
Network Working Group E. Nordmark
Internet-Draft S. Chakrabarti
Expires: April 25, 2004 Sun Microsystems, Inc.
 J. Laganier
 ENS Lyon / Sun Microsystems, Inc.
 October 26, 2003

IPv6 Socket API for Address Selection
draft-chakrabarti-ipv6-addrselect-api-02

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on April 25, 2004.

Copyright Notice

 Copyright (C) The Internet Society (2003). All Rights Reserved.

Abstract

 The IPv6 default address selection document describes the rules for
 selecting default address by the system and indicates that the
 applications should be able to reverse the sense of system preference
 of address selection for that application through possible API
 extensions. However, no such socket API exists in the basic or
 advanced IPv6 socket API documents. Hence this document specifies
 socket level options add new flags for the getaddrinfo() API to
 specify preferences for address selection that modify the default
 address selection algorithm. The socket APIs described in this

https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Nordmark, et al. Expires April 25, 2004 [Page 1]

Internet-Draft IPv6 Socket API for Address Selection October 2003

 document will be particularly useful when Mobile IPv6 is used, for
 IPv6 applications which want to choose between temporary and public
 addresses, CGA (cryptographically generated addresses) and non-CGA
 addresses, and applications which do not want the default preferences
 with respect to address scopes.

Table of Contents

1. Introduction . 3
2. Design Alternatives . 5
3. Example Usages . 6
4. Changes to the Socket Interface 7
5. Changes to the protocol-independent nodename translation . . . 9
6. Application Requirements 12
7. Implementation Notes . 14
8. Mapping to Default Address Selection Rules 15
9. IPv4-mapped IPv6 Addresses 17
10. Validation function for source address 18
11. Security Considerations 19
12. Changes from previous version of draft 19
13. Acknowledgments . 20

 Normative References . 20
 Informative References . 20
 Authors' Addresses . 21

A. Intellectual Property Statement 21
 Full Copyright Statement 22

Nordmark, et al. Expires April 25, 2004 [Page 2]

Internet-Draft IPv6 Socket API for Address Selection October 2003

1. Introduction

 This document defines socket API extensions to support the non-
 default choice of address selection by the applications. The IPv6
 default address selection [1] document has specified the rules for
 system default address selection for an outbound IPv6 packet.
 Privacy considerations [6] have introduced "public" and "temporary"
 addresses. IPv6 Mobility [3] introduces "home address" and "care-
 of-address" definitions in the mobile systems. Some applications
 might want to control whether large scope or small scope IPv6
 addresses are preferred.

 Although it is desirable to have default algorithms for address
 selection, an application may want to reverse certain address
 selection rules for efficiency and other application specific
 reasons. Currently IPv6 socket API extensions provide mechanism to
 choose a specific source address through simple bind() operation or
 IPV6_PKTINFO socket option [5]. Thus in order to use bind() or
 IPV6_PKTINFO socket option, the application itself must make sure
 that the source address is appropriate for the destination address
 (e.g., with respect to the interface used to send packets to the
 destination). The application also needs to make sure about the
 appropriate scope of source address with respect to the destination
 address and so on. The mechanism presented in this document allows
 the application to specify attributes of the source (and destination)
 addresses it prefers while still having the system perform the rest
 of address selection. For instance, if an application prefers to use
 care-of-address of a mobile node as the source address and if the
 mobile node has two care-of-addresses (one public and one temporary),
 then the node would select the public care-of-address by following
 the default address selection rule for public and temporary address.

 A socket option has been deemed useful for this purpose, as it
 enables an application to specify addesss selection preferences on a
 per-socket basis. It can also provide the flexibility of enabling
 and disabling address selection preferences in non-connected sockets.
 The socket option uses a set of flags for address preferences. Since
 source address selection and destination address ordering need to be
 partially implemented in getaddrinfo() [2] the corresponding set of
 flags are also defined for that routine.

