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Abstract

This draft describes a mechanism to enable the Secure Neighbor
Discovery (SEND) protocol to select between different signature
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algorithms to use with Cryptographically Generated Addresses (CGA). It
also provides optional support for interoperability between nodes that
do not share any common signature algorithms.
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1. Introduction TOC

The usage scenarios associated with neighbor discovery have recently
been extended to include environments with mobile or nomadic nodes.
Many of these nodes have limited battery power and computing resources.
Therefore, heavy public key signing algorithms like RSA are not
feasible to support on such constrained nodes. Fortunately, more



lightweight yet secure signing algorithms do exist and have been
standardized, e.g. Elliptic Curve based algorithms.

It is then a worthwhile goal to extend secure neighbor discovery to
support signing and corresponding hashing algorithm agility. Besides
accommodating power-constrained nodes, signing and hashing algorithm
agility is also desired as a safety measure over time, to offer
alternatives when cryptanalysis of one type of algorithm makes
significant progress.

The aim of this memo is to outline options for allowing public key
signing algorithm and hashing algorithm agility for nodes configured to
perform secure neighbor discovery operations. The extent to which these
options impact existing specifications [RFC3971] (Arkko, J., Kempf, J.,

Zill, B., and P. Nikander, “SEcure Neighbor Discovery (SEND),”
March 2005.) and [RFC3972] (Aura, T., “Cryptographically Generated
Addresses (CGA),” March 2005.) is also addressed.

2. Overview TOC

2.1. Compatibility with existing specifications TOC

The current SEND protocol specification, [RFC3971] (Arkko, J., Kempf,
J., 7zill, B., and P. Nikander, “SEcure Neighbor Discovery (SEND),”
March 2005.), mandates the use of the RSA signature algorithm. Since
the time of its writing, different signature algorithms have been shown
to be secure and have been adopted by other protocols in an effort to
reduce key length, signature generation and verification time, and
increase security level. This shift in signature algorithm adoption
particularly benefits lightweight devices, which are power and memory-
limited but in need of secure signing algorithms support. For these
reasons, we feel that the restriction on the signature algorithm for
SEND is no longer warranted.

2.1.1. Classification of SEND nodes TOC

At the time of this writing, there are no known large-scale or even
small-scale deployments of [RFC3971] (Arkko, J., Kempf, J., Zill, B.,
and P. Nikander, “SEcure Neighbor Discovery (SEND),” March 2005.)-
compatible devices. However, in the interest of caution, we assume that
there exist nodes that support only the RSA algorithm and that are
configured to perform secure neighbor discovery. Such nodes may not be




updated in the near term or for the foreseeable future. On the other
hand, it appears that there will be deployments of nodes that support
only Elliptic Curve Cryptography as their public key algorithm, i.e.
ECDSA as a signature algorithm, rather than traditional RSA.

To ensure that all possible network/link configurations are considered
when designing a signature agility solution, we categorize nodes (hosts
and routers) according to their support for different signature
algorithms, as follows:

Type H1 host:
A host that only supports one type of signature
algorithm and has a CGA generated with the public key of this
algorithm.

Examples of this type of hosts: an old host that does not support
signature agility, i.e. only supports RSA signature algorithm;
or, a host that only supports ECDSA signature.

Type H2 host:
A host that supports multiple signature algorithms
and has a CGA generated with only one key selected from among its
supported algorithms.

Examples of this type of hosts: (1) a host that supports RSA and
ECDSA signature algorithms, but only has a CGA derived with an
RSA public key; (2) a host that supports RSA and ECDSA signature
algorithms, but only has a CGA derived with an ECC public key.

Type H3 host:
A host that supports multiple signature algorithms
and has a CGA generated with multiple keys of different supported
algorithms.

Such CGA generation is made possible by the introduction of a new
CGA extension (see companion draft [cheneau-cga-pk-agility]
(Cheneau, T., Laurent-Maknavicius, M., Shen, S., and M.
Vanderveen, “Support for Multiple Signature Algorithms in
Cryptographically Generated Addresses (CGAs),” June 2009.)). Such
hosts can be compatible with hosts of other types for secure
neighbor discovery.

Type H4 host:

A host that supports multiple signature algorithms
and has multiple CGAs, each of which is associated with a single
key of one supported algorithm. For simplicity, we do not
consider hosts that have multiple CGAs, one or more of which are
generated from multiple public keys.

A node MUST select and settle on one CGA when building a trust
relationship with another device via SeND (more below). In such



cases, a destination node may be reached at a CGA associated with
a signature algorithm that the originating node cannot verify.
The destination node will need to securely redirect the
originating node to one of its other CGA(s) (presumably with a
common signature algorithm). The need for a method to secure the
binding between the two CGAs of the destination node is still an
open problem.

Based on this reasoning, consideration of H4 type nodes is left
for future work.

Routers are more likely to possess the resources necessary to support
multiple signature and hashing algorithms. It is also more feasible
that routers employ certificates. However, for a basic signature
agility solution, we do not mandate that routers support multiple
signature and hashing algorithms.

Possible router devices with different signature algorithm support
ability are:

Type R1 router:
A router that only supports one type of signature
algorithm and has a CGA and Certificate with a public key of this
algorithm.

Such routers are expected to be commonplace, as compliance with
[RFC3971] (Arkko, J., Kempf, J., Zill, B., and P. Nikander,
“SEcure Neighbor Discovery (SEND),” March 2005.) suffices for
them.

