . . . . . . . . . . . . . . . .  12
5.5.  Alternatives  . . . . . . . . . . . . . . . . . . . . . .  13

6.  Interoperation Considerations . . . . . . . . . . . . . . . .  14
7.  Security Considerations . . . . . . . . . . . . . . . . . . .  14
8.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  15
9.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  15
9.1.  Normative References  . . . . . . . . . . . . . . . . . .  15
9.2.  Informative References  . . . . . . . . . . . . . . . . .  15

   Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . .  16
   Author's Address  . . . . . . . . . . . . . . . . . . . . . . . .  16

1.  Introduction

   One way in which RPC-over-RDMA Version One improves transport
   efficiency is by ensuring resources for RPC replies are available in
   advance of each RPC transaction [RFC8166].  These resources are
   typically provisioned before a requester sends each RPC Call message.
   They are provided to the responder to use for transmiting the
   associated RPC Reply message back to the requester.

   In particular, when the Payload Stream of an RPC Reply message is
   expected to be large, the requester allocates and registers a Reply
   chunk.  The responder transfers the RPC Reply message's Payload
   stream directly into the requester memory associated with that chunk,
   then indicates that the RPC Reply is ready.  The requester
   invalidates the memory region.

https://datatracker.ietf.org/doc/html/rfc8166


Lever                     Expires July 13, 2018                 [Page 2]



Internet-Draft        RPC-Over-RDMA Reliable Reply          January 2018

   In most cases, Upper Layer Protocols are capable of accurately
   calculating the maximum size of RPC Reply messages.  In addition, the
   average size of RPC Reply messages is small, making the risk of Reply
   chunk overrun exceptionally small.

   However, on rare occasions an Upper Layer Protocol might not be able
   to derive a reply size upper bound.  An example of this is the NFS
   version 4.1 GETATTR operation [RFC5661] [RFC8267] where a reply can
   contain an unpredictable number of data content and hole descriptors.

   Further, since the average size of actual RPC Replies is small,
   requesters frequently allocate and register a Reply chunk for a reply
   that, once it has been constructed by the responder, is small enough
   to be sent inline.  In this case, a responder is free to either
   populate the Reply chunk or send the RPC Reply without the use of the
   Reply chunk.  The requester's cost of preparing the Reply chunk has
   been wasted, and the extra registration and invalidation adds
   unwanted latency to the operation.

   A better method of handling RPC replies could ensure that RPC Replies
   can be received even when the maximum possible size of some replies
   cannot be calculated in advance.  This method could also ensure that
   no extra memory registration/invalidation operations are necessary to
   make this guarantee.

   This document resurrects the responder-provided Read chunk mechanism
   that was briefly outlined in [RFC5666] to achieve these goals.  The
   discussion in this document assumes the reader is familiar with
   [RFC8166].

2.  Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHOULD", "SHOULD NOT",
   "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
   interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only
   when, they appear in all capitals, as shown here.

3.  Problem Statement

   RPC-over-RDMA Version One uses an RDMA Send request to transmit
   transport headers and small RPC messages.

   Each peer on an RPC-over-RDMA transport connection provisions Receive
   buffers in which to capture incoming RDMA Send messages.  There is a
   limited number of these buffers, necessitating accounting in the
   transport protocol to prevent a peer from emitting more Send
   operations than the receiver is prepared for.

https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc8267
https://datatracker.ietf.org/doc/html/rfc5666
https://datatracker.ietf.org/doc/html/rfc8166
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174


Lever                     Expires July 13, 2018                 [Page 3]



Internet-Draft        RPC-Over-RDMA Reliable Reply          January 2018

   Because the selection of Receive Work Request to handle an incoming
   Send is outside the control of the host O/S, the smallest buffer in
   this pool determines the largest size message that can be received.
   The size of the largest message that can be received via RDMA Send is
   known as the receiver's "inline threshold" [RFC8166].

   When marshaling an RPC transaction, a requester allocates and
   registers a Reply chunk whenever the maximum possible size of the
   corresponding RPC-over-RDMA reply is larger than the requester's
   receive inline threshold.  The Reply chunk is presented to the
   responder as part of the RPC Call.  The responder may place the
   associated RPC Reply message in the memory region linked with this
   Reply chunk.

