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1. Introduction

DISCLAIMER: This is a work-in-progress draft.

This document gives a construction for KEM-based authentication in

TLS 1.3. Authentication happens via asymmetric cryptography by the

usage of KEMs advertised as the long-term KEM public keys in the

Certificate.

TLS 1.3 is in essence a signed key exchange protocol (if using

certificate-based authentication). Authentication in TLS 1.3 is

achieved by signing the handshake transcript with digital signatures

algorithms. KEM-based authentication provides authentication by

deriving a shared secret that is encapsulated against the public key

contained in the Certificate. Only the holder of the private key

corresponding to the certificate's public key can derive the same

shared secret and thus decrypt it's peers messages.

This approach is appropriate for endpoints that have KEM public

keys. Though this is currently rare, certificates can be issued with

(EC)DH public keys as specified for instance in [RFC8410], or using

a delegation mechanism, such as delegated credentials [I-D.ietf-tls-

subcerts].

In this proposal, we use the DH-based KEMs from [RFC9180]. We

believe KEMs are especially worth discussing in the context of the

TLS protocol because NIST is in the process of standardizing post-

quantum KEM algorithms to replace "classic" key exchange (based on

elliptic curve or finite-field Diffie-Hellman) [NISTPQC].

This proposal draws inspiration from [I-D.ietf-tls-semistatic-dh],

which is in turn based on the OPTLS proposal for TLS 1.3 [KW16].

However, these proposals require a non-interactive key exchange:

they combine the client's public key with the server's long-term

key. This imposes an extra requirement: the ephemeral and static

keys MUST use the same algorithm, which this proposal does not

require. Additionally, there are no post-quantum proposals for a

non-interactive key exchange currently considered for

standardization, while several KEMs are on the way.

1.1. Organization

After a brief introduction to KEMs, we will introduce the AuthKEM

authentication mechanism. For clarity, we discuss unilateral and

mutual authentication separately. Next, we introduce the abbreviated
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AuthKEM handshake, and its opportunistic client authentication

mechanism. In the remainder of the draft, we will discuss the

necessary implementation mechanics, such as code points, extensions,

new protocol messages and the new key schedule.

2. Requirements Notation

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

3. Terminology

The following terms are used as they are in [RFC8446]

client: The endpoint initiating the TLS connection.

connection: A transport-layer connection between two endpoints.

endpoint: Either the client or server of the connection.

handshake: An initial negotiation between client and server that

establishes the parameters of their subsequent interactions within

TLS.

peer: An endpoint. When discussing a particular endpoint, "peer"

refers to the endpoint that is not the primary subject of

discussion.

receiver: An endpoint that is receiving records.

sender: An endpoint that is transmitting records.

server: The endpoint that responded to the initiation of the TLS

connection. i.e. the peer of the client.

3.1. Key Encapsulation Mechanisms

As this proposal relies heavily on KEMs, which are not originally

used by TLS, we will provide a brief overview of this primitive.

Other cryptographic operations will be discussed later.

A Key Encapsulation Mechanism (KEM) is a cryptographic primitive

that defines the methods Encapsulate and Decapsulate. In this draft,

we extend these operations with context separation strings:

Encapsulate(pkR, context_string): Takes a public key, and produces a

shared secret and encapsulation.
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Decapsulate(enc, skR, context_str): Takes the encapsulation and the

private key. Returns the shared secret.

We implement these methods through the KEMs defined in [RFC9180] to

export shared secrets appropriate for using with the HKDF in TLS

1.3:

Keys are generated and encoded for transmission following the

conventions in [RFC9180].

4. Full 1.5-RTT AuthKEM Handshake Protocol

Figure 1 below shows the basic KEM-authentication (KEM-Auth)

handshake, without client authentication:

¶

¶

def Encapsulate(pk, context_string):

  enc, ctx = HPKE.SetupBaseS(pk, "tls13 auth-kem " + context_string)

  ss = ctx.Export("", HKDF.Length)

  return (enc, ss)

def Decapsulate(enc, sk, context_string):

  return HPKE.SetupBaseR(enc,

                         sk,

                         "tls13 auth-kem " + context_string)

             .Export("", HKDF.Length)
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This basic handshake captures the core of AuthKEM. Instead of using

a signature to authenticate the handshake, the client encapsulates a

shared secret to the server's certificate public key. Only the

server that holds the private key corresponding to the certificate

public key can derive the same shared secret. This shared secret is

mixed into the handshake's key schedule. The client does not have to

wait for the server's Finished message before it can send data. The

client knows that its message can only be decrypted if the server

was able to derive the authentication shared secret encapsulated in

the KEMEncapsulation message.