Type R2 router:
A router that supports multiple types of signature
algorithms and has one CGA and Certificate with a public key of
one of the algorithm types.

This type of router can sign and verify signatures of the type of
certificate it owns, and additionally, it can verify signatures
of other algorithm types.

Type R3 router:
A router that supports multiple types of signature
algorithms and has one CGA composed of multiple Publics Keys and
multiple certificates containing each a Public Key.

Type R4 router:
A router that supports multiple types of signature
algorithms and has multiple CGAs and Certificates with public key
of several different algorithm types.

This type of router can sign and verify signatures of multiple
types. Such routers may not be attractive to build and deploy due



to increased requirements on its resources. Moreover using
multiple CGAs (with no bindings) may make that routers appear as
having multiple identities.

Note that all types of router presented above can be configured to use
SEND over multiple interfaces or to have multiple addresses on the same
interface. In this case, the router will use separate CGAs. Such
configuration is treated in this draft as if the different addresses
refer to separate entities.

2.1.2. Principal Scenarios TOC

Based on the discussion above, a SEND agility solution should at least
properly deal with the communication between devices of type H1, H2,
H3, R1, R2 and R3.

An H1 or R1 node interacting with an H2 or R2 node: i.e., a node
supporting only RSA (for example, an old non-agility node which only
supports RFC3971) and a node supporting both RSA and ECDSA (or other
new algorithms). These two nodes may be able to perform secure
neighbor discovery.

An H1 or R1 node interacting with another H1 or R1 node, but their
algorithms differ: e.g., a node supporting only RSA (for example, an
old non-agility node which only supports RFC3971) and a node
supporting only ECDSA (or other new algorithms). In this case,
implementations supporting SEND signature agility solution may
likely realize the incompatibility, while older implementations may
not.

A node of any type (H1, H2, H3, R1, R2, R3) interacting with another
node, their algorithms differ but there is a 3rd party willing/able
to help: this is an optional solution applicable to the previous
scenario, where two nodes that support SEND but do not have any
signature algorithms in common can talk through a third party
(router). In this case they should be able to perform facilitated
secure neighbor discovery.

An H2, H3 or R2 node interacting with another H2, H3, or R2 node:
e.g., two nodes that support at least one signature algorithms in
common will be able to perform secure neighbor discovery.

An additional rule for H2, H3 or R2, R3 node interacting with
another H2, H3, or R2, R3 node applies: two nodes that support two
or more signature algorithms in common (one of which is likely
preferred over the other), will be able to perform secure neighbor
discovery with any of these signature algorithms.



2.2. Agility Requirements TOC

We hold the following to be requirements on a signing algorithm agility
solution for SEND:

*A Signature-Algorithm-Agility-Node should be able to communicate
with a Non-Signature-Algorithm-Agility-Node, but not necessarily
employ SEND. Traditional ND should suffice, to accommodate nodes
that only support one type of Signature Algorithm, which may not
be RSA. Local policy MAY disable this behavior, namely the use of
unsecured ND messages when communicating with a node that does
not share any common signature algorithm.

*Two Signature-Algorithm-Agility nodes that support a common
Signature Algorithm and hashing algorithm should be able to
communicate using SEND and sign messages using the common
Signature Algorithm and hash algorithm.

*The current SEND/CGA specifications should incur as few changes
as possible.

2.3. Mechanism for Agility Support of CGA and SEND TOC

To achieve signature agility for SEND, it must be possible for a CGA to
be generated from and to be securely associated with multiple public
keys corresponding to different signature algorithms. This capability
is described in the companion draft [cheneau-cga-pk-agility] (Cheneau,
T., Laurent-Maknavicius, M., Shen, S., and M. Vanderveen, “Support for
Multiple Signature Algorithms in Cryptographically Generated Addresses
(CGAs),” June 2009.).

This document proposes an update to [RFC3971] (Arkko, J., Kempf, J.,
zill, B., and P. Nikander, “SEcure Neighbor Discovery (SEND),”

March 2005.) to allow two SEND nodes to choose an appropriate signature
algorithm. This solution encompasses the following:

*A "Supported Signature Algorithm" Neighbor Discovery Protocol
option which contains a list of signing and hashing algorithms
that the sender node supports for SEND purposes and its
interaction with the Neighbor Cache;

*A modification of the "RSA Signature" option defined in the SEND
specification;



*An optional solution to support secure communication through a
router acting as a third party when nodes don't share any common

Signature Algorithm.

We define the aforementioned options format and provide processing
rules for both senders and receivers of SEND messages employing the new
options, as well as example negotiation message flows.

3. Supported Signature Algorithm Option TOC

The Supported Signature Algorithm NDP option contains a list of signing
and hashing algorithm pairs that the sender node supports. The format
of this option is described in Figure 1 (Supported Signature Algorithm

option):
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Figure 1: Supported Signature Algorithm option

Type

NDP option type, TBA. See Section 8 (IANA Considerations).

Length

The length of the option (including the Type, Length
fields), in octets. 8-bit unsigned integer, the values lower that

2 are invalid.

Reserved

Reserved for future use.

This 16-bit field MUST be set to

zero by the sender, and MUST be ignored by the receiver.