 Thus this document introduces several flags for address selection
 preferences that alter the default address selection [1] for a number
 of cases. It analyzes the usefulness of providing API functionality
 for different default address selection rules; it provides API to
 alter only those rules that are possibly used by certain class of
 applications. In addition, it also considers CGA [7][8] and non-CGA
 source addresses when CGA addresses are available in the system. In

Nordmark, et al. Expires April 25, 2004 [Page 3]

Internet-Draft IPv6 Socket API for Address Selection October 2003

 the future, more destination or source flags may be added to expand
 the API as the needs may arise.

 The approach in this document is to allow the application to specify
 preferences for address selection and not to be able to specify hard
 requirements. Thus for instance, an application can set a flag to
 prefer a temporary source address, but if no temporary source
 addresses are available at the node, a public address would be chosen
 instead.

 Specifying a 'requirement' for address selection is not adopted at
 the application level due to the nature of unreliable transport
 protocols where the failure of connect() operation may appear late in
 absence of the required attribute of source address in the system.
 This document defines a verification function which applications may
 choose to use before sending data on a connected socket. By
 "connected" socket we mean that a connect() call is done after
 setting setsockopt() with the preference attributes. Note that
 connect() can be used in UDP datagram sockets as well. The purpose
 of checking the validation of address after connect() call ensures
 the availability of the desired address type; an application using
 only sendto() or sendmsg() cannot guarantee the validated address at
 the time of sending data . The configuration of node may change or
 the address may expire between setsockopt() setting and sendto() or
 sendmsg() call.

 Furthermore, the approach is to define two flags for each purpose, so
 that an application can specify either that it prefers 'X' or prefers
 'not X', or it can choose not to set either of the flags relating to
 'X' and leave it up to the system default (see section 3.1). For
 example, if setsockopt() with a preference to care-of-address is set,
 but no flag is set to indicate a choice of temporary or public
 address, then temporary vs. public source address selection will be
 determined from the default source address selection [1] rules.
 Thus not specifying either of "X" and "not X" leaves the "X" property
 of the address selection at the system default.

 This document only specifies the extensions for the socket API since
 the socket API is already specified in RFCs [2]. The intent is that
 this document serve as a model for the type of address selection
 preferences that need to be expressable in other networking API such
 as those found in middleware systems and the Java environment.

Nordmark, et al. Expires April 25, 2004 [Page 4]

Internet-Draft IPv6 Socket API for Address Selection October 2003

2. Design Alternatives

 Suggestions have been made that have flags per application instead of
 per socket would be more flexible. However, this design stays with
 per socket flags for the following reasons:

 - while some system have per environment/application flags (such as
 environment variables in Unix systems) this might not be available in
 all systems which implement the socket API

 - when an application links with some standard library that library,
 unknown to the application, might be using the socket API.
 Mechanisms that would provide per application flags would affect not
 only the application itself but also the libraries' use of the socket
 API with a large risk for unintended consequences.

Nordmark, et al. Expires April 25, 2004 [Page 5]

Internet-Draft IPv6 Socket API for Address Selection October 2003

3. Example Usages

 The examples discussed here are limited to applications supporting
 Mobile IPv6, IPv6 Privacy Extensions and Cryptographically Generated
 Addresses. Address selection document [1] recommends that home
 addresses should be preferred over care-of-address when both are
 configured. However, a mobile node may want to prefer care-of-
 address as source address for DNS query in the foreign network as it
 normally means a shorter and local return path compared to the route
 via the mobile node's home-agent when the query contains home-address
 as source address. Another example is IKE application which requires
 care-of-address as its source address for the initial security
 association pair with Home Agent [3] while the mobile node boots up
 at the foreign network and wants to do the key exchange before a
 successful home-registration. Also a Mobile IPv6 aware application
 may want to toggle between home-address and care-of-address depending
 on its location and state of the application. It may also want to
 open different sockets and use home-address as source address for one
 socket and care-of-address for the others.

