Network Working Group Internet-Draft

Intended status: Standards Track

Expires: October 16, 2021

H. Chen
M. McBride
Futurewei
A. Wang
China Telecom
G. Mishra
Verizon Inc.
Y. Fan
Casa Systems
L. Liu
Fujitsu
X. Liu
Volta Networks
April 14, 2021

OSPF Extensions for BIER-TE draft-chen-bier-te-ospf-00

Abstract

This document describes OSPF extensions for distributing BitPositions configured on the links in "Bit Index Explicit Replication Traffic Engineering" (BIER-TE) domain.

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of $\underline{\text{BCP }78}$ and $\underline{\text{BCP }79}.$

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on October 16, 2021.

Internet-Draft OSPF for BIER-TE April 2021

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP-78 and the IETF Trust's Legal Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as

Table of Contents

described in the Simplified BSD License.

$\underline{1}$. Introduction												
<u>1.1</u> . Terminology		3										
$\underline{2}$. Extensions to OSPFv2		3										
$\underline{3}$. Security Considerations		5										
$\underline{4}$. IANA Considerations		5										
$\underline{5}$. Acknowledgements		5										
<u>6</u> . References		5										
<u>6.1</u> . Normative References		5										
<u>6.2</u> . Informative References		6										
Authors' Addresses												

1. Introduction

[I-D.ietf-bier-te-arch] introduces Bit Index Explicit Replication (BIER) Traffic/Tree Engineering (BIER-TE). It is an architecture for per-packet stateless explicit point to multipoint (P2MP) multicast path/tree. A link in a BIER-TE domain has its BitPositions. For a link between two nodes X and Y, there are two BitPositions for two forward connected adjacencies. These two adjacency BitPositions could be configured on nodes X and Y respectively. The BitPosition configured on X is the forward connected adjacency of Y. The BitPosition configured on Y is the forward connected adjacency of X.

This document proposes OSPF extensions for distributing BitPositions configured on the links in "Bit Index Explicit Replication Traffic Engineering" (BIER-TE) domain.

Chen, et al. Expires October 16, 2021 [Page 2]

1.1. Terminology

BIER: Bit Index Explicit Replication.

BIER-TE: BIER Traffic Engineering.

BFR: Bit-Forwarding Router.

BFIR: Bit-Forwarding Ingress Router.

BFER: Bit-Forwarding Egress Router.

BFR-id: BFR Identifier. It is a number in the range [1,65535].

BFR-NBR: BFR Neighbor.

LSA: Link State Advertisement.

OSPF: Open Shortest Path First.

2. Extensions to OSPFv2

This section describes protocol extensions to OSPFv2 for distributing BIER-TE information such as the BitPositions configured on the links in a BIER-TE domain.

[RFC7684] defines the OSPFv2 Extended Link TLV to advertise the information about a link. Multiple Link TLVs for the links of a router are included in the OSPFv2 Extended Link Opaque LSA of the router. The OSPFv2 Extended Link TLV has the following format:

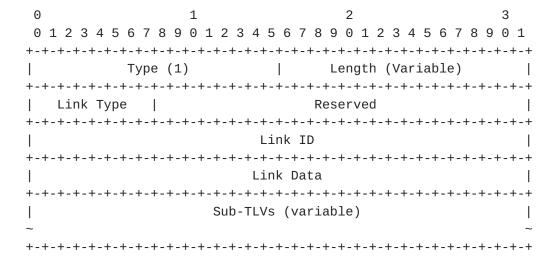


Figure 1: OSPFv2 Extended Link TLV

Chen, et al. Expires October 16, 2021 [Page 3]

Type: 1.

Length: Variable, dependent on Sub-TLVs.

Link Type, Link ID and Link Data: They are defined in Section A.4.2 of [RFC2328].

Reserved: SHOULD be set to 0 on transmission and MUST be ignored on reception.

Under the OSPFv2 Extended Link TLV for a link, a Sub-TLV, called BIER-TE Sub-TLV, is defined for distributing BIER-TE information about the link. A BIER-TE Sub-TLV is included in the Link TLV for a link of Link Type Point-to-Point or Broadcast (or say LAN or Transit Network). The BIER-TE Sub-TLV has the following format:

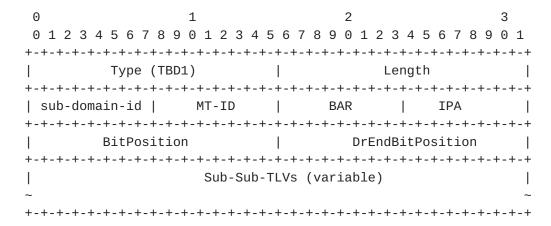


Figure 2: BIER-TE Sub-TLV

Type: TBD1 is to be assigned by IANA.

Length: Variable, dependent on Sub-Sub-TLVs.

sub-domain-id: Unique value identifying a BIER-TE sub-domain.

