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Abstract

   This document describes a generic algorithm for a transport protocol
   sender to estimate the current delivery rate of its data.  At a high
   level, the algorithm estimates the rate at which the network
   delivered the most recent flight of outbound data packets for a
   single flow.  In addition, it tracks whether the rate sample was
   application-limited, meaning the transmission rate was limited by the
   application rather than the congestion control algorithm.  This
   algorithm can be implemented in any transport protocol that supports
   packet-delivery acknowledgment (thus far, open source implementations
   are available for TCP [RFC793] and QUIC
   [draft-ietf-quic-transport-00]).
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   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
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1.  Introduction

   This document describes a generic algorithm for a transport protocol
   sender to estimate the current delivery rate of its data on the fly.
   This technique has been used for a congestion control algorithm that
   relies on fresh, reliable, and inexpensive delivery rate information
   [draft-cardwell-iccrg-bbr-congestion-control] [CCGHJ17].

   At a high level, the algorithm estimates the rate at which the
   network delivered the most recent flight of outbound data packets for
   a single flow.  In addition, it tracks whether the rate sample was
   application-limited, meaning the transmission rate was limited by the
   application rather than the congestion control algorithm.

   Each acknowledgment that cumulatively or selectively acknowledges
   that the network has delivered new data produces a rate sample which
   records the amount of data delivered over the time interval between
   the transmission of a data packet and the acknowledgment of that
   packet.  The samples reflect the recent goodput through some
   bottleneck, which may reside either in the network or on the end
   hosts (sender or receiver).

2.  Algorithm Overview

2.1.  Requirements

   This algorithm can be implemented in any transport protocol that
   supports packet-delivery acknowledgment (so far, implementations are
   available for TCP [RFC793] and QUIC [draft-ietf-quic-transport-00]).
   This algorithm requires a small amount of added logic on the sender,
   and requires that the sender maintain a small amount of additional
   per-packet state for packets sent but not yet delivered.  In the most
   general case it requires high-precision (microsecond-granularity or
   better) timestamps on the sender (though millisecond-granularity may
   suffice for lower bandwidths).  It does not require any receiver or
   network changes.  While selective acknowledgments for out-of-order
   data (e.g., [RFC2018]) are not required, such a mechanism is highly
   recommended for accurate estimation during reordering and loss
   recovery phases.

2.2.  Estimating Delivery Rate

   A delivery rate sample records the estimated rate at which the
   network delivered packets for a single flow, calculated over the time
   interval between the transmission of a data packet and the
   acknowledgment of that packet.  Since the rate samples only include
   packets actually cumulatively and/or selectively acknowledged, the
   sender knows the exact octets that were delivered to the receiver

https://datatracker.ietf.org/doc/html/draft-cardwell-iccrg-bbr-congestion-control
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-00
https://datatracker.ietf.org/doc/html/rfc2018
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   (not lost), and the sender can can compute an estimate of a
   bottleneck delivery rate over that time interval.

   The amount of data delivered MAY be tracked in units of either octets
   or packets.  Tracking data in units of octets is more accurate, since
   packet sizes can vary.  But for some purposes, including congestion
   control, tracking data in units of packets may suffice.

2.2.1.  ACK Rate

   First, consider the rate at which data is acknowledged by the
   receiver.  In this algorithm, the computation of the ACK rate models
   the average slope of a hypothetical "delivered" curve that tracks the
   cumulative quantity of data delivered so far on the Y axis, and time
   elapsed on the X axis.  Since ACKs arrive in discrete events, this
   "delivered" curve forms a step function, where each ACK causes a
   discrete increase in the "delivered" count that causes a vertical
   upward step up in the curve.  This "ack_rate" computation is the
   average slope of the "delivered" step function, as measured from the
   "knee" of the step (ACK) preceding the transmit to the "knee" of the
   step (ACK) for packet P.

