Workgroup: httpbis Internet-Draft:

draft-chen-httpbis-window-size-03

Published: 8 July 2022

Intended Status: Informational

Expires: 9 January 2023

Authors: M. Chen Li. Su

China Mobile China Mobile

http2 window size setting

Abstract

This document proposed the minimum value setting mechanism for HTTP2.0 Window and Window_update, and a Window_update frame sending mechanism, used to solve the gap caused by the inconsistency of the minimum value, f the use case when window_size_increment in the window update frame less than 128 bytes and the increased window size also less than 128 bytes, then network connection will come to an error.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 9 January 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Revised BSD License.

Table of Contents

- 1. Introduction
- Terminology
- 3. Use Case
- 4. Setting minimum window size
 - 4.1. Setting new parameter
 - 4.2. new parameter setup process
- 5. Setting minimum window update size
 - 5.1. <u>Setting new parameter</u>
 - 5.2. new parameter setup process
- 6. Security Considerations
- 7. IANA Considerations
- 8. Acknowledgement
- 9. Informative References

<u>Authors' Addresses</u>

1. Introduction

The following content is from RFC 7540[RFC7540]

When an HTTP/2 connection is first established, new streams are created with an initial flow-control window size of 65,535 octets. The connection flow-control window is also 65,535 octets. Both endpoints can adjust the initial window size for new streams by including a value for SETTINGS_INITIAL_WINDOW_SIZE in the SETTINGS frame that forms part of the connection preface. The connection flow-control window can only be changed using WINDOW_UPDATE frames.

SETTINGS_INITIAL_WINDOW_SIZE (0x4): Indicates the sender's initial window size (in octets) for stream-level flow control. The initial value is 2^16-1 (65,535) octets. Only DATA frames are subject to flow control.

9114 HTTP/3(still under the editing phase) is also involved:

SETTINGS_INITIAL_WINDOW_SIZE (0x4): QUIC requires both stream and connection flow-control window sizes to be specified in the initial transport handshake. Specifying a setting with the identifier 0x04 (corresponding to the SETTINGS_INITIAL_WINDOW_SIZE parameter) in the HTTP/3 SETTINGS frame is an error.

Window Size Increment defined in the Window_update is 31, the legal range for the increment to the flow-control window is 1 to 2^31-1 (2,147,483,647) octets.

RFC 7540 just Specifies the maximum value of Window and the Window Size Increment, But there is no obvious rule about minimum values.

HTTP/2 defines only the format and semantics of WINDOW_UPDATE frames, and does not specify how the receiver decides when to send frames, what values to send, or how the sender chooses to send packets. And RFC 7540 just Specifies the maximum value of Window and the Window Size Increment, But there is no obvious rule about minimum values. The implementation can choose any algorithm that meets the requirements, this makes the difference.

In the current network, there is no standard minimum setting, which leads to the inconsistency of message processing between communication parties, which may led to the situation that the message will be disdetermined as an attack by the recipient, actually frequent window_UPDATE frames can result in a denial of service. In draft draft-ietf-httpbis-02 section 10.5 also give some Denial-of-Service considerantions.

2. Terminology

The readers should be familiar with the terms defined in.

In addition, this document makes use of the following terms:

Window_update: The WINDOW_UPDATE frame (type=0x8) is used to implement flow control;

SETTING The SETTING frame (type=0x4) is used to transmitting configuration informations which will affect the communication process of the data stream.

3. Use Case

This section describes use case which happens between two different manufacturers. They both use HTTP2.0 protocol to transmit messages. We found this phenomenon, one issues a regular registration request, the other one receives the request, but judged to be attack behaviour.

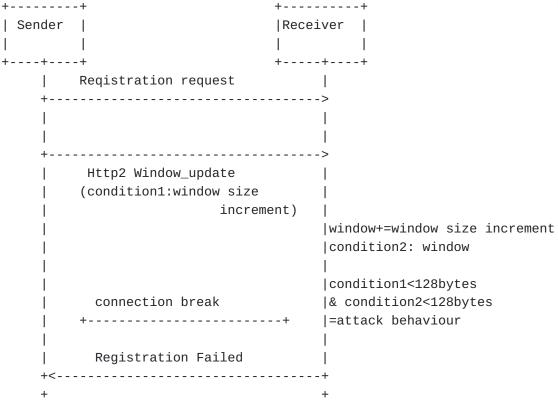


Figure 1: A normal request is considered an attack

Why determine abnormal attack behavior, the analysis is as follows:

The default initial window size defined by the protocol is 64K. After the data in the receiving window is removed, part of the window occupied by the original data is released.

If there is a large backlog of data in the original receiving window that has not been removed, resulting in a small remaining window, the window added after the normal removal of data will not be too small. If there is little backlog of data in the original receiving window, the window that needs to be added after the data is removed will be small, but the overall available window after the adjustment will be larger. In neither case will the window be too small, So the connection considered to be an attack.

So when need to solve this problem, two approaches can be discussed, specifying a minimum value for window and window size increment, or increasing more detailed flow control strategies.

