
Network File System Version 4 C. Lever, Ed.
Internet-Draft Oracle
Intended status: Standards Track D. Noveck
Expires: December 1, 2017 NetApp
 May 30, 2017

RPC-over-RDMA Version Two Protocol
draft-cel-nfsv4-rpcrdma-version-two-04

Abstract

 This document specifies an improved protocol for conveying Remote
 Procedure Call (RPC) messages on physical transports capable of
 Remote Direct Memory Access (RDMA), based on RPC-over-RDMA Version
 One.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 1, 2017.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Lever & Noveck Expires December 1, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft RDMA Transport for RPC V2 May 2017

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Inline Threshold . 4
2.1. Terminology . 4
2.2. Motivation . 4
2.3. Default Values . 5

3. Remote Invalidation . 5
3.1. Backward-Direction Remote Invalidation 6

4. Protocol Extensibility 6
4.1. Optional Features . 6
4.2. Message Direction . 7
4.3. Documentation Requirements 7

5. Transport Properties . 8
5.1. Introduction To Transport Properties 8
5.2. Basic Transport Properties 11
5.3. New Operations . 15
5.4. Extensibility . 19

6. XDR Protocol Definition 21
6.1. Code Component License 22
6.2. RPC-Over-RDMA Version Two XDR 24

7. Protocol Version Negotiation 31
7.1. Server Does Support RPC-over-RDMA Version Two 32
7.2. Server Does Not Support RPC-over-RDMA Version Two 32
7.3. Client Does Not Support RPC-over-RDMA Version Two 32
7.4. Security Considerations 32

8. IANA Considerations . 33
9. References . 33
9.1. Normative References 33
9.2. Informative References 33

Appendix A. Acknowledgments 34
 Authors' Addresses . 34

1. Introduction

 Remote Direct Memory Access (RDMA) [RFC5040] [RFC5041] [IB] is a
 technique for moving data efficiently between end nodes. By
 directing data into destination buffers as it is sent on a network
 and placing it via direct memory access by hardware, the
 complementary benefits of faster transfers and reduced host overhead
 are obtained.

https://datatracker.ietf.org/doc/html/rfc5040
https://datatracker.ietf.org/doc/html/rfc5041

Lever & Noveck Expires December 1, 2017 [Page 2]

Internet-Draft RDMA Transport for RPC V2 May 2017

 A protocol already exists that enables ONC RPC [RFC5531] messages to
 be conveyed on RDMA transports. That protocol is RPC-over-RDMA
 Version One, specified in [I-D.ietf-nfsv4-rfc5666bis]. RPC-over-RDMA
 Version One is deployed and in use, though there are some
 shortcomings to this protocol, such as:

 o The use of small Receive buffers force the use of RDMA Read and
 Write transfers for small payloads, and limit the size of
 backchannel messages.

 o Lack of support for potential optimizations, such as remote
 invalidation, that require changes to on-the-wire behavior.

 To address these issues in a way that is compatible with existing
 RPC-over-RDMA Version One deployments, a new version of RPC-over-RDMA
 is presented in this document. RPC-over-RDMA Version Two contains
 only incremental changes over RPC-over-RDMA Version One to facilitate
 adoption of Version Two by existing Version One implementations.

 The major new feature in RPC-over-RDMA Version Two is extensibility
 of the RPC-over-RDMA header. Extensibility enables narrow changes to
 RPC-over-RDMA Version Two so that new optional capabilities can be
 introduced without a protocol version change and while maintaining
 interoperability with existing implementations.

 New capabilities can be proposed and developed independently of each
 other, and implementaters can choose among them, making it
 straightforward to create and document experimental features and then
 bring them through the standards process.

 As part of this new extensibility feature set, a mechanism for
 exchanging transport properties is introduced. This mechanism allows
 RPC-over-RDMA Version Two connection endpoints to communicate
 properties of their implementations, to request changes in properties
 of the other endpoint, and to notify peer endpoints of changes to
 properties that occur during operation.

 In addition to extensibility, the default inline threshold value is
 larger in RPC-over-RDMA Version Two. This change is driven by the
 increase in average size of RPC messages containing common NFS
 operations. With NFSv4.1 [RFC5661] and later, compound operations
 convey more data per RPC message. The default 1KB inline threshold
 in RPC-over-RDMA Version One prevents attaining the best possible
 performance.

 Support for Remote Invalidation has been introduced into RPC-over-
 RDMA Version Two. An RPC-over-RDMA responder can now request
 invalidation of an STag as part of sending an RPC Reply, saving the

https://datatracker.ietf.org/doc/html/rfc5531
https://datatracker.ietf.org/doc/html/rfc5661

Lever & Noveck Expires December 1, 2017 [Page 3]

Internet-Draft RDMA Transport for RPC V2 May 2017

 requester the effort of invalidating after message receipt. This new
 feature is general enough to enable a requester to control precisely
 when Remote Invalidation may be utilized by responders.

 RPC-over-RDMA Version Two expands the repertoire of error codes to
 enable extensibility, support debugging, and to prevent requester
 retries when an error is permanent.

2. Inline Threshold

2.1. Terminology

 The term "inline threshold" is defined in Section 4 of
 [I-D.ietf-nfsv4-rfc5666bis]. An "inline threshold" value is the
 largest message size (in octets) that can be conveyed in one
 direction on an RDMA connection using only RDMA Send and Receive.
 Each connection has two inline threshold values: one for messages
 flowing from requester-to-responder (referred to as the "call inline
 threshold"), and one for messages flowing from responder-to-requester
 (referred to as the "reply inline threshold"). Inline threshold
 values are not advertised to peers via the base RPC-over-RDMA Version
 Two protocol.

 A connection's inline threshold determines when RDMA Read or Write
 operations are required because the RPC message to be sent cannot be
 conveyed via RDMA Send and Receive. When an RPC message does not
 contain DDP-eligible data items, a requester prepares a Long Call or
 Reply to convey the whole RPC message using RDMA Read or Write
 operations.

2.2. Motivation

 RDMA Read and Write operations require that each data payload resides
 in a region of memory that is registered with the RNIC. When an RPC
 is complete, that region is invalidated, fencing it from the
 responder.

 Both registration and invalidation have a latency cost which is
 insignificant compared to data handling costs. When a data payload
 is small, however, the cost of registering and invalidating the
 memory where the payload resides becomes a relatively significant
 part of total RPC latency. Therefore the most efficient operation of
 RPC-over-RDMA occurs when RDMA Read and Write operations are used for
 large payloads, and avoided for small payloads.

 When RPC-over-RDMA Version One was conceived, the typical size of RPC
 messages that did not involve a significant data payload was under

Lever & Noveck Expires December 1, 2017 [Page 4]

Internet-Draft RDMA Transport for RPC V2 May 2017

 500 bytes. A 1024-byte inline threshold adequately minimized the
 frequency of inefficient Long Calls and Replies.

 Starting with NFSv4.1 [RFC5661], NFS COMPOUND RPC messages are larger
 and more complex than before. With a 1024-byte inline threshold,
 RDMA Read or Write operations are needed for frequent operations that
 do not bear a data payload, such as GETATTR and LOOKUP, reducing the
 efficiency of the transport.

 To reduce the need to use Long Calls and Replies, RPC-over-RDMA
 Version Two increases the default inline threshold size. This also
 increases the maximum size of backward direction RPC messages.

2.3. Default Values

 RPC-over-RDMA Version Two receiver implementations MUST support an
 inline threshold of 4096 bytes, but MAY support larger inline
 threshold values. A mechanism for discovering a peer's preferred
 inline threshold value (not defined in this document) may be used to
 optimize RDMA Send operations further. In the absense of such a
 mechanism, senders MUST assume a receiver's inline threshold is 4096
 bytes.

