
Internet Congestion Control Research Group Y. Cheng
Internet-Draft N. Cardwell
Intended status: Experimental S. Hassas Yeganeh
Expires: January 4, 2018 V. Jacobson
 Google, Inc
 July 03, 2017

Delivery Rate Estimation
draft-cheng-iccrg-delivery-rate-estimation-00

Abstract

 This document describes a generic algorithm for a transport protocol
 sender to estimate the current delivery rate of its data. At a high
 level, the algorithm estimates the rate at which the network
 delivered the most recent flight of outbound data packets for a
 single flow. In addition, it tracks whether the rate sample was
 application-limited, meaning the transmission rate was limited by the
 application rather than the congestion control algorithm. This
 algorithm can be implemented in any transport protocol that supports
 packet-delivery acknowledgment (thus far, open source implementations
 are available for TCP [RFC793] and QUIC
 [draft-ietf-quic-transport-00]).

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 4, 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Cheng, et al. Expires January 4, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-00
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft DRE July 2017

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Algorithm Overview . 3
2.1. Requirements . 3
2.2. Estimating Delivery Rate 3
2.2.1. ACK Rate . 4
2.2.2. ACK Compression and Aggregation 5
2.2.3. Send Rate . 5
2.2.4. Delivery Rate . 6

2.3. Tracking application-limited phases 6
3. Detailed Algorithm . 7
3.1. Variables . 7
3.1.1. Per-connection (C) state 7
3.1.2. Per-packet (P) state 8
3.1.3. Rate Sample (rs) Output 8

3.2. Transmitting or retransmitting a data packet 9
3.3. Upon receiving an ACK 10
3.4. Detecting application-limited phases 11

4. Discussion . 11
4.1. Offload Mechanisms 11
4.2. Impact of ACK losses 12
4.3. Impact of packet reordering 12
4.4. Impact of packet loss and retransmissions 12
4.5. Connections without SACK support 13

5. Implementation Status . 13
6. Security Considerations 14
7. IANA Considerations . 14
8. Acknowledgments . 14
9. References . 15
9.1. Normative References 15
9.2. Informative References 15

 Authors' Addresses . 16

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Cheng, et al. Expires January 4, 2018 [Page 2]

Internet-Draft DRE July 2017

1. Introduction

 This document describes a generic algorithm for a transport protocol
 sender to estimate the current delivery rate of its data on the fly.
 This technique has been used for a congestion control algorithm that
 relies on fresh, reliable, and inexpensive delivery rate information
 [draft-cardwell-iccrg-bbr-congestion-control] [CCGHJ17].

 At a high level, the algorithm estimates the rate at which the
 network delivered the most recent flight of outbound data packets for
 a single flow. In addition, it tracks whether the rate sample was
 application-limited, meaning the transmission rate was limited by the
 application rather than the congestion control algorithm.

 Each acknowledgment that cumulatively or selectively acknowledges
 that the network has delivered new data produces a rate sample which
 records the amount of data delivered over the time interval between
 the transmission of a data packet and the acknowledgment of that
 packet. The samples reflect the recent goodput through some
 bottleneck, which may reside either in the network or on the end
 hosts (sender or receiver).

2. Algorithm Overview

2.1. Requirements

 This algorithm can be implemented in any transport protocol that
 supports packet-delivery acknowledgment (so far, implementations are
 available for TCP [RFC793] and QUIC [draft-ietf-quic-transport-00]).
 This algorithm requires a small amount of added logic on the sender,
 and requires that the sender maintain a small amount of additional
 per-packet state for packets sent but not yet delivered. In the most
 general case it requires high-precision (microsecond-granularity or
 better) timestamps on the sender (though millisecond-granularity may
 suffice for lower bandwidths). It does not require any receiver or
 network changes. While selective acknowledgments for out-of-order
 data (e.g., [RFC2018]) are not required, such a mechanism is highly
 recommended for accurate estimation during reordering and loss
 recovery phases.