Finished messages are sent as in TLS 1.3, and achieve full explicit

authentication.

4.1. Client authentication

For client authentication, the server sends the CertificateRequest

message as in [RFC8446]. This message can not be authenticated in

the AuthKEM handshake: we will discuss the implications below.

       Client                                     Server

Key  ^ ClientHello

Exch | + key_share

     v + signature_algorithms

                          -------->

                                             ServerHello  ^ Key

                                             + key_share  v Exch

                                   <EncryptedExtensions>

                                           <Certificate>  ^

       <KEMEncapsulation>  -------->                      |

       {Finished}          -------->                      | Auth

       [Application Data]  -------->                      |

                           <--------          {Finished}  v

       [Application Data]  <------->  [Application Data]

        +  Indicates noteworthy extensions sent in the

           previously noted message.

        <> Indicates messages protected using keys

           derived from a [sender]_handshake_traffic_secret.

        {} Indicates messages protected using keys

           derived from a

           [sender]_authenticated_handshake_traffic_secret.

        [] Indicates messages protected using keys

           derived from [sender]_application_traffic_secret_N.

       Figure 1: Message Flow for KEM-Authentication (KEM-Auth)

                 Handshake without client authentication.
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As in [RFC8446], section 4.4.2, if and only if the client receives 

CertificateRequest, it MUST send a Certificate message. If the

client has no suitable certificate, it MUST send a Certificate

message containing no certificates. If the server is satisfied with

the provided certificate, it MUST send back a KEMEncapsulation

message, containing the encapsulation to the client's certificate.

The resulting shared secret is mixed into the key schedule. This

ensures any messages sent using keys derived from it are covered by

the authentication.

The AuthKEM handshake with client authentication is given in Figure

2.

If the server is not satisfied with the client's certificates, it

MAY, at its discretion, decide to continue or terminate the

handshake.

¶

¶

       Client                                     Server

Key  ^ ClientHello

Exch | + key_share

     v + signature_algorithms

                          -------->

                                             ServerHello  ^ Key

                                             + key_share  v Exch

                                   <EncryptedExtensions>  ^ Server

                                    <CertificateRequest>  v Params

                                           <Certificate>  ^

     ^ <KEMEncapsulation>                                 |

     | {Certificate}       -------->                      |

Auth |                     <--------  {KEMEncapsulation}  | Auth

     v {Finished}          -------->                      |

       [Application Data]  -------->                      |

                           <-------           {Finished}  v

       [Application Data]  <------->  [Application Data]

        +  Indicates noteworthy extensions sent in the

           previously noted message.

        <> Indicates messages protected using keys

           derived from a [sender]_handshake_traffic_secret.

        {} Indicates messages protected using keys

           derived from a

           [sender]_authenticated_handshake_traffic_secret.

        [] Indicates messages protected using keys

           derived from [sender]_application_traffic_secret_N.

       Figure 2: Message Flow for KEM-Authentication (KEM-Auth)

                 Handshake with client authentication.
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Unfortunately, AuthKEM client authentication requires an extra

round-trip. Clients that know the server's long-term public KEM key

MAY choose to use the abbreviated AuthKEM handshake and

opportunistically send the client certificate as a 0-RTT-like

message. We will discuss this later.

4.2. Relevant handshake messages

After the Key Exchange and Server Parameters phase of TLS 1.3

handshake, the client and server exchange implicitly authenticated

messages. KEM-based authentication uses the same set of messages

every time that certificate-based authentication is needed.

Specifically:

Certificate: The certificate of the endpoint and any per-

certificate extensions. This message is omitted by the client if

the server did not send a CertificateRequest message (thus

indicating that the client should not authenticate with a

certificate). For AuthKEM, Certificate MUST include the long-term

KEM public key. Certificates MUST be handled in accordance with 

[RFC8446], section 4.4.2.4.