 The new default inline threshold size is no larger than the size of a
 hardware page on typical platforms. This conserves the resources
 needed to Send and Receive base level RPC-over-RDMA Version Two
 messages, enabling RPC-over-RDMA Version Two to be used on a broad
 variety of hardware.

3. Remote Invalidation

 An STag that is registered using the FRWR mechanism (in a privileged
 execution context), or is registered via a Memory Window (in user
 space), may be invalidated remotely [RFC5040]. These mechanisms are
 available only when a requester's RNIC supports MEM_MGT_EXTENSIONS.

 For the purposes of this discussion, there are two classes of STags.
 Dynamically-registered STags are used in a single RPC, then
 invalidated. Persistently-registered STags live longer than one RPC.
 They may persist for the life of an RPC-over-RDMA connection, or
 longer.

 An RPC-over-RDMA requester may provide more than one STag in one
 transport header. It may provide a combination of dynamically- and
 persistently-registered STags in one RPC message, or any combination
 of these in a series of RPCs on the same connection. Only
 dynamically-registered STags using Memory Windows or FRWR (ie.
 registered via MEM_MGT_EXTENSIONS) may be invalidated remotely.

https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc5040

Lever & Noveck Expires December 1, 2017 [Page 5]

Internet-Draft RDMA Transport for RPC V2 May 2017

 There is no transport-level mechanism by which a responder can
 determine how a requester-provided STag was registered, nor whether
 it is eligible to be invalidated remotely. A requester that mixes
 persistently- and dynamically-registered STags in one RPC, or mixes
 them across RPCs on the same connection, must therefore indicate
 which handles may be invalidated via a mechanism provided in the
 Upper Layer Protocol. RPC-over-RDMA Version Two provides such a
 mechanism.

 The RDMA Send With Invalidate operation is used to invalidate an STag
 on a remote system. It is available only when a responder's RNIC
 supports MEM_MGT_EXTENSIONS, and must be utilized only when a
 requester's RNIC supports MEM_MGT_EXTENSIONS (can receive and
 recognize an IETH).

3.1. Backward-Direction Remote Invalidation

 Existing RPC-over-RDMA protocol specifications
 [I-D.ietf-nfsv4-rfc5666bis] [I-D.ietf-nfsv4-rpcrdma-bidirection] do
 not forbid direct data placement in the backward-direction, even
 though there is currently no Upper Layer Protocol that may use it.

 When chunks are present in a backward-direction RPC request, Remote
 Invalidation allows the responder to trigger invalidation of a
 requester's STags as part of sending a reply, the same as in the
 forward direction.

 However, in the backward direction, the server acts as the requester,
 and the client is the responder. The server's RNIC, therefore, must
 support receiving an IETH, and the server must have registered the
 STags with an appropriate registration mechanism.

4. Protocol Extensibility

 The core RPC-over-RDMA Version Two header format is specified in
Section 6 as a complete and stand-alone piece of XDR. Any change to

 this XDR description requires a protocol version number change.

4.1. Optional Features

 RPC-over-RDMA Version Two introduces the ability to extend the core
 protocol via optional features. Extensibility enables minor protocol
 issues to be addressed and incremental enhancements to be made
 without the need to change the protocol version. The key capability
 is that both sides can detect whether a feature is supported by their
 peer or not. With this ability, OPTIONAL features can be introduced
 over time to an otherwise stable protocol.

Lever & Noveck Expires December 1, 2017 [Page 6]

Internet-Draft RDMA Transport for RPC V2 May 2017

 The rdma_opttype field carries a 32-bit unsigned integer. The value
 in this field denotes an optional operation that MAY be supported by
 the receiver. The values of this field and their meaning are defined
 in other Standards Track documents.

 The rdma_optinfo field carries opaque data. The content of this
 field is data meaningful to the optional operation denoted by the
 value in rdma_opttype. The content of this field is not defined in
 the base RPC-over-RDMA Version Two protocol, but is defined in other
 Standards Track documents

 When an implementation does not recognize or support the value
 contained in the rdma_opttype field, it MUST send an RPC-over-RDMA
 message with the rdma_xid field set to the same value as the
 erroneous message, the rdma_proc field set to RDMA2_ERROR, and the
 rdma_err field set to RDMA2_ERR_INVAL_OPTION.

4.2. Message Direction

 Backward direction operation depends on the ability of the receiver
 to distinguish between incoming forward and backward direction calls
 and replies. This needs to be done because both the XID field and
 the flow control value (RPC-over-RDMA credits) in the RPC-over-RDMA
 header are interpreted in the context of each message's direction.

 A receiver typically distinguishes message direction by examining the
 mtype field in the RPC header of each incoming payload message.
 However, RDMA2_OPTIONAL type messages may not carry an RPC message
 payload.

 To enable RDMA2_OPTIONAL type messages that do not carry an RPC
 message payload to be interpreted unambiguously, the rdma2_optional
 structure contains a field that identifies the message direction. A
 similar field has been added to the rpcrdma2_chunk_lists and
 rpcrdma2_error structures to simplify parsing the RPC-over-RDMA
 header at the receiver.

4.3. Documentation Requirements

 RPC-over-RDMA Version Two may be extended by defining a new
 rdma_opttype value, and then by providing an XDR description of the
 rdma_optinfo content that corresponds with the new rdma_opttype
 value. As a result, a new header type is effectively created.

 A Standards Track document introduces each set of such protocol
 elements. Together these elements are considered an OPTIONAL
 feature. Each implementation is either aware of all the protocol
 elements introduced by that feature, or is aware of none of them.

Lever & Noveck Expires December 1, 2017 [Page 7]

Internet-Draft RDMA Transport for RPC V2 May 2017

 Documents describing extensions to RPC-over-RDMA Version Two should
 contain:

 o An explanation of the purpose and use of each new protocol element
 added

 o An XDR description of the protocol elements, and a script to
 extract it

 o A mechanism for reporting errors when the error is outside the
 available choices already available in the base protocol or in
 other extensions

 o An indication of whether a Payload stream must be present, and a
 description of its contents

 o A description of interactions with existing extensions

 The last bullet includes requirements that another OPTIONAL feature
 needs to be present for new protocol elements to work, or that a
 particular level of support be provided for some particular facility
 for the new extension to work.

 Implementers combine the XDR descriptions of the new features they
 intend to use with the XDR description of the base protocol in this
 document. This may be necessary to create a valid XDR input file
 because extensions are free to use XDR types defined in the base
 protocol, and later extensions may use types defined by earlier
 extensions.

 The XDR description for the RPC-over-RDMA Version Two protocol
 combined with that for any selected extensions should provide an
 adequate human-readable description of the extended protocol.

5. Transport Properties

5.1. Introduction To Transport Properties

5.1.1. Property Model

 A basic set of receiver and sender properties is specified in this
 document. An extensible approach is used, allowing new properties to
 be defined in future standards track documents.

 Such properties are specified using:

 o A code identifying the particular transport property being
 specified.

Lever & Noveck Expires December 1, 2017 [Page 8]

Internet-Draft RDMA Transport for RPC V2 May 2017

 o A nominally opaque array which contains within it the XDR encoding
 of the specific property indicated by the associated code.

 The following XDR types are used by operations that deal with
 transport properties:

 <CODE BEGINS>

 typedef rpcrdma2_propid uint32;

 struct rpcrdma2_propval {
 rpcrdma2_propid rdma_which;
 opaque rdma_data<>;
 };

 typedef rpcrdma2_propval rpcrdma2_propset<>;

 typedef uint32 rpcrdma2_propsubset<>;

 <CODE ENDS>

 An rpcrdma2_propid specifies a particular transport property. In
 order to allow easier XDR extension of the set of properties by
 concatenating XDR files, specific properties are defined as const
 values rather than as elements in an enum.