   Given this model, the ack rate sample "slope" is computed as the
   ratio between the amount of data marked as delivered over this time
   interval, and the time over which it is marked as delivered:

     ack_rate = data_acked / ack_elapsed

   To calculate the amount of data ACKed over the interval, the sender
   records in per-packet state "P.delivered", the amount of data that
   had been marked delivered before transmitting packet P, and then
   records how much data had been marked delivered by the time the ACK
   for the packet arrives (in "C.delivered"), and computes the
   difference:

     data_acked = C.delivered - P.delivered

   To compute the time interval, "ack_elapsed", one might imagine that
   it would be feasible to use the round-trip time (RTT) of the packet.
   But it is not safe to simply calculate a bandwidth estimate by using
   the time between the transmit of a packet and the acknowledgment of
   that packet.  Transmits and ACKs can happen out of phase with each
   other, clocked in separate processes.  In general transmits often
   happen at some point later than the most recent ACK, due to
   processing or pacing delays.  Because of this effect, drastic over-
   estimates can happen if a sender were to attempt to estimate
   bandwidth by using the round-trip time.
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   This document specifies the following approach for computing
   "ack_elapsed".  The starting time is "P.delivered_time", the time of
   the delivery curve "knee" from the ACK preceding the transmit.  The
   ending time is "C.delivered_time", the time of the delivery curve
   "knee" from the ACK for P.  Then we compute "ack_elapsed" as:

     ack_elapsed = C.delivered_time - P.delivered_time

   This yields our equation for computing the ACK rate, as the "slope"
   from the "knee" preceding the transmit to the "knee" at ACK:

     ack_rate = data_acked / ack_elapsed
     ack_rate = (C.delivered - P.delivered) /
                (C.delivered_time - P.delivered_time)

2.2.2.  ACK Compression and Aggregation

   For computing the delivery_rate, the sender prefers ack_rate, the
   rate at which packets were acknowledged, since this usually the most
   reliable metric.  However, this approach of directly using "ack_rate"
   faces a challenge when used with paths featuring ACK decimation,
   aggregation, or compression, which are prevalent [A15].  In such
   cases, ACK arrivals can temporarily make it appear as if data packets
   were delivered much faster than the bottleneck rate.  To filter out
   such implausible ack_rate samples, we consider the send rate for each
   flight of data, as follows.

2.2.3.  Send Rate

   The sender calculates the send rate, "send_rate", for a flight of
   data as follows.  Define "P.first_sent_time" as the time of the first
   send in a flight of data, and "P.sent_time" as the time the final
   send in that flight of data (the send that transmits packet "P").
   The elapsed time for sending the flight is:

     send_elapsed = (P.sent_time - P.first_sent_time)

   Then we calculate the send_rate as:

     send_rate = data_acked / send_elapsed

   Using our "delivery" curve model above, the send_rate can be viewed
   as the average slope of a "send" curve that traces the amount of data
   sent on the Y axis, and the time elapsed on the X axis: the average
   slope of the transmission of this flight of data.



Cheng, et al.            Expires January 4, 2018                [Page 5]



Internet-Draft                     DRE                         July 2017

2.2.4.  Delivery Rate

   Since it is physically impossible to have data delivered faster than
   it is sent in a sustained fashion, when the estimator notices that
   the ack_rate for a flight is faster than the send rate for the
   flight, it filters out the implausible ack_rate by capping the
   delivery rate sample to be no higher than the send rate.

   More precisely, over the interval between each transmission and
   corresponding ACK, the sender calculates a delivery rate sample,
   "delivery_rate", using the minimum of the rate at which packets were
   acknowledged or the rate at which they were sent:

     delivery_rate = min(send_rate, ack_rate)

   Since ack_rate and send_rate both have data_acked as a numerator,
   this can be computed more efficiently with a single division (instead
   of two), as follows:

     delivery_elapsed = max(ack_elapsed, send_elapsed)
     delivery_rate = data_acked / delivery_elapsed

2.3.  Tracking application-limited phases

   In application-limited phases the transmission rate iss limited by
   the application rather than the congestion control algorithm.  Modern
   transport protocol connections are often application-limited, either
   due to request/response workloads (e.g.  Web traffic, RPC traffic) or
   because the sender transmits data in chunks (e.g. adaptive streaming
   video).

   Knowing whether a delivery rate sample was application-limited is
   crucial for congestion control algorithms and applications to use the
   estimated delivery rate samples properly.  For example, congestion
   control algorithms may not want to react to a delivery rate that is
   lower simply because the sender is application-limited; for
   congestion control the key metric is the rate at which the network
   path delivers data, and not simply the rate at which the application
   happens to be transmitting data at any moment.

   To track this, the estimator marks a bandwidth sample as application-
   limited if there was some moment during the sampled window of data
   packets when there was no data ready to send.

   An application-limited phase starts when the sending application
   requests to send more data and meets all of the following conditions
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   1.  The transport send buffer has less than one SMSS of unsent data
       available to send.