 In a non-mobile environment, similarly an application may prefer to
 use temporary address as source address for certain cases. By
 default, the source address selection rule selects "public" address
 when both are available. For example, an application supporting web
 browser and mail-server may want to use "temporary" address for the
 former and "public" address for the mail-server as a mail-server may
 require reverse path for DNS records for anti-spam rules.

 Similarly, a node may be configured to use the cryptographically
 generated addresses by default, as in Secure Neighbor Discovery, but
 an application may prefer not to use it. For instance, fping, a
 debugging tool which tests basic reachability of multiple
 destinations by sending packets in parallel, may find that the cost
 and time incurred in proof-of-ownership by CGA verification is not
 justified. On the other hand, when a node is not configured for CGA
 as default, an application may prefer using CGA by setting the socket
 option. It may subsequently verify that it is truly bound to a CGA
 by first calling getsockname() and then recomputing the CGA using the
 public key of the node.

 Besides the above examples, the defined address preference flags can
 be used to specify or alter the system default values for largest
 scope of addresses as well. An application may want to use only
 link-local source address to contact a node with global destination
 address on the same link, it can do so by setting the appropriate
 source address preference flag in the application. By default the
 system would have chosen global source address. This example assumes
 that only link-local and global addresses are available on the nodes.

Nordmark, et al. Expires April 25, 2004 [Page 6]

Internet-Draft IPv6 Socket API for Address Selection October 2003

4. Changes to the Socket Interface

 IPv6 Basic API [2] defines socket options for IPv6. This document
 adds a new socket option at the IPPROTO_IPV6 level. This socket
 option is called IPV6_ADDR_PREFERENCES. It can be used with
 setsockopt() and getsockopt() calls. This socket option takes a
 32bit unsigned integer argument. The argument consists of a number
 of flags where each flag indicates an address selection preference
 which modifies one of the rules in the default address selection
 specification.

 The following flags are defined to alter or set the default rule of
 source and destination address selection rules discussed in default
 address selection specification [1].

 <netinet/in.h>.

 IPV6_PREFER_SRC_HOME /* Prefer Home Address as source */

 IPV6_PREFER_SRC_COA /* Prefer Care-Of_address as source */

 IPV6_PREFER_SRC_TMP /* Prefer Temporary address as source */

 IPV6_PREFER_SRC_PUBLIC /* Prefer Public address as source */

 IPV6_PREFER_SRC_CGA /* Prefer CGA address as source */

 IPV6_PREFER_SRC_NONCGA /* Prefer a non-CGA address as source */

 IPV6_PREFER_SRC_LARGESCOPE /* Prefer larger scope source */

 IPV6_PREFER_SRC_SMALLSCOPE /* Prefer small(link-local) scope */

 NOTE: No source preference flag for longest matching prefix is
 defined here because it is believed to be handled by the policy table
 defined in the default address selection specification.

 Flags for altering Scope of destination addresses:

 Flags corresponding to other destination address rules are not
 defined in this document at this point. See section 8 for more
 analysis and mapping of rules and different flags.

 IPV6_PREFER_DST_LARGESCOPE /* Prefer larger scope for destination */

 IPV6_PREFER_DST_SMALLSCOPE /* Prefer small scope for destination */

Nordmark, et al. Expires April 25, 2004 [Page 7]

Internet-Draft IPv6 Socket API for Address Selection October 2003

 The following example illustrates how it is used on a AF_INET6
 socket:

 uint32_t flags = IPV6_PREFER_SRC_COA;

 if (setsockopt(s, IPPROTO_IPV6, IPV6_ADDR_PREFERENCES,

 (char *) &flags, sizeof (flags)) == -1) {

 perror("setsockopt IPV6_ADDR_REFERENCES");

 }

 When the IPV6_ADDR_PREFERENCES is successfully set with setsockopt(),
 the option value given is used to specify address preference for any
 connection initiation through the socket and all subsequent packets
 sent via that socket. If no option is set, the system selects a
 default value as per default address selection algorithm or by some
 other equivalent means.