Certificates MUST be handled in accordance with [RFC8446],

section 4.4.2.4.

KEMEncapsulation: A key encapsulation against the certificate's

long-term public key, which yields an implicitly authenticated

shared secret.

4.3. Overview of key differences with RFC8446 TLS 1.3

New types of signature_algorithms for KEMs.

Public keys in certificates are KEM algorithms

New handshake message KEMEncapsulation

The key schedule mixes in the shared secrets from the

authentication.

The Certificate is sent encrypted with a new handshake encryption

key.

The client sends Finished before the server.

The clients sends data before the server has sent Finished.
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4.4. Implicit and explicit authentication

The data that the client MAY transmit to the server before having

received the server's Finished is encrypted using ciphersuites

chosen based on the client's and server's advertised preferences in

the ClientHello and ServerHello messages. The ServerHello message

can however not be authenticated before the Finished message from

the server is verified. The full implications of this are discussed

in the Security Considerations section.

Upon receiving the client's authentication messages, the server

responds with its Finished message, which achieves explicit

authentication. Upon receiving the server's Finished message, the

client achieves explicit authentication. Receiving this message

retroactively confirms the server's cryptographic parameter choices.

4.5. Authenticating CertificateRequest

The CertificateRequest message can not be authenticated during the

AuthKEM handshake; only after the Finished message from the server

has been processed, it can be proven as authentic. The security

implications of this are discussed later.

This is dicussed in Github issue #16. We would welcome feedback

there.

Clients MAY choose to only accept post-handshake authentication.

TODO: Should they indicate this? TLS Flag?

5. Abbreviated AuthKEM with pre-shared public KEM keys

When the client already has the server's long-term public key, we

can do a more efficient handshake. The client will send the

encapsulation to the server's long-term public key in a ClientHello

extension. An overview of the abbreviated AuthKEM handshake is given

in Figure 3.

A client that already knows the server, might also already know that

it will be required to present a client certificate. This is

expected to be especially useful in server-to-server scenarios. The

abbreviated handshake allows to encrypt the certificate and send it

like early data.
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5.1. Negotiation

A client that knows a server's long-term KEM public key MAY choose

to attempt the abbreviated AuthKEM handshake. If it does so, it MUST

include the stored_auth_key extension in the ClientHello message.

This message MUST contain the encapsulation against the long-term

KEM public key. Details of the extension are described below. The

shared secret resulting from the encapsulation is mixed in to the

EarlySecret computation.

       Client                                        Server

Key  ^ ClientHello

Exch | + key_share

&    | + stored_auth_key

Auth | + signature_algorithms

     | + early_auth*

     | + early_data*

     | (Certificate*)

     | (Application Data*)    -------->        ServerHello  ^ Key

     |                                         + key_share  |

     |                                   + stored_auth_key  |

     |                                       + early_auth*  | Exch,

     |                                       + early_data*  | Auth &

     |                               {EncryptedExtensions}  | Server

     |                                 {KEMEncapsulation*}  | Params

     |                       <--------          {Finished}  v

     |                       <-------- [Application Data*]

     | (EndOfEarlyData)

     v {Finished}            -------->

       [Application Data]    <------->  [Application Data]

        +  Indicates noteworthy extensions sent in the

           previously noted message.

        *  Indicates optional or situation-dependent

           messages/extensions that are not always sent.

        <> Indicates messages protected using keys

           derived from a

           client_early_handshake_traffic_secret.

        () Indicates messages protected using keys derived

           from a client_early_traffic_secret.

        {} Indicates messages protected using keys

           derived from a

           [sender]_handshake_traffic_secret.

        [] Indicates messages protected using keys

           derived from [sender]_application_traffic_secret_N.

      Figure 3: Abbreviated AuthKEM handshake, with optional

                opportunistic client authentication.
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The client MAY additionally choose to send a certificate to the

server. It MUST know what ciphersuites the server accepts before it

does so. If it chooses to do so, it MUST send the early_auth

extension to the server. The Certificate is encrypted with the 

client_early_handshake_traffic_secret.