Signature Algorithm

A one-octet long field indicating a signature algorithm and the
corresponding hash algorithm that this node supports; this
support implies at least ability to verify signatures of this PK
algorithm.

The first leftmost bit, bit 0, if set to O, indicates that the
emitter is able to perform signature checks only (i.e. no
signature generation with this type of signature algorithm). If
this bit is set to 1, it indicates that the emitter has a public
key of this type and can generate signatures. Bit 1 and 2 are
reserved. Bit 3 to 7 are named Signature Type Identifier subfield
and encode an identifier for the signature algorithm and
corresponding hash algorithm. Default values for the Signature
Type Identifier subfield defined in this document are taken in
part from the IANA-defined numbers for the IKEv2 protocol, i.e.
IANA registry named "IKEv2 Authentication Method":

*Value 0 is RSA/SHA-1

*Value 1 is RSA/SHA-256

*Value 9 is ECDSA with SHA-256 on the P-256 curve
*Value 10 is ECDSA with SHA-384 on the P-384 curve
*Value 11 is ECDSA with SHA-512 on the P-521 curve

The Signature/hash Algorithm combinations SHOULD be included in
order of preference.

A SSA option MAY be built to respect a Local Policy. However, the
SSA option MUST not indicate Signature Algorithm(s) that the
emitting node's CGA does not support and MUST contain at least
one Signature Algorithm with the first bit on (i.e. this
Signature Algorithm is available for signature generation).

3.1. Neighbor Cache interactions TOC

Neighbor Cache MUST have the ability to store Supported Signature
Algorithm information for each entry (i.e. IPv6 address). Supported
Signature Algorithm information for an entry MAY be empty (e.g. entry
created by a RFC 3971 node or an unverifiable message).



3.2. Processing Rules for Senders TOC

If a node has been configured to use SEND, then all Neighbor
Solicitation, Neighbor Advertisement, Router Solicitation, Router
Advertisement, and Redirect messages it sends MUST contain the
Supported Signature Algorithm option. This option MUST contain in the
Signing Algorithm field all the signature algorithms it is willing to
use in signature generation and verification.

3.3. Processing Rules for Receivers TOC

Upon receiving a SEND packet with a Supported Signature Algorithm
Option, a receiver performs the following operations:

*when the message is a Neighbor Solicitation or a Router
Solicitation, the receiving node computes the intersection
between the set of Supported Signature Algorithm indicated by the
option and its own. If the set is empty, this means the node will
not be able to use a Signature Algorithm that the initiating node
can check. Given the local policy, a receiver node MAY still
respond to the received message using its "preferred" Signature
Algorithm (even if the node knows the receiver will not be able
to verify the Signature Algorithm). If the set is not empty, the
receiving node will choose among the set one of the algorithms in
order to generate a Universal Signature Option.

*If the message pass the SEND verifications (CGA verification,
Timestamp, Nonce, Universal Signature Option verification) and
contains a Supported Signature Algorithm Option, the information
of the Supported Signature Algorithm in the Neighbor Cache is
updated by the information contained in the Supported Signature
Option attached to the message.

*If the message does not pass the SEND verifications because of a
unverifiable RSA Signature Option or Universal Signature Option,
if it contains a Supported Signature Algorithm Option, and the
Neighbor Cache entry associated to that node does not contain any
information about the Supported Signature Algorithm, the Neighbor
Cache entry SHOULD be updated with the information contained in
the Supported Signature Algorithm Option.

T0C



4. SEND Universal Signature Option

We propose replacing the RSA Signature Option by a new algorithm-
independent signature option. The "Universal Signature Option" is an
updated version of the RSA Signature Option, that allows a node to
specify which of its potential multiple keys it is using. To achieve
this, we use the 16-bit reserved field of the RSA Signature Option, and
define a new 8-bit field that contains the position of the Public Key
associated with the signature and a new 5-bit Signature Type Identifier
field that details the type of algorithms used to generate the Digital
Signature.

0 1 2 3
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Figure 2: Universal Signature Option format

Type
Same value as in [RFC3971] (Arkko, J., Kempf, J., 7Zill, B.,
and P. Nikander, “SEcure Neighbor Discovery (SEND),”

March 2005.): 12.

Length
The length of the option (including the Type, Length,



Reserved, Key Hash, Digital Signature, and Padding fields) in
units of 8 octets.

Key Position
An 8-bit field indicating which Public Key in the CGA
parameter structure (carried in the CGA option) has been used to

compute the Digital Signature. The index starts at 0, meaning the

key is the one in the Public Key field. Values greater than 1
refer to Public Key found in the CGA Extension field (as defined
in the companion document [cheneau-cga-pk-agility] (Cheneau, T.,

Laurent-Maknavicius, M., Shen, S., and M. Vanderveen, “Support
for Multiple Signature Algorithms in Cryptographically Generated

Addresses (CGAs),” June 2009.)]). Value 255 is a reserved value
that indicates no CGA option in the message contains the Public
Key.

Reserved
A 3-bit field reserved for future use. The value MUST be
set to zero by the sender and MUST be ignored by the receiver.

Signature Type Identifier
Signature Type Identifier is a 5-bit
field. It corresponds to the Signature Type Identifier subfield
(bits 3 to 7 of the Signature Algorithm field) in the Supported
Signature Algorithm option . It indicates the type of signature
contained in the Digital Signature field.