2.2. Estimating Delivery Rate

 A delivery rate sample records the estimated rate at which the
 network delivered packets for a single flow, calculated over the time
 interval between the transmission of a data packet and the
 acknowledgment of that packet. Since the rate samples only include
 packets actually cumulatively and/or selectively acknowledged, the
 sender knows the exact octets that were delivered to the receiver

https://datatracker.ietf.org/doc/html/draft-cardwell-iccrg-bbr-congestion-control
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-00
https://datatracker.ietf.org/doc/html/rfc2018

Cheng, et al. Expires January 4, 2018 [Page 3]

Internet-Draft DRE July 2017

 (not lost), and the sender can can compute an estimate of a
 bottleneck delivery rate over that time interval.

 The amount of data delivered MAY be tracked in units of either octets
 or packets. Tracking data in units of octets is more accurate, since
 packet sizes can vary. But for some purposes, including congestion
 control, tracking data in units of packets may suffice.

2.2.1. ACK Rate

 First, consider the rate at which data is acknowledged by the
 receiver. In this algorithm, the computation of the ACK rate models
 the average slope of a hypothetical "delivered" curve that tracks the
 cumulative quantity of data delivered so far on the Y axis, and time
 elapsed on the X axis. Since ACKs arrive in discrete events, this
 "delivered" curve forms a step function, where each ACK causes a
 discrete increase in the "delivered" count that causes a vertical
 upward step up in the curve. This "ack_rate" computation is the
 average slope of the "delivered" step function, as measured from the
 "knee" of the step (ACK) preceding the transmit to the "knee" of the
 step (ACK) for packet P.

 Given this model, the ack rate sample "slope" is computed as the
 ratio between the amount of data marked as delivered over this time
 interval, and the time over which it is marked as delivered:

 ack_rate = data_acked / ack_elapsed

 To calculate the amount of data ACKed over the interval, the sender
 records in per-packet state "P.delivered", the amount of data that
 had been marked delivered before transmitting packet P, and then
 records how much data had been marked delivered by the time the ACK
 for the packet arrives (in "C.delivered"), and computes the
 difference:

 data_acked = C.delivered - P.delivered

 To compute the time interval, "ack_elapsed", one might imagine that
 it would be feasible to use the round-trip time (RTT) of the packet.
 But it is not safe to simply calculate a bandwidth estimate by using
 the time between the transmit of a packet and the acknowledgment of
 that packet. Transmits and ACKs can happen out of phase with each
 other, clocked in separate processes. In general transmits often
 happen at some point later than the most recent ACK, due to
 processing or pacing delays. Because of this effect, drastic over-
 estimates can happen if a sender were to attempt to estimate
 bandwidth by using the round-trip time.

Cheng, et al. Expires January 4, 2018 [Page 4]

Internet-Draft DRE July 2017

 This document specifies the following approach for computing
 "ack_elapsed". The starting time is "P.delivered_time", the time of
 the delivery curve "knee" from the ACK preceding the transmit. The
 ending time is "C.delivered_time", the time of the delivery curve
 "knee" from the ACK for P. Then we compute "ack_elapsed" as:

 ack_elapsed = C.delivered_time - P.delivered_time

 This yields our equation for computing the ACK rate, as the "slope"
 from the "knee" preceding the transmit to the "knee" at ACK:

 ack_rate = data_acked / ack_elapsed
 ack_rate = (C.delivered - P.delivered) /
 (C.delivered_time - P.delivered_time)

2.2.2. ACK Compression and Aggregation

 For computing the delivery_rate, the sender prefers ack_rate, the
 rate at which packets were acknowledged, since this usually the most
 reliable metric. However, this approach of directly using "ack_rate"
 faces a challenge when used with paths featuring ACK decimation,
 aggregation, or compression, which are prevalent [A15]. In such
 cases, ACK arrivals can temporarily make it appear as if data packets
 were delivered much faster than the bottleneck rate. To filter out
 such implausible ack_rate samples, we consider the send rate for each
 flight of data, as follows.