4. Setting minimum window size

The parameter of Setting frame in RFC 7540 does not have the function of Setting the minimum window size. This chapter proposes to add this new parameter for Setting. The SETTINGS frame (type=0x4)

conveys configuration parameters that affect how endpoints communicate, such as preferences and constraints on peer behavior. The SETTINGS frame is also used to acknowledge the receipt of those parameters.

4.1. Setting new parameter

The following new parameter is defined.

SETTINGS_MINIMUM_WINDOW_SIZE(0x7): Indicates the minimum window size set by the sender. Allows the sender to inform the remote endpoint of the minimum window size. For example, when set to 128 Bytes, the minimum window size is 128 Bytes.

If the sender sends the last Data frame and the Window decreases to less than the minimum Window, it will stop sending Data frame until it receives window_UPDATE frame to increase the Window, and the modified Window value is greater than the minimum set Window, then it can start sending Data frame again. Note that this is more detail than RFC7540 discribed, where Data frames can be sent as long as the Window value is greater than zero.

4.2. new parameter setup process

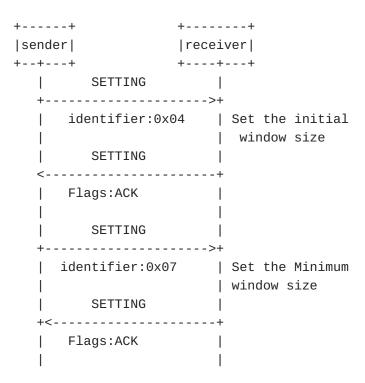


Figure 2: the process of setting window size

First, set the initial window size with the identifier SETTINGS_INITIAL_WINDOW_SIZE (0x4), values above the maximum flow-control window size of 2^31-1 MUST be treated as a connection error

of type FLOW_CONTROL_ERROR. An ACK is received to indicate that the setup is complete.

Then, set the minimum window size with the identifier SETTINGS_MINIMUM_WINDOW_SIZE(0x7), ACK is received to indicate that the minimum window size setup is complete. A FLOW_CONTROL_ERROR error is thrown when the following SETTINGS_MINIMUM_WINDOW_SIZE set in the Setting frame is below the negociative initial minimum value.

5. Setting minimum window update size

The WINDOW_UPDATE frame (type=0x8) is used to implement flow control. The payload of a WINDOW_UPDATE frame is one reserved bit plus an unsigned 31-bit integer indicating the number of octets that the sender can transmit in addition to the existing flow-control window. the unsigned 31-bit integer is knew as Window Size Increment and the Size range is (1, 2^31-1), that means the default minimum is 1. So this could lead to a problem, frequent sending of Window_UPDATE frames with small value of Window Size Increment(such as 1 byte) will result in the consumption of computing and network resources, and in some cases can even trigger a denial of service attack.

We propose to add new parameter of SETTING frame for Implementation that set a minimum update window value, It's actually the Window Size Increment.

5.1. Setting new parameter

The following new parameter is defined.

SETTINGS_MINIMUM_WINDOW_UPDATE(0x8):Indicates that the sender has set the minimum window_UPDATE update size. For example, when set to 128 Bytes, the minimum window update size is 128 Bytes.

If the buffering data processed by receriver at one time is less than the minimum window update value, it needs to accumulate to the minimum value before sending Window_update once to update the traffic window.

5.2. new parameter setup process

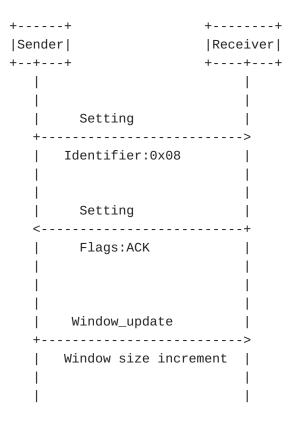


Figure 3: the process of setting window_update size

First, set the minimum window_update size with the identifier SETTINGS_MINIMUM_WINDOW_UPDATE(0x8), An ACK is received to indicate that the setup is complete. Minimum window_update policy can only be enabled if SETTINGS_MINIMUM_WINDOW_UPDATE is set.

Then, only when the cumulative amount of processing is greater than the value of SETTINGS_MINIMUM_WINDOW_UPDATE, can an window_update frame be sent which will inform the peer to increase the window value. When the following Window Size Increment value in a Window_update frame is less than the set negociative initial minimum, a FRAME_SIZE_ERROR error is thrown.

6. Security Considerations

Failure to set a minimum will result in frequent window_update if only process a small amount of data at a time, it is likely to occur Denial of service attacks, it would be fatal if it happened in an Internet of Things scenario. In draft-ietf-httpbis-http2bis, there are also Denial-of-Service consideration in section 10.5, includes the misuse of some parameters and priorities.

It solves the attack problem caused by the failure to set the minimum value of window and window update frame, such as

CVE-2019-9511, and avoids the link congestion caused by small incremental update.

7. IANA Considerations

This document does not require any action from IANA.

8. Acknowledgement

TBD

9. Informative References

Authors' Addresses

Meiling Chen China Mobile 32, Xuanwumen West BeiJing BeiJing, 100053 China

Email: chenmeiling@chinamobile.com

Li Su China Mobile 32, Xuanwumen West BeiJing 100053 China

Email: suli@chinamobile.com