Key Hash

A 128-bit field containing the most significant (leftmost)

128 bits of a hash of the public key used for constructing the

signature. It is computed using the same hash function as used in

generating digital signature (indicated in Signature Type
Identifier). The hash value is computed over the presentation

used in the Public Key field of the CGA Parameters data structure

carried in the CGA option. Its purpose is to associate the

signature with a particular key known by the receiver. Such a key

can either be stored in the certificate cache of the receiver or
be received in the CGA option in the same message.

Digital Signature
A variable-length field containing a signature
constructed by using the sender's private key associated to the
public key pointed by the Key Position field. The signature type
is determined from the value of the Signature Type Identifier
field. If the value of the Signature Type Identifier field is 0,
then the Key Position field must be set to 0 and this Digital

Signature field is computed the same way as the Digital Signature

field of the RSA Signature Option described in [RFC3971] (Arkko,

J., Kempf, J., 7zill, B., and P. Nikander, “SEcure Neighbor
Discovery (SEND),” March 2005.). If the value of the Signature




Type Identifier field is 1, then this Digital Signature field is
computed the same way as the Digital Signature field of the RSA
Signature Option described in [RFC3971] (Arkko, J., Kempf, J.,
Zill, B., and P. Nikander, “SEcure Neighbor Discovery (SEND),”
March 2005.) except that the signature is computed with the
RSASSA-PKCS1-v1l 5 algorithm as defined in [PKCS1] (RSA
Laboratories, “RSA Encryption Standard, Version 2.1,”

November 2002.) and hash function is SHA-256. If the value of the
Signature Type Identifier field is 9, 10 or 11, then this Digital
Signature field is computed using the ECDSA signature algorithm
(as defined on [SEC1] (Standards for Efficient Cryptography
Group, “SEC 1: Elliptic Curve Cryptography,” September 2000.))
and hash function defined in Signature Type Identifier on the
following data:

1. The 128-bit CGA Message Type tag [RFC3972] (Aura, T.,
“Cryptographically Generated Addresses (CGA),”
March 2005.) value for SEND, 0x086F CA5SE 10B2 00C9 9C8C
EQO1 6427 7C08. (The tag value has been generated
randomly by the editor of the [RFC3971] (Arkko, J.,
Kempf, J., 7Zill, B., and P. Nikander, “SEcure Neighbor
Discovery (SEND),” March 2005.) specification.).

2. The 128-bit Source Address field from the IP header.
3. The 128-bit Destination Address field from the IP header.

4. The 8-bit Type, 8-bit Code, and 16-bit Checksum fields
from the ICMP header.

5. The NDP message header, starting from the octet after the
ICMP Checksum field and continuing up to but not
including NDP options.

6. All NDP options preceding, but not including, any of the
Universal Signature options.

This field starts after the Key Hash field. The length of the
Digital Signature field is determined by the length of the
Universal Signature option minus the length of the other fields
(including the variable length Pad field).

Padding This variable-length field contains padding, as many bytes
long as remain after the end of the signature.

A Neighbor Solicitation/Advertisement, Router Solicitation/
Advertisement and Redirect message MAY contain more than one Universal
Signature Option, as long as it does not exceed the MTU. This is
particularly useful for routers operating in heterogeneous networks,
where hosts have a disjoint set of supported signature algorithms. For



information on how to compute the message size, see Appendix A (On the
number of Public Keys supported per CGA).

4.1. Processing Rules for Senders TOC

When sending a SEND message spontaneously, an emitter node CAN choose a
signature algorithm of its preference (defined by its local policy)
among the corresponding Public Keys carried in the CGA option. Using
this signature algorithm, the node computes the Digital Signature and
fills the Key Position field with the position of the key in the CGA
parameter data structure.

If the node has been configured to use SEND, then all Neighbor
Solicitation, Neighbor Advertisement, Router Advertisement, and
Redirect messages MUST contain at least one Universal Signature option.
Router Solicitation messages not sent with the unspecified source
address MUST contain the Universal Signature option.

A node sending a message with one or more Universal Signature option(s)
MUST construct the message as follows:

*If the node has previously received hints (e.g. a NDP message
with a Supported Signature Algorithm option or an entry in the
Neighbor Cache) on the type of Signature Algorithm it should use,
it MUST restrict its choice on those Signature Algorithms.

*The message is then constructed in its entirety, without any of
the Universal Signature options.

*The Universal Signature option(s) is (are) added as the last
option in the message.

*The data to be signed is constructed as explained in [RFC3971]
(Arkko, J., Kempf, J., 7ill, B., and P. Nikander, “SEcure
Neighbor Discovery (SEND),” March 2005.), under the description
of the Digital Signature field.

*The message, in the form defined above, is signed by using the
configured private key associated to the selected Signature
Algorithm, and the result signature is is encapsulated into the
Digital Signature field.

T0C



4.2. Processing Rules for Receivers

Neighbor Solicitation, Neighbor Advertisement, Router Advertisement,
and Redirect messages without any Universal Signature option or with an
unverifiable Universal Signature option MUST be treated as unsecured
(i.e., processed in the same way as NDP messages sent by a non-SEND
node). See Section 8 of [RFC3971] (Arkko, J., Kempf, J., Zill, B., and
P. Nikander, “SEcure Neighbor Discovery (SEND),” March 2005.).

Router Solicitation messages without any Universal Signature option
MUST also be treated as unsecured, unless the source address of the
message is the unspecified address.