 An rpcrdma2_propval specifies a value of a particular transport
 property with the particular property identified by rdma_which, while
 the associated value of that property is contained within rdma_data.

 A rdma_data field which is of zero length is interpreted as
 indicating the default value or the property indicated by rdma_which.

 While rdma_data is defined as opaque within the XDR, the contents are
 interpreted (except when of length zero) using the XDR typedef
 associated with the property specified by rdma_which. The receiver
 of a message containing an rpcrdma2_propval MUST report an XDR error
 [cel: which error? BAD_XDR, or do we want to add a new one?] if
 the length of rdma_data is such that it extends beyond the bounds of
 the message transferred.

 In cases in which the rpcrdma2_propid specified by rdma_which is
 understood by the receiver, the receiver also MUST report an XDR
 error if either of the following occur: [cel: which error? BAD_XDR,
 or do we want to add a new one?]

Lever & Noveck Expires December 1, 2017 [Page 9]

Internet-Draft RDMA Transport for RPC V2 May 2017

 o The nominally opaque data within rdma_data is not valid when
 interpreted using the property-associated typedef.

 o The length of rdma_data is insufficient to contain the data
 represented by the property-associated typedef.

 Note that no error is to be reported if rdma_which is unknown to the
 receiver. In that case, that rpcrdma2_propval is not processed and
 processing continues using the next rpcrdma2_propval, if any.

 A rpcrdma2_propset specifies a set of transport properties. No
 particular ordering of the rpcrdma2_propval items within it is
 imposed.

 A rpcrdma2_propsubset identifies a subset of the properties in a
 previously specified rpcrdma2_propset. Each bit in the mask denotes
 a particular element in a previously specified rpcrdma2_propset. If
 a particular rpcrdma2_propval is at position N in the array, then bit
 number N mod 32 in word N div 32 specifies whether that particular
 rpcrdma2_propval is included in the defined subset. Words beyond the
 last one specified are treated as containing zero.

 Propvalsubsets are useful in a number of contexts:

 o In the specification of transport properties at connection, they
 allow the sender to specify what subset of those are subject to
 later change.

 o In responding to a request to modify a set of transport
 properties, they allow the responding endpoint to specify the
 subsets of those properties for which the requested change has
 been performed or been rejected.

5.1.2. Transport Property Groups

 Transport properties are divided into a number of groups

 o A basic set of transport properties defined in this document. See
Section 5.2 for the complete list.

 o Additional transport properties defined in future standards track
 documents as specified in Section 5.4.1.

 o Experimental transport properties being explored preparatory to
 being considered for standards track definition. See the
 description in Section 5.4.2.

Lever & Noveck Expires December 1, 2017 [Page 10]

Internet-Draft RDMA Transport for RPC V2 May 2017

5.1.3. Operations Related to Transport Properties

 There are a number of operations defined in Section 5.3 which are
 used to communicate and manage transport properties.

 Prime among these is RDMA2_CONNPROP (defined in Section 5.3.1 which
 serves as a means by which an endpoint's transport properties may be
 presented to its peer, typically upon establishing a connection.

 In addition, there are a set of related operations concerned with
 requesting, effecting and reporting changes in transport properties:

 o RDMA2_REQPROP (defined in Section 5.3.2 which serves as a way for
 an endpoint to request that a peer change the values for a set of
 transport properties.

 o RDMA2_RESPROP (defined in Section 5.3.3 is used to report on the
 disposition of each of the individual transport property changes
 requested in a previous RDMA2_REQPROP.

 o RDMA2_UPDPROP (defined in Section 5.3.4 is used to report an
 unsolicited change in a transport property.

 Unlike many other operation types, the above are not used to effect
 transfer of RPC requests but are internal one-way information
 transfers. However, a RDMA2_REQPROP and the corresponding
 RDMA2_RESPROP do constitute an RPC-like remote call. The other
 operations are not part of a remote call transaction.

5.2. Basic Transport Properties

 Although the set of transport properties is subject to later
 extension, a basic set of transport properties is defined below in
 Table 1.

 In that table, the columns contain the following information:

 o The column labeled "property" identifies the transport property
 described by the current row.

 o The column labeled "code" specifies the rpcrdma2_propid value used
 to identify this property.

 o The column labeled "XDR type" gives the XDR type of the data used
 to communicate the value of this property. This data type
 overlays the data portion of the nominally opaque field rdma_data
 in a rpcrdma2_propval.

Lever & Noveck Expires December 1, 2017 [Page 11]

Internet-Draft RDMA Transport for RPC V2 May 2017

 o The column labeled "default" gives the default value for the
 property which is to be assumed by those who do not receive, or
 are unable to interpret, information about the actual value of the
 property.

 o The column labeled "section" indicates the section (within this
 document) that explains the semantics and use of this transport
 property.

 +---------+-----+------------------+----------------------+---------+
 | propert | cod | XDR type | default | section |
 | y | e | | | |
 +---------+-----+------------------+----------------------+---------+
Receive	1	uint32	4096	5.2.1
Buffer				
Size				
Backwar	2	enum rpcrdma2_bk	RDMA2_BKREQSUP_INLIN	5.2.2
d		reqsup	E	
Request				
Support				
 +---------+-----+------------------+----------------------+---------+

 Table 1

 Note that this table does not provide any indication regarding
 whether a particular property can change or whether a change in the
 value may be requested (see Section 5.3.2). Such matters are not
 addressed by the protocol definition. An implementation may provide
 information about its readiness to make changed in a particular
 property using the rdma_nochg field in the RDMA2_CONNPROP message.

 A partner implementation can always request a change but peers MAY
 reject a request to change a property for any reason.
 Implementations are always free to reject such requests if they
 cannot or do not wish to effect the requested change.

 Either of the following will result in effective rejection requests
 to change specific properties:

 o If an endpoint does not wish to accept request to change
 particular properties, it may reject such requests as described in

Section 5.3.3.

 o If an endpoint does not support the RDMA2_REQPROP operation, the
 effect would be the same as if every request to change a set of
 property were rejected.

Lever & Noveck Expires December 1, 2017 [Page 12]

Internet-Draft RDMA Transport for RPC V2 May 2017

 With regard to unrequested changes in transport properties, it is the
 responsibility of the implementation making the change to do so in a
 fashion that which does not interfere with the other partner's
 continued correct operation (see Section 5.2.1).

5.2.1. Receive Buffer Size

 The Receive Buffer Size specifies the minimum size, in octets, of
 pre-posted receive buffers. It is the responsibility of the
 participant sending this value to ensure that its pre-posted receives
 are at least the size specified, allowing the participant receiving
 this value to send messages that are of this size.

 <CODE BEGINS>

 const uint32 RDMA2_PROPID_RBSIZ = 1;
 typedef uint32 rpcrdma2_prop_rbsiz;

 <CODE ENDS>

 The sender may use his knowledge of the receiver's buffer size to
 determine when the message to be sent will fit in the preposted
 receive buffers that the receiver has set up. In particular,

 o Requesters may use the value to determine when it is necessary to
 provide a Position-Zero read chunk when sending a request.

 o Requesters may use the value to determine when it is necessary to
 provide a Reply chunk when sending a request, based on the maximum
 possible size of the reply.

 o Responders may use the value to determine when it is necessary,
 given the actual size of the reply, to actually use a Reply chunk
 provided by the requester.

 Because there may be pre-posted receives with buffer sizes that
 reflect earlier values of the buffer size property, changing this
 property poses special difficulties:

 o When the size is being raised, the partner should not be informed
 of the change until all pending receives using the older value
 have been eliminated.

 o The size should not be reduced until the partner is aware of the
 need to reduce the size of future sends to conform to this reduced
 value. To ensure this, such a change should only occur in

Lever & Noveck Expires December 1, 2017 [Page 13]

Internet-Draft RDMA Transport for RPC V2 May 2017

 response to an explicit request by the other endpoint (See
Section 5.3.2). The participant making the request should use

 that lower size as the send size limit until the request is
 rejected (See Section 5.3.3) or an update to a size larger than
 the requested value becomes effective and the requested change is
 no longer pending (See Section 5.3.4).