   2.  The sending flow is not currently in the process of transmitting
       a packet.

   3.  The amount of data considered in flight is less than the
       congestion window (cwnd).

   4.  All the packets considered lost have been retransmitted.

   If these conditions are all met then the sender has run out of data
   to feed the network.  This would effectively create a "bubble" of
   idle time in the data pipeline.  This idle time means that any
   delivery rate sample obtained from this data packet, and any rate
   sample from a packet that follows it in the next round trip, is going
   to be an application-limited sample that potentially underestimates
   the true available bandwidth.  Thus, when the algorithm marks a
   transport flow as application-limited, it marks all bandwidth samples
   for the next round trip as application-limited (at which point, the
   "bubble" can be said to have exited the data pipeline).

3.  Detailed Algorithm

3.1.  Variables

3.1.1.  Per-connection (C) state

   This algorithm requires the following new state variables for each
   transport connection:

   C.delivered: The total amount of data (tracked in octets or in
   packets) delivered so far over the lifetime of the transport
   connection.

   C.delivered_time: The wall clock time when C.delivered was last
   updated.

   C.first_sent_time: If packets are in flight, then this holds the send
   time of the packet that was most recently marked as delivered.  Else,
   if the connection was recently idle, then this holds the send time of
   most recently sent packet.

   C.app_limited: The index of the last transmitted packet marked as
   application-limited, or 0 if the connection is not currently
   application-limited.
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   We also assume that the transport protocol sender implementation
   tracks the following state per connection.  If the following state
   variables are not tracked by an existing implementation, all the
   following parameters MUST be tracked to implement this algorithm:

   C.write_seq: The data sequence number one higher than that of the
   last octet queued for transmission in the transport layer write
   buffer.

   C.pending_transmissions: The number of bytes queued for transmission
   on the sending host at layers lower than the transport layer (i.e.
   network layer, traffic shaping layer, network device layer).

   C.lost_out: The number of packets in the current outstanding window
   that are marked as lost.

   C.retrans_out: The number of packets in the current outstanding
   window that are being retransmitted.

   C.pipe: The sender's estimate of the number of packets outstanding in
   the network; i.e. the number of packets in the current outstanding
   window that are being transmitted or retransmitted and have not been
   SACKed or marked lost (e.g. "pipe" from [RFC6675]).

3.1.2.  Per-packet (P) state

   This algorithm requires the following new state variables for each
   packet that has been transmitted but not yet ACKed or SACKed:

   P.delivered: C.delivered at the time the packet was sent.

   P.delivered_time: C.delivered_time at the time the packet was sent.

   P.first_sent_time: C.first_sent_time at the time the packet was sent.

   P.is_app_limited: C.app_limited at the time the packet was sent.

   P.sent_time: The time when the packet was sent.

3.1.3.  Rate Sample (rs) Output

   This algorithm provides its output in a RateSample structure rs,
   containing the following fields:

   rs.delivery_rate: The delivery rate sample (in most cases
   rs.delivered / rs.interval).

https://datatracker.ietf.org/doc/html/rfc6675
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   rs.is_app_limited: The P.is_app_limited from the most recent packet
   delivered; indicates whether the rate sample is application-limited.

   rs.interval: The length of the sampling interval.

   rs.delivered: The amount of data marked as delivered over the
   sampling interval.

   rs.prior_delivered: The P.delivered count from the most recent packet
   delivered.

   rs.prior_time: The P.delivered_time from the most recent packet
   delivered.

   rs.send_elapsed: Send time interval calculated from the most recent
   packet delivered (see the "Send Rate" section above).

   rs.ack_elapsed: ACK time interval calculated from the most recent
   packet delivered (see the "ACK Rate" section above).

3.2.  Transmitting or retransmitting a data packet

   Upon transmitting or retransmitting a data packet, the sender
   snapshots the current delivery information in per-packet state.  This
   will allow the sender to generate a rate sample later, in the
   UpdateRateSample() step, when the packet is (S)ACKed.

   If there are packets already in flight, then we need to start
   delivery rate samples from the time we received the most recent ACK,
   to try to ensure that we include the full time the network needs to
   deliver all in-flight packets.  If there are no packets in flight
   yet, then we can start the delivery rate interval at the current
   time, since we know that any ACKs after now indicate that the network
   was able to deliver those packets completely in the sampling interval
   between now and the next ACK.