Redirect, Neighbor Solicitation, Neighbor Advertisement, Router
Solicitation, and Router Advertisement messages containing one or more
Universal Signature option MUST be checked as follows:

*The receiver MUST ignore any options that come after the first
Universal Signature option. (The options are ignored for both
signature verification and NDP processing purposes.)

*The Key Hash field MUST correspond to a known public key, either
one learned from the CGA option in the same message by the
position indicated in the Key Position field message, or one
known by other means.

*The Digital Signature field MUST have correct encoding and MUST
not exceed the length of the Universal Signature option minus the
Padding.

*The Digital Signature verification MUST show that the signature
has been calculated as specified in the previous section.

*If the use of a trust anchor has been configured, a valid
certification path (see Section 6.3 of [RFC3971] (Arkko, J.,
Kempf, J., 7zill, B., and P. Nikander, “SEcure Neighbor Discovery
(SEND),"” March 2005.)) between the receiver's trust anchor and
the sender's public key MUST be known.

Messages that do not pass all the above tests MUST be silently
discarded if the host has been configured to accept only secured ND
messages. The messages MAY be accepted if the host has been configured
to accept both secured and unsecured messages but MUST be treated as
unsecured messages. The receiver MAY also otherwise silently discard
packets (e.g., as a response to an apparent CPU exhausting DoS attack).

5. Basic negotiation TOC



5.1. Overview TOC

This section describes different configuration of SEND-enabled nodes
with varying signing capabilities and their interaction during the
negotiation phase.

Case 1: when both nodes support the same two Signature Algorithms, they
can pick the Signature Algorithm they prefer for signing and are able
to verify each others signature. Figure 3 (Basic negotiation - Case 1)
is an example of such a message flow.

Node A Node B

NS

{CGA option,

RSA Signature option.
Supported-Signature-Algo option

(RSA sign & verif, ECC sign & verif)}

NA

{CGA option,

ECC Signature option
Supported-Signature-Algo option

(ECC sign & verif, RSA sign & verif)}

IPv6 traffic SR > 1IPv6 traffic

Figure 3: Basic negotiation - Case 1

Case 2: two nodes sharing at least one common Signing Algorithm must be
able to securely communicate. Figure 4 (Basic negotiation - Case 2) is
an example of such a message flow.




support for signing,

Node A

NS

{CGA option,

RSA Signature option.
Supported-Signature-Algo option

Node B

(RSA sign & verif, ECC sign & verif)}

NA

{CGA option,

ECC Signature option
Supported-Signature-Algo option
(ECC sign & verif)}

(At this point, Node B could not
authenticate Node A's Neighbor
Solicitation)

-------- > (unidirectionnal) IPv6 traffic

NA

{CGA option,

ECC Signature option.
Supported-Signature-Algo option

NS

{CGA option,

ECC Signature option
Supported-Signature-Algo option
(ECC sign & verif)}

(RSA sign & verif, ECC sign & verif)}

IPv6 traffic Cemmmm-- >

IPv6 traffic

Figure 4: Basic negotiation - Case 2

Case 3: when two nodes have a disjoint set of Signature Algorithm
but the two nodes are able to verify each others,
a full negotiation is possible. Figure 5 (Basic negotiation - Case 3)

is an example of such a message flow.



Node A Node B

NS

{CGA option,

RSA Signature option.
Supported-Signature-Algo option
(RSA sign & verif, ECC verif only)}

NA

{CGA option,

ECC Signature option
Supported-Signature-Algo option
(ECC sign & verif, RSA verif only)}

IPv6 traffic <------- > 1IPv6 traffic

Figure 5: Basic negotiation - Case 3

Case 4: when two nodes have a disjoint set of Signature Algorithm
support for signing, but one node is able to verify, a partial
negotiation is possible. Figure 6 (Basic negotiation - Case 4) is an
example of such a message flow.

Node A Node B

NS

{CGA option,

RSA Signature option.
Supported-Signature-Algo option
(RSA sign & verif)}

NA

{CGA option,

ECC Signature option
Supported-Signature-Algo option
(ECC sign & verif, RSA verif only)}

(...depending on local policies...)
IPv6 traffic S > 1IPv6 traffic

Figure 6: Basic negotiation - Case 4



Section 6 (Router-as-a-notary function) describes an optional
functionality that allow nodes in Case 4 to perform a trustful complete
negotiation.

5.2. Sending Unsolicited Messages TOC

When sending unsolicited message, a node MAY have to rely on the
entries of its Neighbor Cache. The Neighbor Cache will provide hints
concerning the Signature Algorithm supported by the neighbors. Neighbor
Cache can assist the node in the Signature Algorithm selection process
when:

*A router advertises unsolicited Router Advertisement message to
the All-Nodes multicast address (e.g. to indicate a prefix
lifetime is going down to 0). The router needs to know which
signature algorithm(s) to use in order to send verifiable
messages to hosts. To do so, the router MAY rely on the Neighbor
Cache and compute an intersection of the set of all Supported
Signature Algorithms. The router will then be able to advertise a
Router Advertisement signed multiple times with the resulting
subset of Supported Signature Algorithms or advertise multiple
Router Advertisements, each signed with a single Signature
Algorithm part of the intersection.