2.2.3. Send Rate

 The sender calculates the send rate, "send_rate", for a flight of
 data as follows. Define "P.first_sent_time" as the time of the first
 send in a flight of data, and "P.sent_time" as the time the final
 send in that flight of data (the send that transmits packet "P").
 The elapsed time for sending the flight is:

 send_elapsed = (P.sent_time - P.first_sent_time)

 Then we calculate the send_rate as:

 send_rate = data_acked / send_elapsed

 Using our "delivery" curve model above, the send_rate can be viewed
 as the average slope of a "send" curve that traces the amount of data
 sent on the Y axis, and the time elapsed on the X axis: the average
 slope of the transmission of this flight of data.

Cheng, et al. Expires January 4, 2018 [Page 5]

Internet-Draft DRE July 2017

2.2.4. Delivery Rate

 Since it is physically impossible to have data delivered faster than
 it is sent in a sustained fashion, when the estimator notices that
 the ack_rate for a flight is faster than the send rate for the
 flight, it filters out the implausible ack_rate by capping the
 delivery rate sample to be no higher than the send rate.

 More precisely, over the interval between each transmission and
 corresponding ACK, the sender calculates a delivery rate sample,
 "delivery_rate", using the minimum of the rate at which packets were
 acknowledged or the rate at which they were sent:

 delivery_rate = min(send_rate, ack_rate)

 Since ack_rate and send_rate both have data_acked as a numerator,
 this can be computed more efficiently with a single division (instead
 of two), as follows:

 delivery_elapsed = max(ack_elapsed, send_elapsed)
 delivery_rate = data_acked / delivery_elapsed

2.3. Tracking application-limited phases

 In application-limited phases the transmission rate iss limited by
 the application rather than the congestion control algorithm. Modern
 transport protocol connections are often application-limited, either
 due to request/response workloads (e.g. Web traffic, RPC traffic) or
 because the sender transmits data in chunks (e.g. adaptive streaming
 video).

 Knowing whether a delivery rate sample was application-limited is
 crucial for congestion control algorithms and applications to use the
 estimated delivery rate samples properly. For example, congestion
 control algorithms may not want to react to a delivery rate that is
 lower simply because the sender is application-limited; for
 congestion control the key metric is the rate at which the network
 path delivers data, and not simply the rate at which the application
 happens to be transmitting data at any moment.

 To track this, the estimator marks a bandwidth sample as application-
 limited if there was some moment during the sampled window of data
 packets when there was no data ready to send.

 An application-limited phase starts when the sending application
 requests to send more data and meets all of the following conditions

Cheng, et al. Expires January 4, 2018 [Page 6]

Internet-Draft DRE July 2017

 1. The transport send buffer has less than one SMSS of unsent data
 available to send.

 2. The sending flow is not currently in the process of transmitting
 a packet.

 3. The amount of data considered in flight is less than the
 congestion window (cwnd).

 4. All the packets considered lost have been retransmitted.

 If these conditions are all met then the sender has run out of data
 to feed the network. This would effectively create a "bubble" of
 idle time in the data pipeline. This idle time means that any
 delivery rate sample obtained from this data packet, and any rate
 sample from a packet that follows it in the next round trip, is going
 to be an application-limited sample that potentially underestimates
 the true available bandwidth. Thus, when the algorithm marks a
 transport flow as application-limited, it marks all bandwidth samples
 for the next round trip as application-limited (at which point, the
 "bubble" can be said to have exited the data pipeline).

3. Detailed Algorithm

3.1. Variables

3.1.1. Per-connection (C) state

 This algorithm requires the following new state variables for each
 transport connection:

 C.delivered: The total amount of data (tracked in octets or in
 packets) delivered so far over the lifetime of the transport
 connection.

 C.delivered_time: The wall clock time when C.delivered was last
 updated.

 C.first_sent_time: If packets are in flight, then this holds the send
 time of the packet that was most recently marked as delivered. Else,
 if the connection was recently idle, then this holds the send time of
 most recently sent packet.

 C.app_limited: The index of the last transmitted packet marked as
 application-limited, or 0 if the connection is not currently
 application-limited.