3.1.  Reply Chunk Overrun

   If a responder overruns a Reply chunk during an RDMA Write, a memory
   protection error occurs.  This typically results in connection loss.
   Any RPC transactions running on that connection must be
   retransmitted.  The failing RPC transaction will never get a reply,
   and retransmitting it may result in additional connection loss
   events.

   A smart responder compares the size of an RPC Reply with the size of
   the target Reply chunk before initiating the placement of data in
   that chunk.  A generic RDMA_ERROR message reports the problem and the
   requester can terminate the RPC transaction.

   In either case, the RPC is executed by the responder, but the
   requester does not receive the results or acknowledgement of its
   completion.

3.2.  Reply Size Calculation

   To determine when a Reply chunk is needed, requesters calculate the
   maximum possible size of the RPC Reply message expected for each
   transaction.  Upper Layer Bindings, such as [RFC8267] provide
   guidance on how to calculate Reply sizes and in what cases the Upper
   Layer Protocol might have difficulty giving an exact upper bound.

   Unfortunately, there are rare cases where an upper bound cannot be
   computed.  For instance, there is no way to know how large an NFS
   Access Control List (ACL) is until it is retrieved from an NFS server
   [RFC5661].  There is no protocol-specified limit on the size of NFS
   ACLs.  When retrieving an NFS ACL, there is always a risk, albeit a
   small one, that the NFS client has not provided a large enough Reply
   chunk, and that therefore the NFS server will not be able to return

https://datatracker.ietf.org/doc/html/rfc8166
https://datatracker.ietf.org/doc/html/rfc8267
https://datatracker.ietf.org/doc/html/rfc5661


Lever                     Expires July 13, 2018                 [Page 4]



Internet-Draft        RPC-Over-RDMA Reliable Reply          January 2018

   that ACL to the client (unless somehow a larger Reply chunk can be
   provided).

3.3.  Requester Registration Costs

   For an Upper Layer Protocol such as NFS version 4.2 [RFC7862], NFS
   COMPOUND Call and Reply messages can be large on occasion.  For
   instance, an NFSv4.2 COMPOUND can contain a LOOKUP operation together
   with a GETATTR operation.  The size of a LOOKUP result is relatively
   small.  However, the GETATTR in that COMPOUND may request attributes,
   such as ACLs or security labels, that can grow arbitrarily large and
   whose size is not known in advance.

   Thus a requester can be responsible for provisioning quite a large
   reply buffer for each LOOKUP COMPOUND, which is a frequent request.
   If the maximum possible reply message can be large, the requester is
   required to provide a Reply chunk.  Most of the time, however, the
   actual size of a LOOKUP COMPOUND reply is small enough to be sent
   using one RDMA Send.

   In other words, an NFS version 4 client provides a Reply chunk quite
   frequently during RPC transactions, but NFS version 4 servers almost
   never need to use it because the actual size of replies is typically
   less than the inline threshold.  The overhead of registering and
   invalidating this chunk is significant.  Moreover it is unnecessary
   whenever the size of an actual RPC reply is small.

   Before an RPC transaction is terminated, a requester is responsible
   for fencing the Reply chunk from the responder [RFC8166].  That makes
   RPC completion synchronous with Reply chunk invalidation.  Therefore
   the latency of Reply chunk invalidation adds to the total execution
   time of the RPC transaction.

3.4.  Denial of Service

   When an RPC transaction is canceled or aborted (for instance, because
   an application process exited prematurely), a requester must
   invalidate or set aside Write and Reply chunks associated with that
   transaction [RFC8166].

   This is because that RPC transaction is still running on the
   responder.  The responder remains obligated to return the result of
   that transaction via RDMA Write, if there are Write or Reply chunks.
   If memory registered on behalf of that transaction is re-used, the
   requester must protect that memory from server RDMA Writes associated
   with previous transactions by fencing it from the responder.  The
   responder triggers a memory protection error when it writes into
   those memory regions, and the connection is lost.

https://datatracker.ietf.org/doc/html/rfc7862
https://datatracker.ietf.org/doc/html/rfc8166
https://datatracker.ietf.org/doc/html/rfc8166


Lever                     Expires July 13, 2018                 [Page 5]



Internet-Draft        RPC-Over-RDMA Reliable Reply          January 2018

   A malfunctioning application or a malicious user on the requester can
   create a situation where RPCs are continuously initiated and then
   aborted, resulting in responder replies that repeatedly terminate the
   underlying RPC-over-RDMA connection.