The server MAY accept the abbreviated AuthKEM handshake. If it does,

it MUST reply with a stored_auth_key extension. If it does not

accept the abbreviated AuthKEM handshake, for instance because it

does not have access to the correct secret key anymore, it MUST NOT

reply with a stored_auth_key extension. The server, if it accepts

the abbreviated AuthKEM handshake, MAY additionally accept the 

Certificate message. If it does, it MUST reply with a early_auth

extension.

If the client, who sent a stored_auth_key extension, receives a 

ServerHello without stored_auth_key extension, it MUST recompute 

EarlySecret without the encapsulated shared secret.

If the client sent a Certificate message, it MUST drop that message

from its transcript. The client MUST then continue with a full

AuthKEM handshake.

5.2. 0-RTT, forward secrecy and replay protection

The client MAY send 0-RTT data, as in [RFC8446] 0-RTT mode. The 

Certificate MUST be sent before the 0-RTT data.

As the EarlySecret is derived only from a key encapsulated to a

long-term secret, it does not have forward secrecy. Clients MUST

take this into consideration before transmitting 0-RTT data or

opting in to early client auth. Certificates and 0-RTT data may also

be replayed.

This will be discussed in full under Security Considerations.

6. Implementation

In this section we will discuss the implementation details such as

extensions and key schedule.

6.1. Negotiation of AuthKEM

Clients will indicate support for this mode by negotiating it as if

it were a signature scheme (part of the signature_algorithms

extension). We thus add these new signature scheme values (even

though, they are not signature schemes) for the KEMs defined in 

[RFC9180] Section 7.1. Note that we will be only using their

internal KEM's API defined there.
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When present in the signature_algorithms extension, these values

indicate AuthKEM support with the specified key exchange mode. These

values MUST NOT appear in signature_algorithms_cert, as this

extension specifies the signing algorithms by which certificates are

signed.

6.2. ClientHello and ServerHello extensions

A number of AuthKEM messages contain tag-length-value encoded

extensions structures. We are adding those extensions to the 

ExtensionType list from TLS 1.3.

The table below indicates the messages where a given extension may

appear:

6.2.1. Stored Auth Key

To transmit the early authentication encapsulation in the

abbreviated AuthKEM handshake, this document defines a new extension

type (stored_auth_key (TBD)). It is used in ClientHello and

ServerHello messages.

The extension_data field of this extension, when included in the

ClientHello, MUST contain the StoredInformation structure.

enum {

  dhkem_p256_sha256   => TBD,

  dhkem_p384_sha384   => TBD,

  dhkem_p521_sha512   => TBD,

  dhkem_x25519_sha256 => TBD,

  dhkem_x448_sha512   => TBD,

}

¶

¶

¶

enum {

  ...

  stored_auth_key (TBD),                 /* RFC TBD */

  early_auth (TBD),                      /* RFC TBD */

  (65535)

} ExtensionType;

¶

¶

+---------------------------------------+-------------+

| Extension                             |    KEM-Auth |

+---------------------------------------+-------------+

| stored_auth_key [RFCTBD]              |      CH, SH |

|                                       |             |

| early_auth  [RFCTBD]                  |      CH, SH |

|                                       |             |

+---------------------------------------+-------------+

¶

¶

¶



This extension MUST contain the folowing information when included

in ClientHello messages:

The client indicates the public key encapsulated to by its

fingerprint

The client submits the ciphertext

The server MUST send the extension back as an acknowledgement, if

and only if it wishes to negotiated the abbreviated AuthKEM

handshake.

The fingerprint calculation proceeds this way:

Compute the SHA-256 hash of the input data. Note that the

computed hash only covers the input data structure (and not any

type and length information of the record layer).

Use the output of the SHA-256 hash.

If this extension is not present, the client and the server MUST NOT

negotiate the abbreviated AuthKEM handshake.

The presence of the fingerprint might reveal information about the

identity of the server that the client has. This is discussed

further under Security Considerations (Section 7).

6.2.2. Early authentication

To indicate the client will attempt client authentication in the

abbreviated AuthKEM handshake, and for the server to indicate

acceptance of attempting this authentication mechanism, we define

the ```early_auth (TDB)`` extension. It is used in ClientHello and

ServerHello messages.