 Setting conflicting flags at the same time results in the error
 EINVAL. For example, setting 'X' and 'not X' is not allowed at the
 same time. If flag is set as combination of 'X' and 'Y', and if 'Y'
 is not applicable or available in the system, then the selected
 address contains property of 'X' and system default for the property
 of 'Y'. For example, a possible valid combination of flags can be:

 IPV6_PREFER_SRC_PUBLIC | IPV6_PREFER_SRC_LARGESCOPE

Nordmark, et al. Expires April 25, 2004 [Page 8]

Internet-Draft IPv6 Socket API for Address Selection October 2003

5. Changes to the protocol-independent nodename translation

Section 8 of Default Address Selection [1] document indicates
 possible implementation strategies for getaddrinfo() [2]. One of
 them suggests that getaddrinfo() collects available source/
 destination pair from the network layer after being sorted at the
 network layer with full knowledge of source address selection.
 Another strategy is to call down to network layer to retrieve source
 address information and then sort the list in the context of
 getaddrinfo().

 Thus if an application sets setsockopt() IPV6_ADDR_PREFERENCES option
 to alter the default address selection rules , it is required that
 the application calls getaddrinfo() with the corresponding
 AI_PREFER_* flags specified in this section. This ensures that
 getaddrinfo() function implementation has considered the address
 preference desired by the application, as the destination address
 selection rule is influenced by the order of source address
 selection. This document also defines AI flags for destination SCOPE
 which has direct impact on getaddrinfo() and destination address
 selection interaction.

 There is no corresponding destination address selection rule for
 source address selection rule 7, in default address selection
 document. However, this API provides a way for an application to
 make sure that the source address preference set in setsockopt() is
 taken into account by the getaddrinfo() function. Let's consider an
 example to understand this scenario. DA and DB are two global
 destination addresses and the node has two global addresses SA and SB
 through interface A and B respectively. SA is a temporary address
 while SB is a public address. The application has set
 IPV6_PREFER_SRC_TMP in the setsockopt() flag. The route to DA points
 to interface A and route to DB points to interface B. Thus when
 AI_PREFER_SRC_TMP is set , getaddrinfo() returns DA before DB and SA
 before SB likewise. Similarly, getaddrinfo() returns DB before DA
 when AI_PREFER_SRC_PUBLIC is set in this example. Thus the source
 address preference is taking effect into destination address
 selection and as well as source address selection by the
 getaddrinfo() function.

 The following numerical example clarifies the above further.

 Imagine a host with two addresses:

 1234::1:1 public

 9876::1:2 temporary

Nordmark, et al. Expires April 25, 2004 [Page 9]

Internet-Draft IPv6 Socket API for Address Selection October 2003

 The destination has the following two addresses:

 1234::9:3

 9876::9:4

 By default getaddrinfo() will return the destination addresses in the
 order

 1234::9:3

 9876::9:4

 because the public source is preferred and 1234 matches more bits
 with the public source address. On the other hand, if
 AI_PREFER_SRC_TMP is set, getaddrinfo will return the addresses in
 the reverse order since the temporary source address will be
 preferred.

 The following flags are added for the ai_flags in addrinfo data
 structure defined in Basic IPv6 Socket API Extension [2].

 AI_PREFER_SRC_HOME /* Prefer Home Address */

 AI_PREFER_SRC_COA /* Prefer COA */

 AI_PREFER_SRC_TMP /* Prefer Temporary Address */

 AI_PREFER_SRC_PUBLIC /* Prefer Public Address */

 AI_PREFER_SRC_CGA /* Prefer CGA Address */

 AI_PREFER_SRC_NONCGA /* Prefer address other than CGA */

 AI_PREFER_SRC_LARGESCOPE /* Prefer large(global) scope */

 AI_PREFER_SRC_SMALLSCOPE /* Prefer small(local) scope */

 AI_PREFER_DST_LARGESCOPE /* Prefer large(global) scope dest. */

 AI_PREFER_DST_SMALLSCOPE /* Prefer small(local) scope dest.*/

 The above flags are ignored for the AF_INET address family as the
 address selection algorithm defined in section 5 of [1] only applies
 to the IPv6 addresses.