5.2.2. Backward Request Support

 The value of this property is used to indicate a client
 implementation's readiness to accept and process messages that are
 part of backward-direction RPC requests.

 <CODE BEGINS>

 enum rpcrdma2_bkreqsup {
 RDMA2_BKREQSUP_NONE = 0,
 RDMA2_BKREQSUP_INLINE = 1,
 RDMA2_BKREQSUP_GENL = 2
 };

 const uint32 RDMA2_PROPID_BRS = 2;
 typedef rpcrdma2_bkreqsup rpcrdma2_prop_brs;

 <CODE ENDS>

 Multiple levels of support are distinguished:

 o The value RDMA2_BKREQSUP_NONE indicates that receipt of backward-
 direction requests and replies is not supported.

 o The value RDMA2_BKREQSUP_INLINE indicates that receipt of
 backward-direction requests or replies is only supported using
 inline messages and that use of explicit RDMA operations or other
 form of Direct Data Placement for backward direction requests or
 responses is not supported.

 o The value RDMA2_BKREQSUP_GENL that receipt of backward-direction
 requests or replies is supported in the same ways that forward-
 direction requests or replies typically are.

 When information about this property is not provided, the support
 level of servers can be inferred from the backward- direction
 requests that they issue, assuming that issuing a request implicitly
 indicates support for receiving the corresponding reply. On this
 basis, support for receiving inline replies can be assumed when

Lever & Noveck Expires December 1, 2017 [Page 14]

Internet-Draft RDMA Transport for RPC V2 May 2017

 requests without read chunks, write chunks, or Reply chunks are
 issued, while requests with any of these elements allow the client to
 assume that general support for backward-direction replies is present
 on the server.

5.3. New Operations

 The proposed new operations are set forth in Table 2 below. In that
 table, the columns contain the following information:

 o The column labeled "operation" specifies the particular operation.

 o The column labeled "code" specifies the value of opttype for this
 operation.

 o The column labeled "XDR type" gives the XDR type of the data
 structure used to describe the information in this new message
 type. This data overlays the data portion of the nominally opaque
 field optinfo in an RDMA_OPTIONAL message.

 o The column labeled "msg" indicates whether this operation is
 followed (or not) by an RPC message payload.

 o The column labeled "section" indicates the section (within this
 document) that explains the semantics and use of this optional
 operation.

 +------------------------+------+------------------+------+---------+
 | operation | code | XDR type | msg | section |
 +------------------------+------+------------------+------+---------+
Specify Properties at	1	optinfo_connprop	No	5.3.1
Connection				
Request Property	2	rpcrdma2_reqprop	No	5.3.2
Modification				
Respond to	3	rpcrdma2_resprop	No	5.3.3
Modification Request				
Report Updated	4	rpcrdma2_updprop	No	5.3.4
Properties				
 +------------------------+------+------------------+------+---------+

 Table 2

 Support for all of the operations above is OPTIONAL. RPC-over-RDMA
 Version Two implementations that receive an operation that is not
 supported MUST respond with RDMA_ERROR message with an error code of
 RDMA_ERR_INVAL_OPTION.

 The only operation support requirements are as follows:

Lever & Noveck Expires December 1, 2017 [Page 15]

Internet-Draft RDMA Transport for RPC V2 May 2017

 o Implementations which send RDMA2_REQPROP messages must support
 RDMA2_RESPROP messages.

 o Implementations which support RDMA2_RESPROP or RDMA2_UPDPROP
 messages must also support RDMA2_CONNPROP messages.

5.3.1. RDMA2_CONNPROP: Specify Properties at Connection

 The RDMA2_CONNPROP message type allows an RPC-over-RDMA participant,
 whether client or server, to indicate to its partner relevant
 transport properties that the partner might need to be aware of.

 The message definition for this operation is as follows:

 <CODE BEGINS>

 struct rpcrdma2_connprop {
 rpcrdma2_propset rdma_start;
 rpcrdma2_propsubset rdma_nochg;
 };

 <CODE ENDS>

 All relevant transport properties that the sender is aware of should
 be included in rdma_start. Since support of this request is
 OPTIONAL, and since each of the properties is OPTIONAL as well, the
 sender cannot assume that the receiver will necessarily take note of
 these properties and so the sender should be prepared for cases in
 which the partner continues to assume that the default value for a
 particular property is still in effect.

 Values of the subset of transport properties specified by rdma_nochg
 is not expected to change during the lifetime of the connection.

 Generally, a participant will send a RDMA2_CONNPROP message as the
 first message after a connection is established. Given that fact,
 the sender should make sure that the message can be received by
 partners who use the default Receive Buffer Size. The connection's
 initial receive buffer size is typically 1KB, but it depends on the
 initial connection state of the RPC-over-RDMA version in use.

 Properties not included in rdma_start are to be treated by the peer
 endpoint as having the default value and are not allowed to change
 subsequently. The peer should not request changes in such
 properties.

Lever & Noveck Expires December 1, 2017 [Page 16]

Internet-Draft RDMA Transport for RPC V2 May 2017

 Those receiving an RDMA2_CONNPROP may encounter properties that they
 do not support or are unaware of. In such cases, these properties
 are simply ignored without any error response being generated.

5.3.2. RDMA2_REQPROP: Request Modification of Properties

 The RDMA2_REQPROP message type allows an RPC-over-RDMA participant,
 whether client or server, to request of its partner that relevant
 transport properties be changed.

 The rdma_xid field allows the request to be tied to a corresponding
 response of type RDMA2_RESPROP (See Section 5.3.3.) In assigning the
 value of this field, the sender does not need to avoid conflict with
 xid's associated with RPC messages or with RDMA2_REQPROP messages
 sent by the peer endpoint.

 The partner need not change the properties as requested by the sender
 but if it does support the message type, it will generate a
 RDMA2_RESPROP message, indicating the disposition of the request.

 The message definition for this operation is as follows:

 <CODE BEGINS>

 struct rpcrdma2_reqprop {
 rpcrdma2_propset rdma_want;
 };

 <CODE ENDS>

 The rpcrdma2_propset rdma_want is a set of transport properties
 together with the desired values requested by the sender.

5.3.3. RDMA2_RESPROP: Respond to Request to Modify Transport Properties

 The RDMA2_RESPROP message type allows an RPC-over-RDMA participant to
 respond to a request to change properties by its partner, indicating
 how the request was dealt with.

 The message definition for this operation is as follows:

Lever & Noveck Expires December 1, 2017 [Page 17]

Internet-Draft RDMA Transport for RPC V2 May 2017

 <CODE BEGINS>

 struct rpcrdma2_resprop {
 rpcrdma2_propsubset rdma_done;
 rpcrdma2_propsubset rdma_rejected;
 rpcrdma2_propset rdma_other;
 };

 <CODE ENDS>

 The rdma_xid field of this message must match that used in the
 RDMA2_REQPROP message to which this message is responding.

 The rdma_done field indicates which of the requested transport
 property changes have been effected as requested. For each such
 property, the receiver is entitled to conclude that the requested
 change has been made and that future transmissions may be made based
 on the new value.

 The rdma_rejected field indicates which of the requested transport
 property changes have been rejected by the sender. This may be
 because of any of the following reasons:

 o The particular property specified is not known or supported by the
 receiver of the RDMA2_REQPROP message.

 o The implementation receiving the RDMA2_REQPROP message does not
 support modification of this property.

 o The implementation receiving the RDMA2_REQPROP message has chosen
 to reject the modification for another reason.