   Upon each packet transmission, the sender executes the following
   steps:

     SendPacket(Packet P):
       if (C.pipe == 0)
         C.first_sent_time  = C.delivered_time = Now()
       P.first_sent_time = C.first_sent_time
       P.delivered_time  = C.delivered_time
       P.delivered       = C.delivered
       P.is_app_limited  = (C.app_limited != 0)
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3.3.  Upon receiving an ACK

   When an ACK arrives, the sender invokes GenerateRateSample() to fill
   in a rate sample.  For each packet that was newly SACKed or ACKed,
   UpdateRateSample() updates the rate sample based on a snapshot of
   connection delivery information from the time at which the packet was
   last transmitted.  UpdateRateSample() is invoked multiple times when
   a stretched ACK acknowledges multiple data packets.  In this case we
   use the information from the most recently sent packet, i.e., the
   packet with the highest "P.delivered" value.

     /* Upon receiving ACK, fill in delivery rate sample rs. */
     GenerateRateSample(RateSample rs):
       for each newly SACKed or ACKed packet P
         UpdateRateSample(P, rs)

       /* Clear app-limited field if bubble is ACKed and gone. */
       if (C.app_limited and C.delivered > C.app_limited)
         C.app_limited = 0

       if (rs.prior_time == 0)
         return false  /* nothing delivered on this ACK */

       /* Use the longer of the send_elapsed and ack_elapsed */
       rs.interval = max(rs.send_elapsed, rs.ack_elapsed)

       rs.delivered = C.delivered - rs.prior_delivered

       /* Normally we expect interval >= MinRTT.
        * Note that rate may still be over-estimated when a spuriously
        * retransmitted skb was first (s)acked because "interval"
        * is under-estimated (up to an RTT). However, continuously
        * measuring the delivery rate during loss recovery is crucial
        * for connections suffer heavy or prolonged losses.
        */
       if (rs.interval <  MinRTT(tp))
         rs.interval = -1
         return false  /* no reliable sample */

       if (rs.interval != 0)
         rs.delivery_rate = rs.delivered / rs.interval

       return true;  /* we filled in rs with a rate sample */

     /* Update rs when packet is SACKed or ACKed. */
     UpdateRateSample(Packet P, RateSample rs):
       if P.delivered_time == 0
         return /* P already SACKed */
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       C.delivered += P.data_length
       C.delivered_time = Now()

       /* Update info using the newest packet: */
       if (P.delivered > rs.prior_delivered)
         rs.prior_delivered  = P.delivered
         rs.prior_time       = P.delivered_time
         rs.is_app_limited   = P.is_app_limited
         rs.send_elapsed     = P.sent_time - P.first_sent_time
         rs.ack_elapsed      = C.delivered_time - P.delivered_time
         C.first_sent_time   = P.sent_time

       /* Mark the packet as delivered once it's SACKed to
        * avoid being used again when it's cumulatively acked.
        */
       P.delivered_time = 0

3.4.  Detecting application-limited phases

   An application-limited phase starts when the sending application asks
   the transport layer to send more data and the connection has run out
   of data.  Upon each write from the application, the algorithm checks
   all of the conditions previously described in the "Tracking
   application-limited phases" section, and if all are met then it marks
   the connection as application-limited:

     /* On gaps between sends, mark flow application-limited: */
     OnApplicationWrite():
       if (C.write_seq - SND.NXT < SND.MSS and
           C.pending_transmissions == 0 and
           C.pipe < cwnd and
           C.lost_out <= C.retrans_out)
         C.app_limited = C.delivered + C.pipe ? : 1

4.  Discussion

4.1.  Offload Mechanisms

   If a transport sender implementation uses an offload mechanism (such
   as TSO, GSO, etc.) to combine multiple SMSS of data into a single
   packet "aggregate" for the purposes of scheduling transmissions, then
   it is RECOMMENDED that the per-packet state be tracked for each
   packet "aggregate" rather than each SMSS.  For simplicity this
   document refers to such state as "per-packet", whether it is per
   "aggregate" or per SMSS.
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4.2.  Impact of ACK losses

   Delivery rate samples are generated upon receiving each ACK; ACKs may
   contain both cumulative and selective acknowledgment information.
   Losing an ACK results in losing the delivery rate sample
   corresponding to that ACK, and generating a delivery rate sample at
   later a time (upon the arrival of the next ACK).  This can
   underestimate the delivery rate due the artificially inflated
   "rs.interval".  As with any effect that can cause underestimation, it
   is RECOMMENDED that applications or congestion control algorithms
   using the output of this algorithm apply appropriate filtering to
   mitigate the impact of this effect.