 If conflicting flags such as AI_PREFER_SRC_HOME and AI_PREFER_SRC_
 COA are set, the getaddrinfo() fails with an error EAI_BADFLAGS [2].

Nordmark, et al. Expires April 25, 2004 [Page 10]

Internet-Draft IPv6 Socket API for Address Selection October 2003

 Some valid sequences of flags are:

 AI_PREFER_SRC_HOME | AI_PREFER_SRC_PUBLIC

 AI_PREFER_SRC_COA | AI_PREFER_SRC_PUBLIC

 AI_PREFER_SRC_HOME | AI_PREFER_SRC_CGA

 AI_PREFER_SRC_HOME | AI_PREFER_SRC_NONCGA

 AI_PREFER_SRC_COA | AI_PREFER_SRC_CGA

 AI_PREFER_SRC_COA | AI_PREFER_SRC_NONCGA

 AI_PREFER_SRC_LARGESCOPE | AI_PREFER_DST_LARGESCOPE

 AI_PREFER_SRC_SMALLSCOPE | AI_PREFER_DST_SMALLSCOPE

 AI_PREFER_SRC_LARGESCOPE | AI_PREFER_DST_LARGESCOPE |
 AI_PREFER_SRC_PUBLIC

 All the constants mentioned in this section for ai_flags are defined
 in <netdb.h>.

Nordmark, et al. Expires April 25, 2004 [Page 11]

Internet-Draft IPv6 Socket API for Address Selection October 2003

6. Application Requirements

 An application SHOULD call getsockopt() prior calling setsockopt() to
 a particular address preference, in order to save the existing system
 default values or the current values of the address preference flags.
 However, setsockopt() with a flag value 0 resets the address
 selection to the system default policy.

 Example:

 uint32_t save_flag, flags;

 int optlen = sizeof (save_flag);

 /* Save the existing IPv6_ADDR_PREFERENCE FLAG now */

 if (getsockopt(s, IPPROTO_IPV6, IPV6_ADDR_PREFERENCES,

 &save_flag, &optlen) == -1 {

 perror("getsockopt IPV6_ADDR_REFERENCES");

 }

 flags = save_flag;

 flags &= ~IPV6_PREFER_SRC_PUBLIC;

 flags |= IPV6_PREFER_SRC_TMP;

 if (setsockopt(s, IPPROTO_IPV6, IPV6_ADDR_PREFERENCES,

 (char *) &flags, sizeof (flags)) == -1) {

 perror("setsockopt IPV6_ADDR_REFERENCES");

 }

 Application MUST not set conflicting flags; the only conflicts that
 are checked for are flag X and flag not-X being set at the same time.
 Example of conflicting flags :
 IPV6_PREFER_SRC_TMP | IPV6_PREFER_SRC_PUBLIC.

 In order to allow different implementations to do different parts of
 address selection in getaddrinfo() and in the protocol stack, this
 specification requires that applications set the same flags when
 calling getaddrinfo() and when calling setsockopt(). For example, if
 the application sets IPV6_PREFER_SRC_COA flag, it must use

Nordmark, et al. Expires April 25, 2004 [Page 12]

Internet-Draft IPv6 Socket API for Address Selection October 2003

 AI_PREFER_SRC_COA flag when calling getaddrinfo(). If applications
 are not setting the same flags the behavior of the implementation is
 undefined.