 The rdma_other field contains new values for properties where a
 change is requested. The new value of the property is included and
 may be a value different from the original value in effect when the
 change was requested and from the requested value. This is useful
 when the new value of some property is not as large as requested but
 still different from the original value, indicating a partial
 satisfaction of the peer's property change request.

 The sender MUST NOT include rpcrdma2_propval items within rdma_other
 that are for properties other than the ones for which the
 corresponding property request has requested a change. If the
 receiver finds such a situation, it MUST ignore the erroneous
 rpcrdma2_propval items.

Lever & Noveck Expires December 1, 2017 [Page 18]

Internet-Draft RDMA Transport for RPC V2 May 2017

 The subsets of properties specified by rdma_done, rdma_rejected, and
 included in rdma_other MUST NOT overlap, and when ored together,
 should cover the entire set of properties specified by rdma_want in
 the corresponding request. If the receiver finds such an overlap or
 mismatch, it SHOULD treat properties missing or within the overlap as
 having been rejected.

5.3.4. RDMA2_UPDPROP: Update Transport Properties

 The RDMA2_UPDPROP message type allows an RPC-over-RDMA participant to
 notify the other participant that a change to the transport
 properties has occurred. This is because the sender has decided,
 independently, to modify one or more transport properties and is
 notifying the receiver of these changes.

 The message definition for this operation is as follows:

 <CODE BEGINS>

 struct rpcrdma2_updprop {
 rpcrdma2_propset rdma_now;
 };

 <CODE ENDS>

 rdma_now defines the new property values to be used.

5.4. Extensibility

5.4.1. Additional Properties

 The set of transport properties is designed to be extensible. As a
 result, once new properties are defined in standards track documents,
 the operations defined in this document may reference these new
 transport properties, as well as the ones described in this document.

 A standards track document defining a new transport property should
 include the following information paralleling that provided in this
 document for the transport properties defined herein.

 o The rpcrdma2_propid value used to identify this property.

 o The XDR typedef specifying the form in which the property value is
 communicated.

Lever & Noveck Expires December 1, 2017 [Page 19]

Internet-Draft RDMA Transport for RPC V2 May 2017

 o A description of the transport property that is communicated by
 the sender of RDMA2_CONNPROP and RDMA2_UPDPROP and requested by
 the sender of RDMA2_REQPROP.

 o An explanation of how this knowledge could be used by the
 participant receiving this information.

 o Information giving rules governing possible changes of values of
 this property.

 The definition of transport property structures is such as to make it
 easy to assign unique values. There is no requirement that a
 continuous set of values be used and implementations should not rely
 on all such values being small integers. A unique value should be
 selected when the defining document is first published as an internet
 draft. When the document becomes a standards track document working
 group should insure that:

 o rpcrdma2_propid values specified in the document do not conflict
 with those currently assigned or in use by other pending working
 group documents defining transport properties.

 o rpcrdma2_propid values specified in the document do not conflict
 with the range reserved for experimental use, as defined in

Section 5.4.2.

 Documents defining new properties fall into a number of categories.

 o Those defining new properties and explaining (only) how they
 affect use of existing message types.

 o Those defining new OPTIONAL message types and new properties
 applicable to the operation of those new message types.

 o Those defining new OPTIONAL message types and new properties
 applicable both to new and existing message types.

 When additional transport properties are proposed, the review of the
 associated standards track document should deal with possible
 security issues raised by those new transport properties.

5.4.2. Experimental Properties

 Given the design of the transport properties data structure, it
 possible to use the operations to implement experimental, possibly
 unpublished, transport properties.

Lever & Noveck Expires December 1, 2017 [Page 20]

Internet-Draft RDMA Transport for RPC V2 May 2017

 rpcrdma2_propid values in the range from 4,294,967,040 to
 4,294,967,295 are reserved for experimental use and these values
 should not be assigned to new properties in standards track
 documents.

 When values in this range are used there is no guarantee if
 successful interoperation among independent implementations.

6. XDR Protocol Definition

 This section contains a description of the core features of the RPC-
 over-RDMA Version Two protocol, expressed in the XDR language
 [RFC4506].

 This description is provided in a way that makes it simple to extract
 into ready-to-compile form. The reader can apply the following shell
 script to this document to produce a machine-readable XDR description
 of the RPC-over-RDMA Version One protocol without any OPTIONAL
 extensions.

 <CODE BEGINS>

 #!/bin/sh
 grep '^ *///' | sed 's?^ /// ??' | sed 's?^ *///$??'

 <CODE ENDS>

 That is, if the above script is stored in a file called "extract.sh"
 and this document is in a file called "spec.txt" then the reader can
 do the following to extract an XDR description file:

 <CODE BEGINS>

 sh extract.sh < spec.txt > rpcrdma_corev2.x

 <CODE ENDS>

 Optional extensions to RPC-over-RDMA Version Two, published as
 Standards Track documents, will have similar means of providing XDR
 that describes those extensions. Once XDR for all desired extensions
 is also extracted, it can be appended to the XDR description file
 extracted from this document to produce a consolidated XDR
 description file reflecting all extensions selected for an RPC-over-
 RDMA implementation.

https://datatracker.ietf.org/doc/html/rfc4506

Lever & Noveck Expires December 1, 2017 [Page 21]

Internet-Draft RDMA Transport for RPC V2 May 2017

6.1. Code Component License

 Code components extracted from this document must include the
 following license text. When the extracted XDR code is combined with
 other complementary XDR code which itself has an identical license,
 only a single copy of the license text need be preserved.

Lever & Noveck Expires December 1, 2017 [Page 22]

Internet-Draft RDMA Transport for RPC V2 May 2017

 <CODE BEGINS>

 /// /*
 /// * Copyright (c) 2010, 2016 IETF Trust and the persons
 /// * identified as authors of the code. All rights reserved.
 /// *
 /// * The authors of the code are:
 /// * B. Callaghan, T. Talpey, C. Lever, and D. Noveck.
 /// *
 /// * Redistribution and use in source and binary forms, with
 /// * or without modification, are permitted provided that the
 /// * following conditions are met:
 /// *
 /// * - Redistributions of source code must retain the above
 /// * copyright notice, this list of conditions and the
 /// * following disclaimer.
 /// *
 /// * - Redistributions in binary form must reproduce the above
 /// * copyright notice, this list of conditions and the
 /// * following disclaimer in the documentation and/or other
 /// * materials provided with the distribution.
 /// *
 /// * - Neither the name of Internet Society, IETF or IETF
 /// * Trust, nor the names of specific contributors, may be
 /// * used to endorse or promote products derived from this
 /// * software without specific prior written permission.
 /// *
 /// * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS
 /// * AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
 /// * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 /// * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 /// * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
 /// * EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 /// * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 /// * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 /// * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 /// * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 /// * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 /// * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 /// * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
 /// * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
 /// * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 /// */

 <CODE ENDS>

Lever & Noveck Expires December 1, 2017 [Page 23]

Internet-Draft RDMA Transport for RPC V2 May 2017

6.2. RPC-Over-RDMA Version Two XDR

 The XDR defined in this section is used to encode the Transport
 Header Stream in each RPC-over-RDMA Version Two message. The terms
 "Transport Header Stream" and "RPC Payload Stream" are defined in
 Section 4 of [I-D.ietf-nfsv4-rfc5666bis].