MT-ID: Multi-Topology ID identifying the topology that is associated with the BIER-TE sub-domain.

BAR: Single-octet BIER Algorithm used to calculate underlay paths to reach other BFRs. Values are allocated from the "BIER Algorithm" registry defined in [RFC8401].

IPA: Single-octet IGP Algorithm used to either modify, enhance, or replace the calculation of underlay paths to reach other BFRs as defined by the BAR value. Values are defined in the "IGP Algorithm Types" registry.

Chen, et al. Expires October 16, 2021 [Page 4]

BitPosition: A 2-octet field encoding the BitPosition locally configured on the link/interface when the Link Type of the link in the OSPFv2 Extended Link TLV containing this Sub-TLV is 1 (i.e., Point-to-Point connection to another router) or 2 (i.e., connection to Transit Network or say LAN).

DrEndBitPosition: A 2-octet field encoding the BitPosition of the connection on the designated router (DR) end. This field is valid when the Link Type in the OSPFv2 Extended Link TLV containing this Sub-TLV is 2 (i.e., Transit Network or LAN). For the other value of the Link Type, this field MUST be ignored. The DrEndBitPosition may be configured on the link/interface to a transit network (i.e., broadcast link or say LAN).

No Sub-Sub-TLV is defined so far. Note that if each of BitPosition and DrEndBitPosition uses more than 2 octets, we use 4 or more octets for each of them.

3. Security Considerations

TBD.

4. IANA Considerations

Under "OSPFv2 Extended Link TLV Sub-TLV registry" as defined in [RFC7684], IANA is requested to assign a new registry type for BIER-TE Sub-TLV as follows:

+=====+===+====++======++										
•			Sub-TLV		'	referen				
+=		:=====+=:	======		:+===:			=+		
	TBD1	- 1	BIER-TE			This do	cument			
+-		+-			+			-+		

Acknowledgements

The authors would like to thank people for their comments to this work.

6. References

6.1. Normative References

```
[I-D.ietf-bier-te-arch]
```

Eckert, T., Cauchie, G., and M. Menth, "Tree Engineering for Bit Index Explicit Replication (BIER-TE)", <u>draft-ietf-bier-te-arch-09</u> (work in progress), October 2020.

Chen, et al. Expires October 16, 2021 [Page 5]

- [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 https://www.rfc-editor.org/info/rfc2119.

- [RFC7684] Psenak, P., Gredler, H., Shakir, R., Henderickx, W., Tantsura, J., and A. Lindem, "OSPFv2 Prefix/Link Attribute Advertisement", <u>RFC 7684</u>, DOI 10.17487/RFC7684, November 2015, https://www.rfc-editor.org/info/rfc7684.
- [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017, https://www.rfc-editor.org/info/rfc8174>.
- [RFC8362] Lindem, A., Roy, A., Goethals, D., Reddy Vallem, V., and
 F. Baker, "OSPFv3 Link State Advertisement (LSA)
 Extensibility", RFC 8362, DOI 10.17487/RFC8362, April
 2018, https://www.rfc-editor.org/info/rfc8362>.

6.2. Informative References

Chen, et al. Expires October 16, 2021 [Page 6]

- [RFC8401] Ginsberg, L., Ed., Przygienda, T., Aldrin, S., and Z. Zhang, "Bit Index Explicit Replication (BIER) Support via IS-IS", RFC 8401, DOI 10.17487/RFC8401, June 2018, https://www.rfc-editor.org/info/rfc8401.
- [RFC8444] Psenak, P., Ed., Kumar, N., Wijnands, IJ., Dolganow, A., Przygienda, T., Zhang, J., and S. Aldrin, "OSPFv2 Extensions for Bit Index Explicit Replication (BIER)", RFC 8444, DOI 10.17487/RFC8444, November 2018, https://www.rfc-editor.org/info/rfc8444.
- [RFC8556] Rosen, E., Ed., Sivakumar, M., Przygienda, T., Aldrin, S.,
 and A. Dolganow, "Multicast VPN Using Bit Index Explicit
 Replication (BIER)", RFC 8556, DOI 10.17487/RFC8556, April
 2019, https://www.rfc-editor.org/info/rfc8556>.

Authors' Addresses

Huaimo Chen Futurewei Boston, MA USA

Email: Huaimo.chen@futurewei.com

Mike McBride Futurewei

Email: michael.mcbride@futurewei.com

Aijun Wang China Telecom Beiqijia Town, Changping District Beijing, 102209 China

Email: wangaj3@chinatelecom.cn

Gyan S. Mishra Verizon Inc. 13101 Columbia Pike Silver Spring MD 20904 USA

Phone: 301 502-1347

Email: gyan.s.mishra@verizon.com

Yanhe Fan Casa Systems USA

Email: yfan@casa-systems.com

Lei Liu Fujitsu

USA

Email: liulei.kddi@gmail.com

Xufeng Liu Volta Networks

McLean, VA USA

Email: xufeng.liu.ietf@gmail.com