Cheng, et al. Expires January 4, 2018 [Page 7]

Internet-Draft DRE July 2017

 We also assume that the transport protocol sender implementation
 tracks the following state per connection. If the following state
 variables are not tracked by an existing implementation, all the
 following parameters MUST be tracked to implement this algorithm:

 C.write_seq: The data sequence number one higher than that of the
 last octet queued for transmission in the transport layer write
 buffer.

 C.pending_transmissions: The number of bytes queued for transmission
 on the sending host at layers lower than the transport layer (i.e.
 network layer, traffic shaping layer, network device layer).

 C.lost_out: The number of packets in the current outstanding window
 that are marked as lost.

 C.retrans_out: The number of packets in the current outstanding
 window that are being retransmitted.

 C.pipe: The sender's estimate of the number of packets outstanding in
 the network; i.e. the number of packets in the current outstanding
 window that are being transmitted or retransmitted and have not been
 SACKed or marked lost (e.g. "pipe" from [RFC6675]).

3.1.2. Per-packet (P) state

 This algorithm requires the following new state variables for each
 packet that has been transmitted but not yet ACKed or SACKed:

 P.delivered: C.delivered at the time the packet was sent.

 P.delivered_time: C.delivered_time at the time the packet was sent.

 P.first_sent_time: C.first_sent_time at the time the packet was sent.

 P.is_app_limited: C.app_limited at the time the packet was sent.

 P.sent_time: The time when the packet was sent.

3.1.3. Rate Sample (rs) Output

 This algorithm provides its output in a RateSample structure rs,
 containing the following fields:

 rs.delivery_rate: The delivery rate sample (in most cases
 rs.delivered / rs.interval).

https://datatracker.ietf.org/doc/html/rfc6675

Cheng, et al. Expires January 4, 2018 [Page 8]

Internet-Draft DRE July 2017

 rs.is_app_limited: The P.is_app_limited from the most recent packet
 delivered; indicates whether the rate sample is application-limited.

 rs.interval: The length of the sampling interval.

 rs.delivered: The amount of data marked as delivered over the
 sampling interval.

 rs.prior_delivered: The P.delivered count from the most recent packet
 delivered.

 rs.prior_time: The P.delivered_time from the most recent packet
 delivered.

 rs.send_elapsed: Send time interval calculated from the most recent
 packet delivered (see the "Send Rate" section above).

 rs.ack_elapsed: ACK time interval calculated from the most recent
 packet delivered (see the "ACK Rate" section above).

3.2. Transmitting or retransmitting a data packet

 Upon transmitting or retransmitting a data packet, the sender
 snapshots the current delivery information in per-packet state. This
 will allow the sender to generate a rate sample later, in the
 UpdateRateSample() step, when the packet is (S)ACKed.

 If there are packets already in flight, then we need to start
 delivery rate samples from the time we received the most recent ACK,
 to try to ensure that we include the full time the network needs to
 deliver all in-flight packets. If there are no packets in flight
 yet, then we can start the delivery rate interval at the current
 time, since we know that any ACKs after now indicate that the network
 was able to deliver those packets completely in the sampling interval
 between now and the next ACK.

 Upon each packet transmission, the sender executes the following
 steps:

 SendPacket(Packet P):
 if (C.pipe == 0)
 C.first_sent_time = C.delivered_time = Now()
 P.first_sent_time = C.first_sent_time
 P.delivered_time = C.delivered_time
 P.delivered = C.delivered
 P.is_app_limited = (C.app_limited != 0)

Cheng, et al. Expires January 4, 2018 [Page 9]

Internet-Draft DRE July 2017

3.3. Upon receiving an ACK

 When an ACK arrives, the sender invokes GenerateRateSample() to fill
 in a rate sample. For each packet that was newly SACKed or ACKed,
 UpdateRateSample() updates the rate sample based on a snapshot of
 connection delivery information from the time at which the packet was
 last transmitted. UpdateRateSample() is invoked multiple times when
 a stretched ACK acknowledges multiple data packets. In this case we
 use the information from the most recently sent packet, i.e., the
 packet with the highest "P.delivered" value.