 <CODE BEGINS>

 /// /* From RFC 5531, Section 9 */
 /// enum msg_type {
 /// CALL = 0,
 /// REPLY = 1
 /// };
 ///
 /// struct rpcrdma2_segment {
 /// uint32 rdma_handle;
 /// uint32 rdma_length;
 /// uint64 rdma_offset;
 /// };
 ///
 /// struct rpcrdma2_read_segment {
 /// uint32 rdma_position;
 /// struct rpcrdma2_segment rdma_target;
 /// };
 ///
 /// struct rpcrdma2_read_list {
 /// struct rpcrdma2_read_segment rdma_entry;
 /// struct rpcrdma2_read_list *rdma_next;
 /// };
 ///
 /// struct rpcrdma2_write_chunk {
 /// struct rpcrdma2_segment rdma_target<>;
 /// };
 ///
 /// struct rpcrdma2_write_list {
 /// struct rpcrdma2_write_chunk rdma_entry;
 /// struct rpcrdma2_write_list *rdma_next;
 /// };
 ///
 /// struct rpcrdma2_chunk_lists {
 /// enum msg_type rdma_direction;
 /// uint32 rdma_inv_handle;
 /// struct rpcrdma2_read_list *rdma_reads;
 /// struct rpcrdma2_write_list *rdma_writes;
 /// struct rpcrdma2_write_chunk *rdma_reply;
 /// };

https://datatracker.ietf.org/doc/html/rfc5531#section-9

Lever & Noveck Expires December 1, 2017 [Page 24]

Internet-Draft RDMA Transport for RPC V2 May 2017

 ///
 /// enum rpcrdma2_errcode {
 /// RDMA2_ERR_VERS = 1,
 /// RDMA2_ERR_BAD_XDR = 2,
 /// RDMA2_ERR_INVAL_PROC = 3,
 /// RDMA2_ERR_READ_CHUNKS = 4,
 /// RDMA2_ERR_WRITE_CHUNKS = 5,
 /// RDMA2_ERR_SEGMENTS = 6,
 /// RDMA2_ERR_WRITE_RESOURCE = 7,
 /// RDMA2_ERR_REPLY_RESOURCE = 8,
 /// RDMA2_ERR_INVAL_OPTION = 9,
 /// RDMA2_ERR_SYSTEM = 10,
 /// };
 ///
 /// struct rpcrdma2_err_vers {
 /// uint32 rdma_vers_low;
 /// uint32 rdma_vers_high;
 /// };
 ///
 /// struct rpcrdma2_err_write {
 /// uint32 rdma_chunk_index;
 /// uint32 rdma_length_needed;
 /// };
 ///
 /// union rpcrdma2_error switch (rpcrdma2_errcode rdma_err) {
 /// case RDMA2_ERR_VERS:
 /// rpcrdma2_err_vers rdma_vrange;
 /// case RDMA2_ERR_BAD_XDR:
 /// void;
 /// case RDMA2_ERR_INVAL_PROC:
 /// void;
 /// case RDMA2_ERR_READ_CHUNKS:
 /// uint32 rdma_max_chunks;
 /// case RDMA2_ERR_WRITE_CHUNKS:
 /// uint32 rdma_max_chunks;
 /// case RDMA2_ERR_SEGMENTS:
 /// uint32 rdma_max_segments;
 /// case RDMA2_ERR_WRITE_RESOURCE:
 /// rpcrdma2_err_write rdma_writeres;
 /// case RDMA2_ERR_REPLY_RESOURCE:
 /// uint32 rdma_length_needed;
 /// case RDMA2_ERR_INVAL_OPTION:
 /// void;
 /// case RDMA2_ERR_SYSTEM:
 /// void;
 /// };
 ///
 /// struct rpcrdma2_optional {

Lever & Noveck Expires December 1, 2017 [Page 25]

Internet-Draft RDMA Transport for RPC V2 May 2017

 /// enum msg_type rdma_optdir;
 /// uint32 rdma_opttype;
 /// opaque rdma_optinfo<>;
 /// };
 ///
 /// typedef rpcrdma2_propid uint32;
 ///
 /// struct rpcrdma2_propval {
 /// rpcrdma2_propid rdma_which;
 /// opaque rdma_data<>;
 /// };
 ///
 /// typedef rpcrdma2_propval rpcrdma2_propset<>;
 /// typedef uint32 rpcrdma2_propsubset<>;
 ///
 /// struct rpcrdma2_connprop {
 /// rpcrdma2_propset rdma_start;
 /// rpcrdma2_propsubset rdma_nochg;
 /// };
 ///
 /// struct rpcrdma2_reqprop {
 /// rpcrdma2_propset rdma_want;
 /// };
 ///
 /// struct rpcrdma2_resprop {
 /// rpcrdma2_propsubset rdma_done;
 /// rpcrdma2_propsubset rdma_rejected;
 /// rpcrdma2_propset rdma_other;
 /// };
 ///
 /// struct rpcrdma2_updprop {
 /// rpcrdma2_propset rdma_now;
 /// };

 /// enum rpcrdma2_proc {
 /// RDMA2_MSG = 0,
 /// RDMA2_NOMSG = 1,
 /// RDMA2_ERROR = 4,
 /// RDMA2_OPTIONAL = 5,
 /// RDMA2_CONNPROP = 6,
 /// RDMA2_REQPROP = 7,
 /// RDMA2_RESPROP = 8,
 /// RDMA2_UPDPROP = 9
 /// };
 ///
 /// union rpcrdma2_body switch (rpcrdma2_proc rdma_proc) {
 /// case RDMA2_MSG:
 /// rpcrdma2_chunk_lists rdma_chunks;

Lever & Noveck Expires December 1, 2017 [Page 26]

Internet-Draft RDMA Transport for RPC V2 May 2017

 /// case RDMA2_NOMSG:
 /// rpcrdma2_chunk_lists rdma_chunks;
 /// case RDMA2_ERROR:
 /// rpcrdma2_error rdma_error;
 /// case RDMA2_OPTIONAL:
 /// rpcrdma2_optional rdma_optional;
 /// case RDMA2_CONNPROP:
 /// rpcrdma2_connprop rdma_connprop;
 /// case RDMA2_REQPROP:
 /// rpcrdma2_reqprop rdma_reqprop;
 /// case RDMA2_RESPROP:
 /// rpcrdma2_resprop rdma_resprop;
 /// case RDMA2_UPDPROP:
 /// rpcrdma2_updprop rdma_updprop;
 /// };
 ///
 /// struct rpcrdma2_xprt_hdr {
 /// uint32 rdma_xid;
 /// uint32 rdma_vers;
 /// uint32 rdma_credit;
 /// rpcrdma2_body rdma_body;
 /// };
 ///
 /// /*
 /// * Transport propid values for basic properties
 /// */
 /// const uint32 RDMA2_PROPID_RBSIZ = 1;
 /// const uint32 RDMA2_PROPID_BRS = 2;
 ///
 /// /*
 /// * Transport property typedefs
 /// */
 /// typedef uint32 rpcrdma2_prop_rbsiz;
 /// typedef rpcrdma2_bkreqsup rpcrdma2_prop_brs;
 ///
 /// enum rpcrdma2_bkreqsup {
 /// RDMA2_BKREQSUP_NONE = 0,
 /// RDMA2_BKREQSUP_INLINE = 1,
 /// RDMA2_BKREQSUP_GENL = 2
 /// };

 <CODE ENDS>

Lever & Noveck Expires December 1, 2017 [Page 27]

Internet-Draft RDMA Transport for RPC V2 May 2017

6.2.1. Presence Of Payload

 o When the rdma_proc field has the value RDMA2_MSG, an RPC Payload
 Stream MUST follow the Transport Header Stream in the Send buffer.

 o When the rdma_proc field has the value RDMA2_ERROR, an RPC Payload
 Stream MUST NOT follow the Transport Header Stream.

 o When the rdma_proc field has the value RDMA2_OPTIONAL, all, part
 of, or no RPC Payload Stream MAY follow the Transport header
 Stream in the Send buffer.

6.2.2. Message Direction

 Implementations of RPC-over-RDMA Version Two are REQUIRED to support
 backwards direction operation as described in
 [I-D.ietf-nfsv4-rpcrdma-bidirection]. RPC-over-RDMA Version Two
 introduces the rdma_direction field in its transport header to
 optimize the process of distinguishing between forward- and
 backwards-direction messages.