4.3.  Impact of packet reordering

   This algorithm is robust to packet reordering; it makes no
   assumptions about the order in which packets are delivered or ACKed.
   In particular, for a particular packet P, it does not matter which
   packets are delivered between the transmission of P and the ACK of
   packet P, since C.delivered will be incremented appropriately in any
   case.

4.4.  Impact of packet loss and retransmissions

   There are several possible approaches for handling cases where a
   delivery rate sample is based on an ACK or SACK for a retransmitted
   packet.

   If the transport protocol supports unambiguous ACKs for retransmitted
   data sequence ranges (as in QUIC [draft-ietf-quic-transport-00]) then
   the algorithm is perfectly robust to retransmissions, because the
   starting packet, P, for the sample can be unambiguously retrieved.

   If the transport protocol, like TCP [RFC793], has ambiguous ACKs for
   retransmitted sequence ranges, then the following approaches MAY be
   used:

   1.  The sender MAY choose to filter out implausible delivery rate
       samples, as described in the GenerateRateSample() step in the
       "Upon receiving an ACK" section, by discarding samples whose
       rs.interval is lower than the minimum RTT seen on the connection.

   2.  The sender MAY choose to skip the generation of a delivery rate
       sample for a retransmitted sequence range.

https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-00
https://datatracker.ietf.org/doc/html/rfc793
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4.5.  Connections without SACK support

   If the transport connection does not use SACK (i.e., either or both
   ends of the connections do not accept SACK), then this algorithm can
   be extended to estimate approximate delivery rates using duplicate
   ACKs (much like Reno and [RFC5681] estimates that each duplicate ACK
   indicates that a data segment has been delivered).  The details of
   this extension will be described in a future version of this draft.

5.  Implementation Status

   This section records the status of known implementations of the
   algorithm defined by this specification at the time of posting of
   this Internet-Draft, and is based on a proposal described in
   [RFC7942].  The description of implementations in this section is
   intended to assist the IETF in its decision processes in progressing
   drafts to RFCs.  Please note that the listing of any individual
   implementation here does not imply endorsement by the IETF.
   Furthermore, no effort has been spent to verify the information
   presented here that was supplied by IETF contributors.  This is not
   intended as, and must not be construed to be, a catalog of available
   implementations or their features.  Readers are advised to note that
   other implementations may exist.

   According to [RFC7942], "this will allow reviewers and working groups
   to assign due consideration to documents that have the benefit of
   running code, which may serve as evidence of valuable experimentation
   and feedback that have made the implemented protocols more mature.
   It is up to the individual working groups to use this information as
   they see fit".

   As of the time of writing, the following implementations of this
   algorithm have been publicly released:

   o  Linux TCP

      *  Source code URL:

         +  GPLv2 license: https://git.kernel.org/pub/scm/linux/kernel/g
it/torvalds/linux.git/tree/net/ipv4/tcp_rate.c

         +  BSD-style license: https://groups.google.com/d/msg/bbr-
dev/X0LbDptlOzo/EVgkRjVHBQAJ

      *  Source: Google

      *  Maturity: production

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc7942
https://datatracker.ietf.org/doc/html/rfc7942
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/net/ipv4/tcp_rate.c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/net/ipv4/tcp_rate.c
https://groups.google.com/d/msg/bbr-dev/X0LbDptlOzo/EVgkRjVHBQAJ
https://groups.google.com/d/msg/bbr-dev/X0LbDptlOzo/EVgkRjVHBQAJ
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      *  License: dual-licensed: GPLv2 / BSD-style

      *  Contact: https://groups.google.com/d/forum/bbr-dev

      *  Last updated: June 30, 2017

   o  QUIC

      *  Source code URLs:

         +  https://chromium.googlesource.com/chromium/src/net/+/master/
            quic/core/congestion_control/bandwidth_sampler.cc

         +  https://chromium.googlesource.com/chromium/src/net/+/master/
            quic/core/congestion_control/bandwidth_sampler.h

      *  Source: Google

      *  Maturity: production

      *  License: BSD-style

      *  Contact: https://groups.google.com/d/forum/bbr-dev

      *  Last updated: June 30, 2017

6.  Security Considerations

   This proposal makes no changes to the underlying security of
   transport protocols or congestion control algorithms.  This algorithm
   adds no security considerations beyond those involved in the existing
   standard congestion control algorithm [RFC5681].

7.  IANA Considerations

   This document makes no request of IANA.

   Note to RFC Editor: this section may be removed on publication as an
   RFC.
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