This is an empty extension.

struct {

      select (type) {

        case client:

          opaque key_fingerprint<1..255>;

          opaque ciphertext<1..2^16-1>

        case server:

          AcceptedAuthKey '1';

      } body;

} StoredInformation

¶
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struct {

} EarlyAuth
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It MUST NOT be sent if the stored_auth_key extension is not present.

6.3. Protocol messages

The handshake protocol is used to negotiate the security parameters

of a connection, as in TLS 1.3. It uses the same messages, expect

for the addition of a KEMEncapsulation message and does not use the 

CertificateVerify one.

Protocol messages MUST be sent in the order defined in Section 4. A

peer which receives a handshake message in an unexpected order MUST

abort the handshake with an "unexpected_message" alert.

The KEMEncapsulation message is defined as follows:

The encapsulation field is the result of a Encapsulate function. The 

Encapsulate() function will also result in a shared secret (ssS or 

ssC, depending on the peer) which is used to derive the AHS or MS

secrets.

If the KEMEncapsulation message is sent by a server, the

authentication algorithm MUST be one offered in the client's 

signature_algorithms extension unless no valid certificate chain can

be produced without unsupported algorithms.

If sent by a client, the authentication algorithm used in the

signature MUST be one of those present in the 

¶

¶

enum {

    ...

    kem_encapsulation(tbd),

    ...

    (255)

  } HandshakeType;

struct {

    HandshakeType msg_type;    /* handshake type */

    uint24 length;             /* remaining bytes in message */

    select (Handshake.msg_type) {

        ...

        case kem_encapsulation:     KEMEncapsulation;

        ...

    };

} Handshake;

¶

¶

¶

struct {

    opaque certificate_request_context<0..2^8-1>

    opaque encapsulation<0..2^16-1>;

} KEMEncapsulation;

¶
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supported_signature_algorithms field of the signature_algorithms

extension in the CertificateRequest message.

In addition, the authentication algorithm MUST be compatible with

the key(s) in the sender's end-entity certificate.

The receiver of a KEMEncapsulation message MUST perform the 

Decapsulate(enc, skR) operation by using the sent encapsulation and

the private key of the public key advertised in the end-entity

certificate sent. The Decapsulate(enc, skR) function will also

result on a shared secret (ssS or ssC, depending on the Server or

Client executing it respectively) which is used to derive the AHS or 

MS secrets.

certificate_request_context is included to allow the recipient to

identify the certificate against which the encapsulation was

generated. It MUST be set to the value in the Certificate message to

which the encapsulation was computed.

6.4. Cryptographic computations

The AuthKEM handshake establishes three input secrets which are

combined to create the actual working keying material, as detailed

below. The key derivation process incorporates both the input

secrets and the handshake transcript. Note that because the

handshake transcript includes the random values from the Hello

messages, any given handshake will have different traffic secrets,

even if the same input secrets are used.

6.4.1. Key schedule for full AuthKEM handshakes

AuthKEM uses the same HKDF-Extract and HKDF-Expand functions as

defined by TLS 1.3, in turn defined by [RFC5869].

Keys are derived from two input secrets using the HKDF-Extract and

Derive-Secret functions. The general pattern for adding a new secret

is to use HKDF-Extract with the Salt being the current secret state

and the Input Keying Material (IKM) being the new secret to be

added.

The notable differences are:

The addition of the Authenticated Handshake Secret and a new set

of handshake traffic encryption keys.

The inclusion of the SSs and SSc shared secrets as IKM to 

Authenticated Handshake Secret and Main Secret, respectively

The full key schedule proceeds as follows:
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            0

            |

            v

    PSK -> HKDF-Extract = Early Secret

            |

            +--> Derive-Secret(., "ext binder" | "res binder", "")

            |                  = binder_key

            |

            +--> Derive-Secret(., "c e traffic", ClientHello)

            |                  = client_early_traffic_secret

            |

            +--> Derive-Secret(., "e exp master", ClientHello)

            |                  = early_exporter_master_secret

            v

            Derive-Secret(., "derived", "")

            |

            v

(EC)DHE -> HKDF-Extract = Handshake Secret

            |

            +--> Derive-Secret(., "c hs traffic",

            |                  ClientHello...ServerHello)

            |                  = client_handshake_traffic_secret

            |

            +--> Derive-Secret(., "s hs traffic",

            |                  ClientHello...ServerHello)