   A rogue responder can purposely overrun a Reply chunk to kill a
   connection.  Repeated connection loss can result in a Denial of
   Service.

3.5.  Estimating Transport Header Size

   To determine whether a Reply chunk is needed, a requester computes
   the size of the Reply's Transport Header and the maximum possible
   size of the RPC Reply message, and sums the two.  If the sum is
   smaller than the requester's receive inline threshold, a Reply chunk
   is not required.

   The size of a Transport Header depends on how many Write chunks the
   requester provides, whether a Reply chunk is needed, and how many
   segments are contained in provided Write and Reply chunks.

   When the total size of the Reply message is already near the inline
   threshold, therefore, a requester has to know whether a Reply chunk
   is needed (and how many segments it contains) before it can determine
   if a Reply chunk is needed.

   A requester can resort to limiting Transport Header size to a fixed
   value that ensures this computation does not become a recursion.
   However, as in earlier sections, this can mean that some RPC
   transactions where a Reply chunk is not strictly necessary must incur
   the cost of preparing a Reply chunk.

4.  Responder-Provided Read Chunks

   A potential mechanism for resolving these issues is suggested in
Section 3.4 of [RFC5666]:

      In the absence of a server-provided read chunk list in the reply,
      if the encoded reply overflows the posted receive buffer, the RPC
      will fail with an RDMA transport error.

   When sending a large RPC Call message, requesters already employ Read
   chunks.  There is no advance indication or limit on the size of any
   RPC Call message.  To achieve the same flexibility for RPC Replies,
   Read chunks can be used in the reverse direction (e.g., responder
   exposes memory, requester initiates RDMA Read).

https://datatracker.ietf.org/doc/html/rfc5666#section-3.4


Lever                     Expires July 13, 2018                 [Page 6]



Internet-Draft        RPC-Over-RDMA Reliable Reply          January 2018

   Rather than a requester providing a Reply chunk for conveying an as-
   yet-unconstructed large reply, a responder can expose a Read chunk
   containing the actual Payload stream of the RPC Reply message.  A
   responder would employ a Read chunk to return a reply any time
   requester-provided reply resources are not adequate.

   The requester does not have to calculate a reply size maximum or
   register and invalidate a Reply chunk in these cases.  Without a
   requester-provided Reply chunk, the responder sends each reply
   inline, except when the actual size of an RPC Reply message is larger
   than the receiver's inline threshold.

   This results in no wasted activity on the requester and arbitrarily
   large RPC Replies can be received reliably.

   Current RPC-over-RDMA Version One implementations do not support
   responder-provided Read chunks, although RPC-over-RDMA Version One
   did have this support in the past [RFC5666].  Adapting this
   deprecated mechanism for new RPC-over-RDMA transports is
   straightforward.

4.1.  Specification

   A responder MAY choose to send an RPC Reply using a Position Zero
   Read chunk comprised of one or more RDMA segments.  Position Zero
   Read chunks are defined in Section 3.5.3 of [RFC8166].

   Similar to its use in an RPC Call, a Position Zero Read chunk in an
   RPC Reply contains an RPC Reply's Payload stream.  Position Zero Read
   chunks are always sent using an RPC-over-RDMA RDMA_NOMSG message.

   In other words, a responder-provided Read chunk can replace the use
   of a Reply chunk in Long Replies.  And, as with Reply chunks, a
   responder must still make use of Write chunks provided by the
   requester.

4.1.1.  Responder Duties

   A responder MUST send a Position Zero Read chunk when the actual size
   of the RPC Reply's Payload stream exceeds all requester-provided
   reply resources; that is, when the inline threshold and any provided
   Reply chunk are both too small to accommodate the Payload stream of
   the reply.

   If a responder does not support responder-provided Read chunks in
   this case, it MUST return an appropriate permanent transport error to
   terminate the requester's RPC transaction.

https://datatracker.ietf.org/doc/html/rfc5666
https://datatracker.ietf.org/doc/html/rfc8166#section-3.5.3


Lever                     Expires July 13, 2018                 [Page 7]



Internet-Draft        RPC-Over-RDMA Reliable Reply          January 2018

4.1.2.  Requester Duties

   Upon receipt of an RDMA_NOMSG message containing a Position Zero Read
   chunk, the requester pulls the RPC Reply's Payload stream from the
   responder.