 The rdma_direction field qualifies the value contained in the
 transport header's rdma_xid field. This enables a receiver to
 reliably avoid performing an XID lookup on incoming backwards-
 direction Call messages.

 In general, when a message carries an XID that was generated by the
 message's receiver (that is, the receiver is acting as a requester),
 the message's sender sets the rdma_direction field to REPLY (1).
 Otherwise the rdma_direction field is set to CALL (0). For example:

 o When the rdma_proc field has the value RDMA2_MSG or RDMA2_NOMSG,
 the value of the rdma_direction field MUST be the same as the
 value of the associated RPC message's msg_type field.

 o When the rdma_proc field has the value RDMA2_OPTIONAL and a whole
 or partial RPC message payload is present, the value of the
 rdma_optdir field MUST be the same as the value of the associated
 RPC message's msg_type field.

 o When the rdma_proc field has the value RDMA2_OPTIONAL and no RPC
 message payload is present, a Requester MUST set the value of the
 rdma_optdir field to CALL, and a Responder MUST set the value of
 the rdma_optdir field to REPLY. The Requester chooses a value for
 the rdma_xid field from the XID space that matches the message's
 direction. Requesters and Responders set the rdma_credit field in
 a similar fashion: a value is set that is appropriate for the
 direction of the message.

Lever & Noveck Expires December 1, 2017 [Page 28]

Internet-Draft RDMA Transport for RPC V2 May 2017

 o When the rdma_proc field has the value RDMA2_ERROR, the direction
 of the message is always Responder-to-Requester (REPLY).

6.2.3. Remote Invalidation

 To request Remote Invalidation, a requester MUST set the value of the
 rdma_inv_handle field in an RPC Call's transport header to a non-zero
 value that matches one of the rdma_handle fields in that header. If
 none of the rdma_handle values in the Call may be invalidated by the
 responder, the requester MUST set the RPC Call's rdma_inv_handle
 field to the value zero.

 If the responder chooses not to use Remote Invalidation for this
 particular RPC Reply, or the RPC Call's rdma_inv_handle field
 contains the value zero, the responder MUST use RDMA Send to transmit
 the matching RPC reply.

 If a requester has provided a non-zero value in the RPC Call's
 rdma_inv_handle field and the responder chooses to use Remote
 Invalidation for the matching RPC Reply, the responder MUST use RDMA
 Send With Invalidate to transmit that RPC reply, and MUST use the
 value in the RPC Call's rdma_inv_handle field to construct the Send
 With Invalidate Work Request.

6.2.4. Transport Errors

 Error handling works the same way in RPC-over-RDMA Version Two as it
 does in RPC-over-RDMA Version One, with the addition of several new
 error codes, and error messages never flow from requester to
 responder. Version One error handling is described in Section 5 of
 [I-D.ietf-nfsv4-rfc5666bis].

 In all cases below, the responder copies the values of the rdma_xid
 and rdma_vers fields from the incoming transport header that
 generated the error to transport header of the error response. The
 responder sets the rdma_proc field to RDMA2_ERROR, and the
 rdma_credit field is set to the credit grant value for this
 connection.

 RDMA2_ERR_VERS
 This is the equivalent of ERR_VERS in RPC-over-RDMA Version One.
 The error code value, semantics, and utilization are the same.

 RDMA2_ERR_INVAL_PROC
 If a responder recognizes the value in the rdma_vers field, but it
 does not recognize the value in the rdma_proc field, it MUST set
 the rdma_err field to RDMA2_ERR_INVAL_PROC.

Lever & Noveck Expires December 1, 2017 [Page 29]

Internet-Draft RDMA Transport for RPC V2 May 2017

 RDMA2_ERR_BAD_XDR
 If a responder recognizes the values in the rdma_vers and
 rdma_proc fields, but the incoming RPC-over-RDMA transport header
 cannot be parsed, it MUST set the rdma_err field to
 RDMA2_ERR_BAD_XDR. The error code value of RDMA2_ERR_BAD_XDR is
 the same as the error code value of ERR_CHUNK in RPC-over-RDMA
 Version One. The responder MUST NOT process the request in any
 way except to send an error message.

 RDMA2_ERR_READ_CHUNKS
 If a requester presents more DDP-eligible arguments than the
 responder is prepared to Read, the responder MUST set the rdma_err
 field to RDMA2_ERR_READ_CHUNKS, and set the rdma_max_chunks field
 to the maximum number of Read chunks the responder can receive and
 process.

 RDMA2_ERR_WRITE_CHUNKS
 If a requester has constructed an RPC Call message with more DDP-
 eligible results than the server is prepared to Write, the
 responder MUST set the rdma_err field to RDMA2_ERR_WRITE_CHUNKS,
 and set the rdma_max_chunks field to the maximum number of Write
 chunks the responder can process and return.

 RDMA2_ERR_SEGMENTS
 If a requester has constructed an RPC Call message with a chunk
 that contains more segments than the responder supports, the
 responder MUST set the rdma_err field to RDMA2_ERR_SEGMENTS, and
 set the rdma_max_segments field to the maximum number of segments
 the responder can process.

 RDMA2_ERR_WRITE_RESOURCE
 If a requester has provided a Write chunk that is not large enough
 to convey a DDP-eligible result, the responder MUST set the
 rdma_err field to RDMA2_ERR_WRITE_RESOURCE.

 The responder MUST set the rdma_chunk_index field to point to the
 first Write chunk in the transport header that is too short, or to
 zero to indicate that it was not possible to determine which chunk
 is too small. Indexing starts at one (1), which represents the
 first Write chunk. The responder MUST set the rdma_length_needed
 to the number of bytes needed in that chunk in order to convey the
 result data item.

 Upon receipt of this error code, a responder MAY choose to
 terminate the operation (for instance, if the responder set the
 index and length fields to zero), or it MAY send the request again
 using the same XID and more reply resources.

Lever & Noveck Expires December 1, 2017 [Page 30]

Internet-Draft RDMA Transport for RPC V2 May 2017

 RDMA2_ERR_REPLY_RESOURCE
 If an RPC Reply's Payload stream does not fit inline and the
 requester has not provided a large enough Reply chunk to convey
 the stream, the responder MUST set the rdma_err field to
 RDMA2_ERR_REPLY_RESOURCE. The responder MUST set the
 rdma_length_needed to the number of Reply chunk bytes needed to
 convey the reply.

 Upon receipt of this error code, a responder MAY choose to
 terminate the operation (for instance, if the responder set the
 index and length fields to zero), or it MAY send the request again
 using the same XID and larger reply resources.

 RDMA2_ERR_INVAL_OPTION
 A responder MUST set the rdma_err field to RDMA2_ERR_INVAL_OPTION
 when an RDMA2_OPTIONAL message is received and the responder does
 not recognize the value in the rdma_opttype field.

 RDMA2_ERR_SYSTEM
 If some problem occurs on a responder that does not fit into the
 above categories, the responder MAY report it to the sender by
 setting the rdma_err field to RDMA2_ERR_SYSTEM.

 This is a permanent error: a requester that receives this error
 MUST terminate the RPC transaction associated with the XID value
 in the rdma_xid field.

7. Protocol Version Negotiation

 When an RPC-over-RDMA Version Two client establishes a connection to
 a server, the first order of business is to determine the server's
 highest supported protocol version.

 As with RPC-over-RDMA Version One, a client MUST assume the ability
 to exchange only a single RPC-over-RDMA message at a time until it
 receives a valid non-error RPC-over-RDMA message from the server that
 reports the server's credit limit.

 First, the client sends a single valid RPC-over-RDMA message with the
 value two (2) in the rdma_vers field. Because the server might
 support only RPC-over-RDMA Version One, this initial message can be
 no larger than the Version One default inline threshold of 1024
 bytes.