*A node sends unsolicited Neighbor Advertisement (e.g. when
changing its Link-Layer address). This is similar to the previous
problem and can also be solved using the Neighbor Cache the same
way .

*A router sends a Redirect message to a host. Choosing a supported
signature algorithm without probing the node can be difficult.
However, Neighbor Cache will most likely contain an entry for the
host, prior to the decision to send a Redirect message, because
of the Address Resolution process. This entry should contain
information on the Supported Signature Algorithm(s) and thus
provide hints concerning the Signature Algorithm to choose to
sign the Redirect messages.

Note that the information on the neighbors with which a communication
has occurred recently or is ongoing are in the Neighbor Cache and are
maintained up to date through the Neighbor Unreachability Detection
procedure.

T0C



6. Router-as-a-notary function

This optional functionality enhances backward compatibility by
introducing a new entity. This new entity, named "notary", certifies
the authenticity of a node's message. This improves communication when,
for example, two nodes have a disjoint set of supported Signature
Algorithm types and still require secure neighbor discovery.

In this specification, the notary function is offered by routers,
although other nodes may offer this capability in the future
specification. Authorization for the router to act as a notary is shown
through router's certificate in a KeyPurposeID as defined in
[krishnan-cgaext-send-cert-eku] (Krishnan, S., Kukec, A., and K. Ahmed,

“Certificate profile and certificate management for SEND,” March 2009.)

and provided by the trust anchor.
The notary function requires the two specific ICMP messages: signature
check request message and signature status message.

6.1. Signature Check Request Message TOC

0 1 2 3
01234567890123456789012345678901

B e b ek ek e e e e e e S b b ek ek sk T P S TP S S S S S T
| Type | Code | Packet Length |
+ot-t-t-t-F-F-F-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F+-+-+-+
| Checksum | Reserved |
BT T e n e T e e e e e n sk sk o S TP SR S S S S S
| Request ID. |
+ot-t-t-t-F-F-F-t-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F+-+-+-+
+ +
| SEND secured packet |
~ (NDP packets should fit completely) ~
I I
+ot-t-t-t-F-F-F-t-t-t-t-t-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-+-+-+-+
| Options

B S R e ok

Signature Check Request Message format

Type
TBA.



Code

TBA.

Packet Length
Packet length is the size of the SEND secured packet

Checksum
Checksum is a CRC-16 of the whole packet. During the

CRC-16 computation, this field is set to ©@. The purpose of this
field is to quickly invalidate transmission errors.

Reserved
This 16-bit field is reserved. MUST be set to 0 by senders

and ignored by receivers.

Request Identifier
Request Identifier helps matching a signature

check request and the signature status (response) messages.
Request Identifier field is randomly generated.

SEND secured packet
SEND secured packet is the packet that the node

was not able to verify on his own, subject of the verification.
Note that the encapsulated packet MUST not make the whole
Signature Check Request message exceed the MTU (as no
fragmentation support is available).

Options
This field contains one or more NDP options. Currently,
only one option is mandatory in this field. It is the Supported
Signature Algorithm option, that allows the notary to choose a
correct signature algorithm to sign the Signature Status message.

Note that this message MAY be protected by usual SEND NDP options (CGA
option, Timestamp, Nonce, Universal Signature Option). In this case,
the Universal Signature Option contains the whole packet that the node
wants to be checked on the router (so packet may not be tampered with).
A router acting as a notary processes the packet as follows:

if the packet is protected with SEND options, the notary:
*Verifies the CGA of the emitter

*Verifies the Universal Signature Option of the message (linked
to CGA of the source address). If more than one Universal
Signature Options are in the message, the notary can decide to
check any of them.



6.

if the packet is not protected,

2.

0

*Verifies the CGA and signature of the SEND secured packet
(inner packet).

*Responds with a Signature status message (defined in the
following section) indicating the status of the SEND secured

packet Universal Signature Option.

*verifies the CGA and signature of the SEND secured packet

the notary:

(inner packet). If more than one Universal Signature Option

are in the message,

them.

the notary can decide to check any of

*Responds with a Signature status message (defined in the
following section) indicating the status of the SEND secured

packet Universal Signature Option.

Signature Status Message

1

2

3

TOC

012345678901 23456789012345678901
) D T e RS

Type

Code |

Status

e R e e s T S SPEp i S

Request ID.

D T P e Sy

Hash

B R e ST S e T S S e R st P S S

R A S S A

Options

Signature Status Message format



Type

TBA.

Code
TBA.

Status
The 16-bit status field can be set to any of the following
values:

0: all validation checks passed

1: Signature Check Request message checksum failed

2: inner packet CGA verification check failed

3: inner packet signature verification check failed

4: unsupported hash algorithm (to compute Hashl/Hash2)
5: unsupported Public Key algorithm

6: ask later (router is busy)

Request Identifier
The Request Identifier helps matching a
signature check request and the signature status (response)
message. The Request Identifier is copied from the Signature
Check Request message.

Hash
The Hash field contains the result of a hash function applied
on the Request ID field and on the Send Secured Packet field of
the Signature Check Request message. The hash function is the
same as the one in the Key Hash field of the Universal Signature
Option that will protect this message.

Options
This field contains one or more NDP options. Mandatory
options are CGA Option, Timestamp Option and Universal Signature
Option. Universal Signature Option MUST be the last option.