   After RDMA Read operations have completed (successfully or in error),
   the requester MUST inform the responder that it may invalidate the
   Read chunk containing the RPC Reply message.  This is referred to as
   "pull completion notification".

4.1.3.  Pull Completion Notification

   Pull completion notification is accomplished in one of two ways:

   o  The requester can send an RDMA_DONE message with the rdma_xid
      field set to the same value as the rdma_xid field in the
      RDMA_NOMSG request.  Or,

   o  The requester can piggyback the pull completion notification in
      the transport header of a subsequent RPC Call, if the transport
      protocol has such a facility.

   When an RPC transaction is aborted on a requester, the requester
   normally forgets its XID.  If a requester receives a reply bearing a
   Position Zero Read chunk and does not recognize the XID, the
   requester MUST notify the responder of pull completion.

   Whenever a responder receives a pull completion notification for an
   XID for which there is no Read chunk waiting to be invalidated, the
   responder MUST silently drop the notification.

   If a requester receives an RPC Reply via a responder-provided Read
   chunk, but does not support such chunks, it MUST inform the responder
   of pull completion and terminate the RPC transaction.

   A malicious or broken requester might neglect to send pull completion
   notifications for one or more RPC transactions that included
   responder-provided Read chunks.  To prevent exhaustion of responder
   resources, a responder can choose to invalidate its Read chunks after
   waiting for a short period.  If the requester attempts additional
   RDMA Read operations against that Read chunk, a remote access error
   occurs and the connection is lost.



Lever                     Expires July 13, 2018                 [Page 8]



Internet-Draft        RPC-Over-RDMA Reliable Reply          January 2018

4.1.4.  Remote Invalidation

   Remote Invalidation can reduce or eliminate the need for the
   responder to explicitly invalidate memory containing an RPC Reply
   message.

   Remote Invalidation might be done by transmitting an RDMA_DONE
   message using RDMA Send With Invalidate.  If instead pull completion
   notification is piggybacked on a subsequent RPC Call, a facility for
   Remote Invalidation would have to be built into RPC Call processing.

   If Remote Invalidate support is not indicated by one or both peers,
   messages carrying pull completion notification MUST be transmitted
   using RDMA Send.  If Remote Invalidation support is indicated by both
   peers, messages carrying pull completion messages SHOULD be
   transmitted using RDMA Send With Invalidate.

   The rule for choosing the value of the Send With Invalidate Work
   Request's inv_handle field depends on the version of the transport
   protocol that is use.  If the responder has provided an R_key that
   may be invalidated, the requester MUST present only that R_key when
   using RDMA Send With Invalidate.

5.  Analysis

5.1.  Benefits

5.1.1.  Less Frequent Use of Explicit RDMA

   The vast majority of RPC Replies can be conveyed via RDMA_MSG.  No
   extra Reply chunk registration and invalidation cost is incurred when
   a large RPC Reply message is possible but the actual reply size is
   small.  This reduces or even eliminates the use of explicit RDMA for
   frequent small-to-moderate-size replies, improving the average
   latency of individual RPCs and allowing RNIC and platform resources
   to scale better.

5.1.2.  Support for Arbitrarily Large Replies

   The responder-provided Read chunk approach accommodates arbitrarily
   large replies.  Requesters no longer need to calculate the maximum
   size of RPC Reply messages, even if a Reply chunk is provided.

5.1.3.  Protection of Connection After RPC Cancellation

   When an RPC is canceled on the requester (say, because the requesting
   application has been terminated), and no Reply chunk is provided, the
   requester is no longer responsible for invalidating that RPC's Reply



Lever                     Expires July 13, 2018                 [Page 9]



Internet-Draft        RPC-Over-RDMA Reliable Reply          January 2018

   chunk.  When the responder sends the reply, it provides a Position
   Zero Read chunk and does not use RDMA Write to transmit the RPC Reply
   message.  The transport connection is preserved because no memory
   protection violation can occur.