 It is envisioned that Mobile IPv6 applications may want to choose
 Care-of-Address as source for short transaction (for efficiency)
 while roaming, but still keep Home address as source address for long
 lived communication for address stability. Thus it is recommended
 that applications take this idea into consideration and use the
 source address selection API for home-address and care-of -address
 selection appropriately. Similarly, an application may choose to set
 IPV6_PREFER_SRC_COA flag for datagram services; it uses home-address
 as source when at home and uses care-of- address outside home-network
 for short datagram transactions. This is an advantage of having
 flexibility of "preference" vs. "requirement".

Nordmark, et al. Expires April 25, 2004 [Page 13]

Internet-Draft IPv6 Socket API for Address Selection October 2003

7. Implementation Notes

 o If either bind() or IPV6_PKTINFO socket option is set with a
 specific source address in the same application along with the
 address preferenc e socket option, then bind() or IPV6_PKTINFO
 option takes precedence.

 o setsockopt() and getsockopt() SHOULD ignore any address preference
 flags for type of addresses that are not supported in the system.
 The socket option calls should return error when invalid flag
 values are passed to them. The invalid flag values are: flag X
 and flag not-X (set at the same time), some flag that is not known
 to the implementation.

 o If an implementation supports both streams and datagram sockets,
 it should implement the address preference mechanism API described
 in this document on both cases.

 o Implementation supporting this API must implement both AI flags
 and socket option flags processing for portability of
 applications.

 o An implementation may choose to set the following flags by default
 on the system. However, an implementation may choose to clear the
 address preference flags by default indicating that system is
 following default address selection rules.Thus it sets the address
 preference flags only when it is set by the application. Thus the
 change in address preference flag is only visible by that
 application.

 IPV6_PREFER_SRC_HOME

 IPV6_PREFER_SRC_PUBLIC

 IPV6_PREFER_SRC_SMALLSCOPE

 IPV6_PREFER_SRC_CGA

 IPV6_PREFER_DST_SMALLSCOPE

Nordmark, et al. Expires April 25, 2004 [Page 14]

Internet-Draft IPv6 Socket API for Address Selection October 2003

8. Mapping to Default Address Selection Rules

 This API defines only those flags that are deemed to be useful by the
 applications to alter default address selection rules. Thus we
 discuss the mapping of each set of flags to the corresponding rule
 number in the address selection document[1].

 Source address selection rule #4 (prefer home address):

 IPV6_PREFER_SRC_HOME

 IPV6_PREFER_SRC_COA

 AI_PREFER_SRC_HOME

 AI_PREFER_SRC_COA

 Source address selection rule #7 (prefer public address) :

 IPV6_PREFER_SRC_PUBLIC

 IPV6_PREFER_SRC_TMP

 AI_PREFER_SRC_PUBLIC

 AI_PREFER_SRC_TMP

 Source address selection rule #2 (prefer appropriate scope):

 IPV6_PREFER_SRC_LARGESCOPE

 IPV6_PREFER_SRC_SMALLSCOPE

 AI_PREFER_SRC_LARGESCOPE

 AI_PREFER_SRC_SMALLSCOPE

 Destination address selection rule #8 (prefer smaller scope):

 IPV6_PREFER_DST_LARGESCOPE

 IPV6_PREFER_DST_SMALLSCOPE

 AI_PREFER_DST_LARGESCOPE

 AI_PREFER_DST_SMALLSCOPE

 Other destination rules (#4-prefer home address; #7-prefer native

Nordmark, et al. Expires April 25, 2004 [Page 15]

Internet-Draft IPv6 Socket API for Address Selection October 2003

 interfaces) could have been applicable. But the problem is that the
 local system does not know about whether a destination address is a
 tunnel-address for destination rule #7. It can only know for sure if
 the destination address is one of its own. The flags defined for
 source address selection rule #4 (prefer home address) should also
 take care of destination address selection rule #4. Thus at this
 point, it was decided not to define flags for these destination
 rules.