This message is a response to a Signature Check Request message and is
protected by SEND options generated using a public key contained in a
certificate of the router authorized to act as notary. If the Signature
Check Request message is protected by the Nonce option, this option
MUST be copied in the Signature Status message.

On reception of this message, a requesting node performs CGA
verification, Nonce (if included in the initial request) and Timestamp
checks, and Universal Signature Option check. If any of those test



fails, the packet is dropped and an error MAY be logged. Then, if the
status message is 0, that node can treat the original packet that
created the need for a Notary Signature Check Request message as a
secured packet. On a status value different from 0, the packet will be
considered as unsecure and be treated as such. Status value MAY be
loged for further diagnosis.

6.3. Using notary for DAD procedure TOC

When performing the DAD procedure, a node can receive Neighbor
Solicitation or Neighbor Advertisement that are protected by a
Universal Signature Option the node can not check. In this specific
case, the node can ask the notary to check the signature for him.
However, the node, while performing DAD, MUST send the Signature Check
Request message using the unspecified address as source address. The
notary MUST respond with a Signature Status message directed to the
All-Node multicast address.

7. Security Considerations TOC

RSA key length (bits) ECC key length (bits)

3072 256
7680 384
15380 512

Equivalence between Elliptic Curves and RSA security levels

Table 1: Security level equivalence between ECC and RSA

Section 4 (SEND Universal Signature Option) presents a new Universal
Signature Option. A recommended use of this option is to allow
signatures of equivalent security level (i.e. Public Keys with
equivalent key lengths) as shown in Table 1 (Security level equivalence
between ECC and RSA). See also section 4 of the companion draft
[cheneau-cga-pk-agility] (Cheneau, T., Laurent-Maknavicius, M., Shen,
S., and M. Vanderveen, “Support for Multiple Signature Algorithms in
Cryptographically Generated Addresses (CGAs),” June 2009.).




Usage of SHA-1 for signature is strongly NOT RECOMMENDED, and when
available should be preferred by the usage of SHA-256. SHA-1 security
is been proved to be flawed in the light of recent attacks [Recent
SHA-1 Attack] (McDonald, C., Haukes, P., and J. Pieprzyk, “SHA-1
collisions now 2752,” May 2009.) [NIST-st] (National Institute of
Standards and Technology, “NIST Comments on Cryptanalytic Attacks on
SHA-1," .).

The Universal Signature Option is vulnerable to downgrade attacks. That
is, given that a node can employ multiple signature types, an attacker
may choose to use a flawed one. To mitigate this issue, nodes are
allowed, on a local policy, to refuse to check certain types of
signature (i.e. those which are know to be flawed) and will treat the
associated messages as unsecured. When trying to completely mitigate
downgrade attacks, an administrator MAY deploy SEND-secured nodes only
authorizing a single signature algorithm scheme. This comes at a price
of a reduced interoperability.

Section 6 (Router-as-a-notary function) introduces an optional notary
functionality that offers to nodes to check messages on their behalf,
involving heavy cryptographic computation. This can lead to flooding
attacks and Denial of Services. However, Neighbor Discovery Protocol
[RFC4861] (Narten, T., Nordmark, E., Simpson, W., and H. Soliman,
“Neighbor Discovery for IP version 6 (IPv6),” September 2007.) and
Secure Neighbor Discovery Protocol [RFC3971] (Arkko, J., Kempf, J.,
zill, B., and P. Nikander, “SEcure Neighbor Discovery (SEND),”

March 2005.) are already prone to flooding attacks. One possible
solution is to use rate limiting on Signature Check Request messages.
Notary functionality is also vulnerable to "Good Router Goes Bad"
attacks (as described in [RFC3756] (Nikander, P., Kempf, J., and E.
Nordmark, “IPv6 Neighbor Discovery (ND) Trust Models and Threats,”

May 2004.)). Notary can make node trust unsecured packets and drop
valid ones. This issue can be mitigated when multiple notaries are
present on a link. The node can use a round-robin algorithm to load-
balance the Signature Check Request message, thus reducing the risk of
cache poisoning by a compromised notary.

8. IANA Considerations TOC

This document requests IANA to allocate types for the two new notary
ICMP messages.

Section 3 (Supported Signature Algorithm Option) defines a Signature
Type Identifier subfield containing new values corresponding to
different Signature Algorithm. This document requests creation of a new
registry to the IANA.
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Appendix A. On the number of Public Keys supported per CGA TOC

RSA key length
(bits)

384
384
512
512
1024
1024
2048
2048
3072
3072
7680
7680
15360
15360

Public Size of the DER-encoded Public Key

exponent (bytes)
3 or 17 76
65537 78

3 or 17 92
65537 94

3 or 17 160
65537 162

3 or 17 292
65537 294
3 or 17 420
65537 422

3 or 17 996
65537 998

3 or 17 1956
65537 1958

Table 2: Common sizes for DER-encoded RSA Public Key


http://www.ietf.org/internet-drafts/draft-krishnan-cgaext-send-cert-eku-03.txt
http://www.ietf.org/internet-drafts/draft-krishnan-cgaext-send-cert-eku-03.txt
http://www.ietf.org/internet-drafts/draft-krishnan-cgaext-send-cert-eku-03.txt
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
http://secg.org
http://secg.org
http://eurocrypt2009rump.cr.yp.to/837a0a8086fa6ca714249409ddfae43d.pdf
http://eurocrypt2009rump.cr.yp.to/837a0a8086fa6ca714249409ddfae43d.pdf