            |                  = server_handshake_traffic_secret

            v

            Derive-Secret(., "derived", "") = dHS

            |

            v

    SSs -> HKDF-Extract = Authenticated Handshake Secret

            |

            +--> Derive-Secret(., "c ahs traffic",

            |                  ClientHello...KEMEncapsulation)

            |         = client_handshake_authenticated_traffic_secret

            |

            +--> Derive-Secret(., "s ahs traffic",

            |                  ClientHello...KEMEncapsulation)

            |         = server_handshake_authenticated_traffic_secret

            v

            Derive-Secret(., "derived", "") = dAHS

            |

            v

SSc||0 * -> HKDF-Extract = Main Secret

            |

            +--> Derive-Secret(., "c ap traffic",

            |                  ClientHello...server Finished)

            |                  = client_application_traffic_secret_0

            |



            +--> Derive-Secret(., "s ap traffic",

            |                  ClientHello...server Finished)

            |                  = server_application_traffic_secret_0

            |

            +--> Derive-Secret(., "exp master",

            |                  ClientHello...server Finished)

            |                  = exporter_master_secret

            |

            +--> Derive-Secret(., "res master",

                               ClientHello...client Finished)

                               = resumption_master_secret

*: if client authentication was requested, the `SSc` value should

   be used. Otherwise, the `0` value is used.

¶



6.4.2. Abbreviated AuthKEM key schedule

The abbreviated AuthKEM handshake follows the [RFC8446] key schedule

more closely. We change the computation of the EarlySecret as

follows, and add a computation for 

client_early_handshake_traffic_secret: ~~~ 0 | v SSs -> HKDF-Extract

= Early Secret | ... +--> Derive-Secret(., "c e traffic",

ClientHello) | = client_early_traffic_secret | +--> Derive-Secret(.,

"c e hs traffic", ClientHello) | =

client_early_handshake_traffic_secret ... ~~~

We change the computation of Main Secret as follows: ~~~ Derive-

Secret(., "derived", "") = dHS | v SSc||0 * -> HKDF-Extract = Main

Secret | ... ~~~

6.4.3. Computations of KEM shared secrets

The operations to compute SSs or SSc from the client are:

The operations to compute SSs or SSc from the server are:

6.4.4. Explicit Authentication Messages

As discussed, AuthKEM generally uses a message for explicit

authentication: Finished message. Note that in the full handshake,

AuthKEM achieves explicit authentication only when the server sends

the final Finished message (the client is only implicitly

authenticated when they send their Finished message). In a

abbreviated handshake mode, the server achieves explicit

authentication when sending their Finished message (one round-trip

earlier) and the client, in turn, when they send their Finished

message (one round-trip earlier). Full downgrade resilience and

forward secrecy is achieved once the AuthKEM handshake completes.

The key used to compute the Finished message MUST be computed from

the MainSecret using HKDF. Specifically:

¶

¶

¶

SSs, encapsulation <- Encapsulate(public_key_server,

                                  "server authentication")

               SSc <- Decapsulate(encapsulation, private_key_client,

                                  "client authentication")

¶

¶

               SSs <- Decapsulate(encapsulation, private_key_server

                                  "server authentication")

SSc, encapsulation <- Encapsulate(public_key_client,

                                  "client authentication")

¶

¶

¶



The verify_data value is computed as follows:

See the abbreviated AuthKEM handshake negotiation section (Section

5.1) for special considerations for the abbreviated AuthKEM

handshake.

Any records following a Finished message MUST be encrypted under the

appropriate application traffic key as described in TLS 1.3. In

particular, this includes any alerts sent by the server in response

to client Certificate and KEMEncapsulation messages.

7. Security Considerations

The academic works proposing AuthKEM (KEMTLS) contain a in-depth

technical discussion of and a proof of the security of the

handshake protocol without client authentication [KEMTLS]. The

work proposing the variant protocol [KEMTLSPDK] with pre-

distributed public keys (the abbreviated AuthKEM handshake) has a

proof for both unilaterally and mutually authenticated

handshakes.

We have proofs of the security of KEMTLS and KEMTLS-PDK in

Tamarin. The academic write-up of this is work in progress.