 /* Upon receiving ACK, fill in delivery rate sample rs. */
 GenerateRateSample(RateSample rs):
 for each newly SACKed or ACKed packet P
 UpdateRateSample(P, rs)

 /* Clear app-limited field if bubble is ACKed and gone. */
 if (C.app_limited and C.delivered > C.app_limited)
 C.app_limited = 0

 if (rs.prior_time == 0)
 return false /* nothing delivered on this ACK */

 /* Use the longer of the send_elapsed and ack_elapsed */
 rs.interval = max(rs.send_elapsed, rs.ack_elapsed)

 rs.delivered = C.delivered - rs.prior_delivered

 /* Normally we expect interval >= MinRTT.
 * Note that rate may still be over-estimated when a spuriously
 * retransmitted skb was first (s)acked because "interval"
 * is under-estimated (up to an RTT). However, continuously
 * measuring the delivery rate during loss recovery is crucial
 * for connections suffer heavy or prolonged losses.
 */
 if (rs.interval < MinRTT(tp))
 rs.interval = -1
 return false /* no reliable sample */

 if (rs.interval != 0)
 rs.delivery_rate = rs.delivered / rs.interval

 return true; /* we filled in rs with a rate sample */

 /* Update rs when packet is SACKed or ACKed. */
 UpdateRateSample(Packet P, RateSample rs):
 if P.delivered_time == 0
 return /* P already SACKed */

Cheng, et al. Expires January 4, 2018 [Page 10]

Internet-Draft DRE July 2017

 C.delivered += P.data_length
 C.delivered_time = Now()

 /* Update info using the newest packet: */
 if (P.delivered > rs.prior_delivered)
 rs.prior_delivered = P.delivered
 rs.prior_time = P.delivered_time
 rs.is_app_limited = P.is_app_limited
 rs.send_elapsed = P.sent_time - P.first_sent_time
 rs.ack_elapsed = C.delivered_time - P.delivered_time
 C.first_sent_time = P.sent_time

 /* Mark the packet as delivered once it's SACKed to
 * avoid being used again when it's cumulatively acked.
 */
 P.delivered_time = 0

3.4. Detecting application-limited phases

 An application-limited phase starts when the sending application asks
 the transport layer to send more data and the connection has run out
 of data. Upon each write from the application, the algorithm checks
 all of the conditions previously described in the "Tracking
 application-limited phases" section, and if all are met then it marks
 the connection as application-limited:

 /* On gaps between sends, mark flow application-limited: */
 OnApplicationWrite():
 if (C.write_seq - SND.NXT < SND.MSS and
 C.pending_transmissions == 0 and
 C.pipe < cwnd and
 C.lost_out <= C.retrans_out)
 C.app_limited = C.delivered + C.pipe ? : 1

4. Discussion

4.1. Offload Mechanisms

 If a transport sender implementation uses an offload mechanism (such
 as TSO, GSO, etc.) to combine multiple SMSS of data into a single
 packet "aggregate" for the purposes of scheduling transmissions, then
 it is RECOMMENDED that the per-packet state be tracked for each
 packet "aggregate" rather than each SMSS. For simplicity this
 document refers to such state as "per-packet", whether it is per
 "aggregate" or per SMSS.

Cheng, et al. Expires January 4, 2018 [Page 11]

Internet-Draft DRE July 2017

4.2. Impact of ACK losses

 Delivery rate samples are generated upon receiving each ACK; ACKs may
 contain both cumulative and selective acknowledgment information.
 Losing an ACK results in losing the delivery rate sample
 corresponding to that ACK, and generating a delivery rate sample at
 later a time (upon the arrival of the next ACK). This can
 underestimate the delivery rate due the artificially inflated
 "rs.interval". As with any effect that can cause underestimation, it
 is RECOMMENDED that applications or congestion control algorithms
 using the output of this algorithm apply appropriate filtering to
 mitigate the impact of this effect.

4.3. Impact of packet reordering

 This algorithm is robust to packet reordering; it makes no
 assumptions about the order in which packets are delivered or ACKed.
 In particular, for a particular packet P, it does not matter which
 packets are delivered between the transmission of P and the ACK of
 packet P, since C.delivered will be incremented appropriately in any
 case.