Lever & Noveck Expires December 1, 2017 [Page 31]

Internet-Draft RDMA Transport for RPC V2 May 2017

7.1. Server Does Support RPC-over-RDMA Version Two

 If the server does support RPC-over-RDMA Version Two, it sends RPC-
 over-RDMA messages back to the client with the value two (2) in the
 rdma_vers field. Both peers may use the default inline threshold
 value for RPC-over-RDMA Version Two connections (4096 bytes).

7.2. Server Does Not Support RPC-over-RDMA Version Two

 If the server does not support RPC-over-RDMA Version Two, it MUST
 send an RPC-over-RDMA message to the client with the same XID, with
 RDMA2_ERROR in the rdma_proc field, and with the error code
 RDMA2_ERR_VERS. This message also reports a range of protocol
 versions that the server supports. To continue operation, the client
 selects a protocol version in the range of server-supported versions
 for subsequent messages on this connection.

 If the connection is lost immediately after an RDMA2_ERROR /
 RDMA2_ERR_VERS message is received, a client can avoid a possible
 version negotiation loop when re-establishing another connection by
 assuming that particular server does not support RPC-over-RDMA
 Version Two. A client can assume the same situation (no server
 support for RPC-over-RDMA Version Two) if the initial negotiation
 message is lost or dropped. Once the negotiation exchange is
 complete, both peers may use the default inline threshold value for
 the transport protocol version that has been selected.

7.3. Client Does Not Support RPC-over-RDMA Version Two

 If the server supports the RPC-over-RDMA protocol version used in
 Call messages from a client, it MUST send Replies with the same RPC-
 over-RDMA protocol version that the client uses to send its Calls.

7.4. Security Considerations

 The security considerations for RPC-over-RDMA Version Two are the
 same as those for RPC-over-RDMA Version One.

7.4.1. Security Considerations (Transport Properties)

 Like other fields that appear in each RPC-over-RDMA header, property
 information is sent in the clear on the fabric with no integrity
 protection, making it vulnerable to man-in-the-middle attacks.

 For example, if a man-in-the-middle were to change the value of the
 Receive buffer size or the Requester Remote Invalidation boolean, it
 could reduce connection performance or trigger loss of connection.
 Repeated connection loss can impact performance or even prevent a new

Lever & Noveck Expires December 1, 2017 [Page 32]

Internet-Draft RDMA Transport for RPC V2 May 2017

 connection from being established. Recourse is to deploy on a
 private network or use link-layer encryption.

8. IANA Considerations

 This document does not require actions by IANA.

9. References

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC4506] Eisler, M., Ed., "XDR: External Data Representation
 Standard", STD 67, RFC 4506, DOI 10.17487/RFC4506, May
 2006, <http://www.rfc-editor.org/info/rfc4506>.

 [RFC5531] Thurlow, R., "RPC: Remote Procedure Call Protocol
 Specification Version 2", RFC 5531, DOI 10.17487/RFC5531,
 May 2009, <http://www.rfc-editor.org/info/rfc5531>.

9.2. Informative References

 [I-D.ietf-nfsv4-rfc5666bis]
 Lever, C., Simpson, W., and T. Talpey, "Remote Direct
 Memory Access Transport for Remote Procedure Call, Version
 One", draft-ietf-nfsv4-rfc5666bis-11 (work in progress),
 March 2017.

 [I-D.ietf-nfsv4-rpcrdma-bidirection]
 Lever, C., "Bi-directional Remote Procedure Call On RPC-
 over-RDMA Transports", draft-ietf-nfsv4-rpcrdma-

bidirection-08 (work in progress), March 2017.

 [IB] InfiniBand Trade Association, "InfiniBand Architecture
 Specifications", <http://www.infinibandta.org>.

 [RFC5040] Recio, R., Metzler, B., Culley, P., Hilland, J., and D.
 Garcia, "A Remote Direct Memory Access Protocol
 Specification", RFC 5040, DOI 10.17487/RFC5040, October
 2007, <http://www.rfc-editor.org/info/rfc5040>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc4506
http://www.rfc-editor.org/info/rfc4506
https://datatracker.ietf.org/doc/html/rfc5531
http://www.rfc-editor.org/info/rfc5531
https://datatracker.ietf.org/doc/html/draft-ietf-nfsv4-rfc5666bis-11
https://datatracker.ietf.org/doc/html/draft-ietf-nfsv4-rpcrdma-bidirection-08
https://datatracker.ietf.org/doc/html/draft-ietf-nfsv4-rpcrdma-bidirection-08
http://www.infinibandta.org
https://datatracker.ietf.org/doc/html/rfc5040
http://www.rfc-editor.org/info/rfc5040

Lever & Noveck Expires December 1, 2017 [Page 33]

Internet-Draft RDMA Transport for RPC V2 May 2017

 [RFC5041] Shah, H., Pinkerton, J., Recio, R., and P. Culley, "Direct
 Data Placement over Reliable Transports", RFC 5041,
 DOI 10.17487/RFC5041, October 2007,
 <http://www.rfc-editor.org/info/rfc5041>.

 [RFC5661] Shepler, S., Ed., Eisler, M., Ed., and D. Noveck, Ed.,
 "Network File System (NFS) Version 4 Minor Version 1
 Protocol", RFC 5661, DOI 10.17487/RFC5661, January 2010,
 <http://www.rfc-editor.org/info/rfc5661>.

 [RFC5662] Shepler, S., Ed., Eisler, M., Ed., and D. Noveck, Ed.,
 "Network File System (NFS) Version 4 Minor Version 1
 External Data Representation Standard (XDR) Description",

RFC 5662, DOI 10.17487/RFC5662, January 2010,
 <http://www.rfc-editor.org/info/rfc5662>.

 [RFC5666] Talpey, T. and B. Callaghan, "Remote Direct Memory Access
 Transport for Remote Procedure Call", RFC 5666,
 DOI 10.17487/RFC5666, January 2010,
 <http://www.rfc-editor.org/info/rfc5666>.

Appendix A. Acknowledgments

 The authors gratefully acknowledge the work of Brent Callaghan and
 Tom Talpey on the original RPC-over-RDMA Version One specification
 [RFC5666]. The authors also wish to thank Bill Baker, Greg Marsden,
 and Matt Benjamin for their support of this work.

 The extract.sh shell script and formatting conventions were first
 described by the authors of the NFSv4.1 XDR specification [RFC5662].

 Special thanks go to nfsv4 Working Group Chair Spencer Shepler and
 nfsv4 Working Group Secretary Thomas Haynes for their support.

Authors' Addresses

 Charles Lever (editor)
 Oracle Corporation
 1015 Granger Avenue
 Ann Arbor, MI 48104
 USA

 Phone: +1 248 816 6463
 Email: chuck.lever@oracle.com

https://datatracker.ietf.org/doc/html/rfc5041
http://www.rfc-editor.org/info/rfc5041
https://datatracker.ietf.org/doc/html/rfc5661
http://www.rfc-editor.org/info/rfc5661
https://datatracker.ietf.org/doc/html/rfc5662
http://www.rfc-editor.org/info/rfc5662
https://datatracker.ietf.org/doc/html/rfc5666
http://www.rfc-editor.org/info/rfc5666
https://datatracker.ietf.org/doc/html/rfc5666
https://datatracker.ietf.org/doc/html/rfc5662

Lever & Noveck Expires December 1, 2017 [Page 34]

Internet-Draft RDMA Transport for RPC V2 May 2017

 David Noveck
 NetApp
 1601 Trapelo Road
 Waltham, MA 02451
 USA

 Phone: +1 781 572 8038
 Email: davenoveck@gmail.com

Lever & Noveck Expires December 1, 2017 [Page 35]