 Other source address rules (that are not mentioned here) were also
 deemed not applicable for changing its default notion per-application
 basis.

Nordmark, et al. Expires April 25, 2004 [Page 16]

Internet-Draft IPv6 Socket API for Address Selection October 2003

9. IPv4-mapped IPv6 Addresses

 IPv4-mapped IPv6 addresses are supported in this API. In some cases
 the IPv4-mapped addresses may not make much sense because the
 attributes are IPv6 specific. For example, IPv6 temporary addresses
 are not the same as private IPv4 addresses. However, the IPv4
 mapped-address support may be useful for mobile home address and
 care-of-address. At this point it is not understood whether this API
 has any value to IPv4 addresses or AF_INET family of sockets.

Nordmark, et al. Expires April 25, 2004 [Page 17]

Internet-Draft IPv6 Socket API for Address Selection October 2003

10. Validation function for source address

 Sometimes an application may have a requirement to set a specific
 source address without which it chooses to fail. In that situation,
 'preferred' addresses do not guarantee the application requirement.
 An application which requires to set a specific type of source
 address must verify that the system indeed has a valid source
 address for the desired source address type. A validation function
 is defined for this purpose:

 <netinet/in.h>.

 boolean_t inet6_is_srcaddr(struct sockaddr_in6 * srcaddr,
 uint32_t flags)

 Where the flags contain the specified source preference flags. The
 function expects a non-NULL input for srcaddr. It returns true when
 srcaddr corresponds to a valid address in the node and that address
 type satisfies the preference flag. If srcaddr input value does not
 correspond to any address in the node or it does not match an
 address which satisfy the preferences indicated, the function returns
 false. Currently, the validation function seems meaningful only for
 IPV6_PREFER_SRC_TMP, IPV6_PREFER_SRC_PUBLIC and
 IPV6_PREFER_SRC_[NON]CGA flags. See the section on "Application
 Requirements" for usage of preference flags in Mobile IPv6
 applications. The scope preference flags do not guarantee validation
 of largest scope when more than two scopes are configured. Thus the
 above temporary/public and CGA/non-CGA flags are the predictable
 choices for the validation function.

 sockaddr_in6 structure must contain AF_INET6 as sin6_family. It also
 must contain the scope_id information if the source address is a
 link-local address.

 This function should be able to handle multiple valid flags
 combination as its second parameter. Invalid flag values result in
 false return value.

 The verification function can be useful for both TCP and UDP socket
 applications that use connect().

Nordmark, et al. Expires April 25, 2004 [Page 18]

Internet-Draft IPv6 Socket API for Address Selection October 2003

11. Security Considerations

 This document conforms to the same security implications as specified
 in IPv6 Basic Socket API [2] document. Allowing applications to
 specify a preference for temporary addresses provides per-application
 (and per-socket) ability to use the privacy benefits of the temporary
 addresses.

12. Changes from previous version of draft

 o Changed IPV6_SRC_PREFERENCES option to IPV6_ADDR_PREFERENCES to
 include destination address preference for scope and for further
 future enhancement which may include both source and destination
 addresses.

 o Added implementation and application requirements.

 o Removed IPV6_PREFER_SRC_NATIVE and IPV6_PREFER_SRC_TUNNEL flags as
 there is no corresponding source address rule in RFC3484.
 Moreover it doesn't seem to make sense to add preference flags for
 this destination addresses since:

 - the local system doesn't in general know whether there is a
 tunnel at the destination end and

 - in the case (6to4) where the local system can tell there will
 be a tunnel for a destination address the default policy table
 already has a rule (for the 6to4 prefix).