4.4. Impact of packet loss and retransmissions

 There are several possible approaches for handling cases where a
 delivery rate sample is based on an ACK or SACK for a retransmitted
 packet.

 If the transport protocol supports unambiguous ACKs for retransmitted
 data sequence ranges (as in QUIC [draft-ietf-quic-transport-00]) then
 the algorithm is perfectly robust to retransmissions, because the
 starting packet, P, for the sample can be unambiguously retrieved.

 If the transport protocol, like TCP [RFC793], has ambiguous ACKs for
 retransmitted sequence ranges, then the following approaches MAY be
 used:

 1. The sender MAY choose to filter out implausible delivery rate
 samples, as described in the GenerateRateSample() step in the
 "Upon receiving an ACK" section, by discarding samples whose
 rs.interval is lower than the minimum RTT seen on the connection.

 2. The sender MAY choose to skip the generation of a delivery rate
 sample for a retransmitted sequence range.

https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-00
https://datatracker.ietf.org/doc/html/rfc793

Cheng, et al. Expires January 4, 2018 [Page 12]

Internet-Draft DRE July 2017

4.5. Connections without SACK support

 If the transport connection does not use SACK (i.e., either or both
 ends of the connections do not accept SACK), then this algorithm can
 be extended to estimate approximate delivery rates using duplicate
 ACKs (much like Reno and [RFC5681] estimates that each duplicate ACK
 indicates that a data segment has been delivered). The details of
 this extension will be described in a future version of this draft.

5. Implementation Status

 This section records the status of known implementations of the
 algorithm defined by this specification at the time of posting of
 this Internet-Draft, and is based on a proposal described in
 [RFC7942]. The description of implementations in this section is
 intended to assist the IETF in its decision processes in progressing
 drafts to RFCs. Please note that the listing of any individual
 implementation here does not imply endorsement by the IETF.
 Furthermore, no effort has been spent to verify the information
 presented here that was supplied by IETF contributors. This is not
 intended as, and must not be construed to be, a catalog of available
 implementations or their features. Readers are advised to note that
 other implementations may exist.

 According to [RFC7942], "this will allow reviewers and working groups
 to assign due consideration to documents that have the benefit of
 running code, which may serve as evidence of valuable experimentation
 and feedback that have made the implemented protocols more mature.
 It is up to the individual working groups to use this information as
 they see fit".

 As of the time of writing, the following implementations of this
 algorithm have been publicly released:

 o Linux TCP

 * Source code URL:

 + GPLv2 license: https://git.kernel.org/pub/scm/linux/kernel/g
it/torvalds/linux.git/tree/net/ipv4/tcp_rate.c

 + BSD-style license: https://groups.google.com/d/msg/bbr-
dev/X0LbDptlOzo/EVgkRjVHBQAJ

 * Source: Google

 * Maturity: production

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc7942
https://datatracker.ietf.org/doc/html/rfc7942
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/net/ipv4/tcp_rate.c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/net/ipv4/tcp_rate.c
https://groups.google.com/d/msg/bbr-dev/X0LbDptlOzo/EVgkRjVHBQAJ
https://groups.google.com/d/msg/bbr-dev/X0LbDptlOzo/EVgkRjVHBQAJ

Cheng, et al. Expires January 4, 2018 [Page 13]

Internet-Draft DRE July 2017

 * License: dual-licensed: GPLv2 / BSD-style

 * Contact: https://groups.google.com/d/forum/bbr-dev

 * Last updated: June 30, 2017

 o QUIC

 * Source code URLs:

 + https://chromium.googlesource.com/chromium/src/net/+/master/
 quic/core/congestion_control/bandwidth_sampler.cc

 + https://chromium.googlesource.com/chromium/src/net/+/master/
 quic/core/congestion_control/bandwidth_sampler.h

 * Source: Google

 * Maturity: production

 * License: BSD-style

 * Contact: https://groups.google.com/d/forum/bbr-dev

 * Last updated: June 30, 2017

6. Security Considerations

 This proposal makes no changes to the underlying security of
 transport protocols or congestion control algorithms. This algorithm
 adds no security considerations beyond those involved in the existing
 standard congestion control algorithm [RFC5681].