5.1.4.  Asynchronous Chunk Invalidation

   Registration of a responder-provided Read chunk must be completed
   before sending the RDMA_NOMSG message conveying the chunk
   information.  However, pull completion notification and subsequent
   responder-side memory invalidation can be performed after the RPC
   transaction has completed on the requester.  Because those are
   asynchronous to RPC completion, the additional latency is not
   attributed to the execution time of the RPC transaction.

5.2.  Costs

5.2.1.  Responder Memory Exposure

   Responder memory is registered and exposed to requesters when
   replying.  When a responder has properly allocated a Protection
   Domain for each connection and uses appropriate R_key rotation
   techniques (see Section 7), the exposure is minimal.  However,
   because current RPC-over-RDMA responder implementations do not expose
   memory to requesters, they typically share one Protection Domain
   among all connections.

5.2.2.  Round Trip Penalty

   Using a Read chunk for large replies introduces a round-trip penalty.
   A requester can provide a Reply chunk to avoid this penalty.
   However:

   o  The Read chunk round-trip penalty would be paid much less often
      than the Reply chunk registration cost is paid today, since
      responder-provided Read chunks are used only when necessary

   o  Read chunk frequency is reduced even further as the inline
      threshold is increased past the average size of the Upper Layer
      Protocol's RPC Replies

   o  Invalidation of a Reply chunk is synchronous with RPC completion,
      and may take as long as a round trip to the responder

   o  Read chunks are typically used for large payloads, where it is
      likely that data transmission time greatly exceeds the round-trip
      time



Lever                     Expires July 13, 2018                [Page 10]



Internet-Draft        RPC-Over-RDMA Reliable Reply          January 2018

   There are a few particular situations where the frequency of large
   replies is high.  For example, the use of the krb5i or krb5p GSS
   services with RPC-over-RDMA require that Payload reduction is not
   used.  Thus, RPC-over-RDMA peers use only pure RDMA Sends or Long
   messages when these services are in use.  The actual size of a
   READDIR reply is often unpredictable but is frequently large.  In
   these two cases, using a Reply chunk could be the more efficient
   default choice.

5.2.3.  Credit Accounting Complexity

   Credit accounting is made more complex by the use of RDMA_DONE
   messages after RDMA Read operations have completed.  Sending an
   RDMA_DONE message consumes one credit, temporarily reducing RPC
   concurrency on the connection.  There is no response to RDMA_DONE, so
   it is not clear to the sender when that credit becomes available
   again.  One way to resolve this is to add a new message type to the
   protocol, RDMA_ACK, which could be used any time there is a uni-
   directional transport message to maintain the proper balance of
   credit grants and responses.

   Alternately, if the transport protocol supports piggybacking pull
   completion notification on RPC Call messages, the requester can
   piggyback in most cases to simplify credit accounting.  An explicit
   RDMA_DONE would be necessary only during light workloads, or the ULP
   could post an RPC NULL containing a piggybacked pull completion
   notification in these cases.

5.3.  Selecting a Reply Mechanism

   This section illustrates some possible implementation choices.

5.3.1.  Requester

   As an RPC Call is constructed, a requester might choose a reply
   mechanism based on its estimation of the range of possible sizes of
   the reply.

   Responder-provided Read chunk
      The requester knows the minimum size of the reply is smaller than
      the inline threshold, but the maximum size of the reply is larger
      than the inline threshold; or the requester cannot calculate the
      maximum size of the reply.  The client does not provide a Reply
      chunk, and relies on a responder-provider Read chunk to handle
      large replies.

   Reply chunk



Lever                     Expires July 13, 2018                [Page 11]



Internet-Draft        RPC-Over-RDMA Reliable Reply          January 2018

      The requester knows the minimum and maximum size of the reply is
      larger than the inline threshold.  The requester provides a Reply
      chunk.

   Send-only
      The requester knows the maximum size of the reply is smaller than
      the inline threshold.  The requester does not provide a Reply
      chunk, and relies on a responder-provider Read chunk to handle
      large replies.

   A requester whose design requires Reply chunk invalidation after an
   RPC transaction is canceled might choose to never use Reply chunks,
   in favor of minimizing opportunities for connection loss.

5.3.2.  Responder

   After a responder has constructed an RPC Reply, it might choose which
   reply mechanism to employ based on the actual size of the Payload
   stream of the RPC Reply message.