RSA Key Length (in Size of the Digital Signature field without

bits) padding
384 48
512 64
1024 128
2048 256
3072 384
7680 960
15360 1920

Table 3: Common sizes of the Digital Signature field when using RSA

Name of the elliptic curve Size of the DER-encoded Public Key (bytes)

P-256 88
P-384 120
P-521 158

Table 4: Common sizes for DER-encoded ECC Public Key

Name of the elliptic Size of the Digital Signature field (without

curve padding)
P-256 71
P-384 104
P-521 139

Table 5: Common sizes of the Digital Signature field when using ECDSA (+ DER
encoding)



When using multiple public keys to form a CGA, one may reach the
maximum number of possible public keys before each Neighbor Discovery
Message exceed the Maximum Transfer Unit (which must be at least 1280
octets according to [RFC2460] (Deering, S. and R. Hinden, “Internet
Protocol, Version 6 (IPv6) Specification,” December 1998.)). This
section aims to approximate this limit.

Numerous factors (presence and number of option, size of public keys,
etc) influence the size of the Neighbor Discovery message. For example,
when sending a SEND-secured Router Advertisement message:

*The IPv6 header is 40 bytes long. Described in [RFC2460
(Deering, S. and R. Hinden, “Internet Protocol, Version 6 (IPv6)
Specification,” December 1998.).

*The bare Router Advertisement message (without any option) is 16
bytes long. Described in [RFC4861] (Narten, T., Nordmark, E.,
Simpson, W., and H. Soliman, “Neighbor Discovery for IP version 6
(IPv6),"” September 2007.).

*A Prefix Information Option (can appear more than once) is 32
bytes long. Described in [RFC4861] (Narten, T., Nordmark, E.,
Simpson, W., and H. Soliman, “Neighbor Discovery for IP version 6
(IPv6),"” September 2007.).

*A Source Link-Layer Option, when a IEEE 802 address is used, is 8
bytes long. Described in [RFC4861] (Narten, T., Nordmark, E.,
Simpson, W., and H. Soliman, “Neighbor Discovery for IP version 6
(IPv6),"” September 2007.).

*A MTU Option is 8 bytes long. Described in [RFC4861] (Narten, T.,
Nordmark, E., Simpson, W., and H. Soliman, “Neighbor Discovery
for IP version 6 (IPv6),” September 2007.).

*The CGA Option is the size of the CGA Parameter Data Structure
plus 4 bytes rounded up to the closest multiple of 8 value. This
option is defined in [RFC3971] (Arkko, J., Kempf, J., 7ill, B.,
and P. Nikander, “SEcure Neighbor Discovery (SEND),”

March 2005.). The CGA Parameter Data Structure (defined in
[REC3972] (Aura, T., “Cryptographically Generated Addresses
(CGA),"” March 2005.) size depends on the following fields:

-Modifier: 16 bytes long.

-Subnet Prefix: 8 bytes long.

-Collision Count: 1 byte long.

-Public Key: variable size. Table 2 (Common sizes for DER-

encoded RSA Public Key) provides size of the commonly used
DER-encoded RSA Public Keys. Table 4 (Common sizes for DER-




encoded ECC Public Key) provides size for the commonly used
DER-encoded ECC Public Keys.

-Extension(s): variable size. Public Key Extension field
defined in [cheneau-cga-pk-agility] (Cheneau, T., Laurent-
Maknavicius, M., Shen, S., and M. Vanderveen, “Support for
Multiple Signature Algorithms in Cryptographically Generated
Addresses (CGAs),” June 2009.) is 4 bytes plus the size of the
Public Key long. Public Key size are defined in Table 2
(Common sizes for DER-encoded RSA Public Key) and Table 4
(Common sizes for DER-encoded ECC Public Key).

*The Timestamp Option is 16 bytes long. Defined in [RFC3971]
(Arkko, J., Kempf, J., Zill, B., and P. Nikander, “SEcure
Neighbor Discovery (SEND),” March 2005.).

*The Nonce Option minimum size is 8 bytes long. Defined in
[REC3971] (Arkko, J., Kempf, J., Zill, B., and P. Nikander,
“SEcure Neighbor Discovery (SEND),” March 2005.).

*The Universal Signature Option depends on the size of the Digital
Signature. The fixed part of the option is 20 bytes long. This
option is updated in this document. Table 3 (Common sizes of the
Digital Signature field when using RSA) presents common sizes for
usual Digital Signature field when using RSA. Table 5 (Common
sizes of the Digital Signature field when using ECDSA (+ DER
encoding)) presents common sizes for Digital Signature field when
using ECDSA. This option size must be a multiple of 8 bhytes.

A Router Advertisement message, carrying a Prefix Information Option
and a Source Link-Layer Option, without Nonce, with one 1024-bits long
RSA Public Key and a Public Exponent of 3 in the CGA Option is 456
bytes long. Using the same RSA Public Key, adding one ECC P-521 key to
CGA Option, the same message, signed with a Universal Signature option
generated by RSA and a Universal Signature Option signed by ECDSA, is
768 bytes long. Note that EC P-521 and 1024-bits RSA keys should not be
used together because they do not present the same security level (see
Section 7 (Security Considerations)) and are shown here to indicate
sizes of messages with "big" keys.
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