 Perhaps there should have been a source rule for tunnel vs.
 native interface in default address selection specification in
 which case it might have made sense to add a preference flag for
 that.

 o Added section on default address selection rule mapping.

 o Added comments on using JAVA API.

 o Added four new flags for destination scoped addresses as some
 working group members felt the requirement of altering default
 destination address scope.

https://datatracker.ietf.org/doc/html/rfc3484

Nordmark, et al. Expires April 25, 2004 [Page 19]

Internet-Draft IPv6 Socket API for Address Selection October 2003

13. Acknowledgments

 The authors like to thank members of mobile-ip and ipv6 working
 groups for useful discussion on this topic. Richard Draves and Dave
 Thaler suggested that getaddrinfo also needs to be considered along
 with the new socket option. Gabriel Montenegro suggested that CGAs
 may also be considered in this document. Thanks to Alain Durand,
 Renee Danson, Alper Yegin, Francis Dupont, Michael Hunter, Sebastien
 Roy, Robert Elz, Jinmei Tatuya, Pekka Savola, Itojun, Jim Bound, Jeff
 Boote and Mika Liljeberg for useful discussions and suggestions.

Normative References

 [1] Draves, R., "Default Address Selection for IPv6", RFC 3484,
 August 2002.

 [2] Gilligan, R., Thomson, S., Bound, J., McCann, J. and W. Stevens,
 "Basic Socket Interface Extensions for IPv6", RFC 3493, March
 2003.

Informative References

 [3] Johnson, D., Perkins, C. and J. Arkko, "Mobility Support in
 IPv6", draft-ietf-mobileip-ipv6-24.txt (work in progress), June
 2003.

 [4] Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6),
 Specification", RFC 2460, December 1998.

 [5] Stevens, W., Thomas, M., Nordmark, E. and T. Jinmei, "Advanced
 Sockets API for IPv6", RFC 3542, May 2003.

 [6] Narten, T. and R. Draves, "Privacy Extensions for Stateless
 Address Autoconfiguration in IPv6", RFC 3041, January 2001.

 [7] Aura, T., "Cryptographically Generated Addresses (CGA)", draft-
ietf-send-cga-01.txt (work in progress), August 2003.

 [8] Montenegro, G. and C. Castelluccia, "Statistically Unique and
 Cryptographically Verifiable (SUCV) Identifiers and
 Addresses.", NDSS 2002, February 2002.

https://datatracker.ietf.org/doc/html/rfc3484
https://datatracker.ietf.org/doc/html/rfc3493
https://datatracker.ietf.org/doc/html/draft-ietf-mobileip-ipv6-24.txt
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc3542
https://datatracker.ietf.org/doc/html/rfc3041
https://datatracker.ietf.org/doc/html/draft-ietf-send-cga-01.txt
https://datatracker.ietf.org/doc/html/draft-ietf-send-cga-01.txt

Nordmark, et al. Expires April 25, 2004 [Page 20]

Internet-Draft IPv6 Socket API for Address Selection October 2003

Authors' Addresses

 Erik Nordmark
 Sun Microsystems, Inc.
 180, avenue de l'Europe
 38334 Saint Ismier CEDEX
 France

 EMail: Erik.Nordmark@Sun.COM

 Samita Chakrabarti
 Sun Microsystems, Inc.
 4150 Network Circle
 Santa Clara, CA 95054
 USA

 EMail: Samita.Chakrabarti@Sun.COM

 Julien Laganier
 ENS Lyon / Sun Microsystems, Inc.
 180, avenue de l'Europe
 38334 Saint Ismier CEDEX
 France

 EMail: Julien.Laganier@Sun.COM

Appendix A. Intellectual Property Statement

 This document only defines a source preference flag to choose
 Cryptographically Generated Address (CGA) as source address when
 applicable. CGA are obtained using public keys and hashes to prove
 address ownership. Several IPR claims have been made about such
 methods.

Nordmark, et al. Expires April 25, 2004 [Page 21]

Internet-Draft IPv6 Socket API for Address Selection October 2003

Full Copyright Statement

 Copyright (C) The Internet Society (2003). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Nordmark, et al. Expires April 25, 2004 [Page 22]