Application Data sent prior to receiving the server's last

explicit authentication message (the Finished message) can be

subject to a client certificate suite downgrade attack. Full

downgrade resilience and forward secrecy is achieved once the

handshake completes.

The client's certificate is kept secret from active observers by

the derivation of the client_authenticated_handshake_secret,

server/client_finished_key =

  HKDF-Expand-Label(MainSecret,

                    server/client_label,

                    "", Hash.length)

server_label = "tls13 server finished"

client_label = "tls13 client finished"

¶

¶

server/client_verify_data =

      HMAC(server/client_finished_key,

           Transcript-Hash(Handshake Context,

                           Certificate*,

                           KEMEncapsulation*,

                           Finished**)

*  Only included if present.

** The party who last sends the finished message in terms of flights

   includes the other party's Finished message.

¶

¶

¶

*

¶

*

¶

*

¶

*



which ensures that only the intended server can read the client's

identity.

When the client opportunistically sends its certificate, it is

not encrypted under a forward-secure key. This has similar

considerations and trade-offs as 0-RTT data. If it is a replayed

message, there are no expected consequences for security as the

malicious replayer will not be able to decapsulate the shared

secret.

A client that opportunistically sends its certificate, SHOULD

send it encrypted with a ciphertext that it knows the server will

accept. Otherwise, it will fail.

The PDK extension identifies the public key to which the client

has encapsulated via a hash. This reveals some information about

which server identity the client has. [I-D.ietf-tls-esni-14] may

help alleviate this.

7.1. Implicit authentication

Because preserving a 1/1.5RTT handshake in KEM-Auth requires the

client to send its request in the same flight when the ServerHello

message is received, it can not yet have explicitly authenticated

the server. However, through the inclusion of the key encapsulated

to the server's long-term secret, only an authentic server should be

able to decrypt these messages.

However, the client can not have received confirmation that the

server's choices for symmetric encryption, as specified in the 

ServerHello message, were authentic. These are not authenticated

until the Finished message from the server arrived. This may allow

an adversary to downgrade the symmetric algorithms, but only to what

the client is willing to accept. If such an attack occurs, the

handshake will also never successfully complete and no data can be

sent back.

If the client trusts the symmetric algorithms advertised in its 

ClientHello message, this should not be a concern. A client MUST NOT

accept any cryptographic parameters it does not include in its own 

ClientHello message.

If client authentication is used, explicit authentication is reached

before any application data, on either client or server side, is

transmitted.

Application Data MUST NOT be sent prior to sending the Finished

message, except as specified in Section 2.3 of [RFC8446]. Note that

while the client MAY send Application Data prior to receiving the

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶



[I-D.ietf-tls-esni-14]

[I-D.ietf-tls-semistatic-dh]

[I-D.ietf-tls-subcerts]

[RFC2119]

server's last explicit Authentication message, any data sent at that

point is, being sent to an implicitly authenticated peer.

7.2. Authentication of Certificate Request

Due to the implicit authentication of the server's messages during

the full AuthKEM handshake, the CertificateRequest message can not

be authenticated before the client received Finished.

The key schedule guarantees that the server can not read the

client's certificate message (as discussed above). An active

adversary that maliciously inserts a CertificateRequest message will

also result in a mismatch in transcript hashes, which will cause the

handshake to fail.

However, there may be side effects. The adversary might learn that

the client has a certificate by observing the length of the messages

sent. There may also be side-effects, especially in situations where

the client is prompted to e.g. approve use or unlock a certificate

stored encrypted or on a smart card.
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Appendix B. Open points of discussion

The following are open points for discussion. The corresponding

Github issues will be linked.

B.1. Authentication concerns for client authentication requests.

Tracked by Issue #16.

The certificate request message from the server can not be

authenticated by the AuthKEM mechanism. This is already somewhat

discussed above and under security considerations. We might want to

allow clients to refuse client auth for scenarios where this is a

concern.

B.2. Interaction with signing certificates

Tracked by Issue #20.

In the current state of the draft, we have not yet discussed

combining traditional signature-based authentication with KEM-based

authentication. One might imagine that the Client has a sigining

certificate and the server has a KEM public key.

In the current draft, clients MUST use a KEM certificate algorithm

if the server negotiated AuthKEM.
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