   Responder-provided Read chunk
      The Payload stream is larger than the inline threshold and either
      no Reply chunk was provided or the provided Reply chunk is too
      small.  The responder uses a responder-provided Read chunk.

   Reply chunk
      If a usable Reply chunk is available, the responder uses the Reply
      chunk.

   Send-only
      If no Reply chunk is available and the Payload stream fits within
      the inline threshold, the responder uses only Send or Send With
      Invalidate to transmit the reply.

5.4.  Implementation Complexity

5.4.1.  RPC Call Path

   Implementation of responder-provided Read chunks introduces little or
   no additional complexity to the end-to-end RPC Call path.  Unless a
   requester implementer chooses to implement support for both Reply
   chunks and responder-provided Read chunks, there could be a net loss
   of code and run-time complexity in the RPC Call hot path.

   The responder's RPC Call path needs to recognize RDMA_DONE messages
   and initiate invalidation of Read chunks.  Because invalidation can
   be asynchronous, it is possible to perform Read chunk invalidation in
   a separate worker thread.



Lever                     Expires July 13, 2018                [Page 12]



Internet-Draft        RPC-Over-RDMA Reliable Reply          January 2018

5.4.2.  RPC Reply Path

   On the RPC Reply path side, logic to initiate registration of Read
   chunks and wait for completion is added to the responder.  This path
   is not part of the hot path because it is used only infrequently.

   The requester's reply handling hot path must recognize when Read
   chunks are present in an RDMA_NOMSG message, and shunt execution to
   code that can initiate an RDMA Read and wait for completion.  Once
   complete, the requester posts an RDMA_DONE message.

5.4.3.  Managing RDMA_DONE messages

   In order for a responder to match incoming RDMA_DONE messages to
   reply buffers waiting to be invalidated, it might keep references to
   these buffers in a data structure searchable by XID.  This is similar
   to managing a set of pending backchannel replies.

   When an RDMA_DONE message arrives, the responder matches the XID in
   the message to a waiting reply buffer, invalidates that buffer, and
   removes the XID from the data structure.

   This data structure can also be used for housekeeping tasks such as:

   o  Invalidating waiting buffers after a timeout, in case the
      requester never sends RDMA_DONE

   o  Ignoring retransmitted or garbage RDMA_DONE requests

   o  Explicitly invalidating waiting Read chunks after a connection
      loss, if necessary

   o  Invalidating waiting buffers on device removal

5.5.  Alternatives

   Increasing the inline threshold reduces the likelihood of needing a
   Reply chunk, but does not eliminate the risks associated with
   unpredictably large replies.

   Message Continuation is more efficient than an explicit RDMA
   operation, and does not require the exposure of requester or
   responder memory [I-D.dnoveck-nfsv4-rpcrdma-rtrext].

   However, Message Continuation does limit the maximum size of a
   conveyed message.  As with a larger inline threshold, without
   responder-provided Read chunks, reply size estimation is still



Lever                     Expires July 13, 2018                [Page 13]



Internet-Draft        RPC-Over-RDMA Reliable Reply          January 2018

   required to determine when a Reply chunk is required, and therefore
   there is still risk associated with unpredictably large replies.

   Message Continuation introduces complexity in the management of RPC-
   over-RDMA credit grants because the relationship between RPC
   transactions and credits is no longer one-to-one.  Credit management
   logic is an integral part of the RPC Call and Reply hot path on the
   requester.

6.  Interoperation Considerations

   When a requester supports responder-provided Read chunks, it is
   likely to neglect providing Reply chunks in some cases.  A responder
   that does not support responder-provided Read chunks can convey a
   transport-level error when it has generated an RPC Reply that is
   larger than the available reply resources.

   The situation is more problematic if a responder supports responder-
   provided Read chunks and sends them to a requester that is not able
   to recognize and unmarshal them.  The RPC transaction would never
   complete, and the requester would never send a pull completion
   notification.

   Thus responder-provided Read chunks MUST be used only when both peers
   support them: Either the base protocol version always has support
   enabled, or the base protocol provides an extension mechanism that
   indicates when support is available.

7.  Security Considerations

   The less frequent use of RDMA Write reduces opportunities for memory
   overrun on the requester, and reduces the risk of connection loss
   after an application is terminated prematurely.  This reduces
   exposure to accidental or malicious Denial of Service attacks.

   Responder-provided Read chunks are exposed for read-only access.
   Remote actors cannot alter the contents of exposed read-only memory,
   though a man-in-the-middle can read or alter RDMA payloads while they
   are in transit.  The use of RPCSEC GSS or a transport-layer
   confidentiality service completely blocks payload access by
   unintended recipients.

   Recommendations about adequate R_key rotation and the appropriate use
   of Protection Domains can be found in Section 8.1 of [RFC8166].
   These recommendations apply when responders expose memory to convey
   the Payload stream of an RPC Reply message.

https://datatracker.ietf.org/doc/html/rfc8166#section-8.1


Lever                     Expires July 13, 2018                [Page 14]



Internet-Draft        RPC-Over-RDMA Reliable Reply          January 2018

   Otherwise, this mechanism does not alter the attack surface of a
   transport protocol that employs it.

8.  IANA Considerations

   This document does not require actions by IANA.

9.  References

9.1.  Normative References

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <http://www.rfc-editor.org/info/rfc2119>.

   [RFC8166]  Lever, C., Ed., Simpson, W., and T. Talpey, "Remote Direct
              Memory Access Transport for Remote Procedure Call Version
              1", RFC 8166, DOI 10.17487/RFC8166, June 2017,
              <http://www.rfc-editor.org/info/rfc8166>.

   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

              May 2017, <http://www.rfc-editor.org/info/rfc8174>.

9.2.  Informative References

   [I-D.dnoveck-nfsv4-rpcrdma-rtrext]
              Noveck, D., "RPC-over-RDMA Extensions to Reduce Internode
              Round-trips", draft-dnoveck-nfsv4-rpcrdma-rtrext-03 (work
              in progress), December 2017.

   [RFC5661]  Shepler, S., Ed., Eisler, M., Ed., and D. Noveck, Ed.,
              "Network File System (NFS) Version 4 Minor Version 1
              Protocol", RFC 5661, DOI 10.17487/RFC5661, January 2010,
              <http://www.rfc-editor.org/info/rfc5661>.

   [RFC5666]  Talpey, T. and B. Callaghan, "Remote Direct Memory Access
              Transport for Remote Procedure Call", RFC 5666,
              DOI 10.17487/RFC5666, January 2010,
              <http://www.rfc-editor.org/info/rfc5666>.

   [RFC7862]  Haynes, T., "Network File System (NFS) Version 4 Minor
              Version 2 Protocol", RFC 7862, DOI 10.17487/RFC7862,
              November 2016, <http://www.rfc-editor.org/info/rfc7862>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc8166
http://www.rfc-editor.org/info/rfc8166
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
http://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/draft-dnoveck-nfsv4-rpcrdma-rtrext-03
https://datatracker.ietf.org/doc/html/rfc5661
http://www.rfc-editor.org/info/rfc5661
https://datatracker.ietf.org/doc/html/rfc5666
http://www.rfc-editor.org/info/rfc5666
https://datatracker.ietf.org/doc/html/rfc7862
http://www.rfc-editor.org/info/rfc7862


Lever                     Expires July 13, 2018                [Page 15]



Internet-Draft        RPC-Over-RDMA Reliable Reply          January 2018

   [RFC8267]  Lever, C., "Network File System (NFS) Upper-Layer Binding
              to RPC-over-RDMA Version 1", RFC 8267,
              DOI 10.17487/RFC8267, October 2017,
              <https://www.rfc-editor.org/info/rfc8267>.

Acknowledgments

   Many thanks go to Karen Dietke, Chunli Zhang, Dai Ngo, and Tom
   Talpey.  The author also wishes to thank Bill Baker and Greg Marsden
   for their support of this work.

   Special thanks go to Transport Area Director Spencer Dawkins, NFSV4
   Working Group Chair Spencer Shepler, and NFSV4 Working Group
   Secretary Thomas Haynes for their support.

Author's Address

   Charles Lever
   Oracle Corporation
   1015 Granger Avenue
   Ann Arbor, MI  48104
   United States of America

   Phone: +1 248 816 6463
   Email: chuck.lever@oracle.com

https://datatracker.ietf.org/doc/html/rfc8267
https://www.rfc-editor.org/info/rfc8267


Lever                     Expires July 13, 2018                [Page 16]