7. IANA Considerations

 This document makes no request of IANA.

 Note to RFC Editor: this section may be removed on publication as an
 RFC.

8. Acknowledgments

 The authors would like to thank C. Stephen Gunn, Eric Dumazet, Ian
 Swett, Jana Iyengar, Victor Vasiliev, Nandita Dukkipati, Pawel
 Jurczyk, Biren Roy, David Wetherall, Amin Vahdat, Leonidas
 Kontothanassis, and the YouTube, google.com, Bandwidth Enforcer, and
 Google SRE teams for their invaluable help and support.

https://groups.google.com/d/forum/bbr-dev
https://chromium.googlesource
https://chromium.googlesource
https://groups.google.com/d/forum/bbr-dev
https://datatracker.ietf.org/doc/html/rfc5681

Cheng, et al. Expires January 4, 2018 [Page 14]

Internet-Draft DRE July 2017

9. References

9.1. Normative References

 [RFC2018] Mathis, M. and J. Mahdavi, "TCP Selective Acknowledgment
 Options", RFC 2018, October 1996.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, September 2009.

 [RFC6675] Blanton, E., Allman, M., Wang, L., Jarvinen, I., Kojo, M.,
 and Y. Nishida, "A Conservative Loss Recovery Algorithm
 Based on Selective Acknowledgment (SACK) for TCP",

RFC 6675, August 2012.

 [RFC793] Postel, J., "Transmission Control Protocol", September
 1981.

 [RFC7942] Sheffer, Y. and A. Farrel, "Improving Awareness of Running
 Code: The Implementation Status Section", July 2016.

9.2. Informative References

 [A15] Abrahamsson, M., "TCP ACK suppression", IETF AQM mailing
 list , November 2015, <https://www.ietf.org/mail-

archive/web/aqm/current/msg01480.html>.

 [CCGHJ17] Cardwell, N., Cheng, Y., Gunn, C., Hassas Yeganeh, S., and
 V. Jacobson, "BBR: Congestion-Based Congestion Control",
 Communications of the ACM Feb 2017, February 2017.

 [draft-cardwell-iccrg-bbr-congestion-control]
 Cardwell, N., Cheng, Y., Hassas Yeganeh, S., and V.
 Jacobson, "BBR Congestion Control", draft-cardwell-iccrg-

bbr-congestion-control-00 (work in progress), June 2017,
 <https://tools.ietf.org/html/draft-cardwell-iccrg-bbr-

congestion-control-00>.

 [draft-ietf-quic-transport-00]
 Iyengar, J. and M. Thomson, "QUIC: A UDP-Based Multiplexed
 and Secure Transport", draft-cheng-iccrg-delivery-rate-

estimation-00 (work in progress), Nov 2016,
 <https://tools.ietf.org/html/draft-ietf-quic-transport-

00>.

https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc6675
https://www.ietf.org/mail-archive/web/aqm/current/msg01480.html
https://www.ietf.org/mail-archive/web/aqm/current/msg01480.html
https://datatracker.ietf.org/doc/html/draft-cardwell-iccrg-bbr-congestion-control
https://datatracker.ietf.org/doc/html/draft-cardwell-iccrg-bbr-congestion-control-00
https://datatracker.ietf.org/doc/html/draft-cardwell-iccrg-bbr-congestion-control-00
https://tools.ietf.org/html/draft-cardwell-iccrg-bbr-congestion-control-00
https://tools.ietf.org/html/draft-cardwell-iccrg-bbr-congestion-control-00
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-00
https://datatracker.ietf.org/doc/html/draft-cheng-iccrg-delivery-rate-estimation-00
https://datatracker.ietf.org/doc/html/draft-cheng-iccrg-delivery-rate-estimation-00
https://tools.ietf.org/html/draft-ietf-quic-transport-00
https://tools.ietf.org/html/draft-ietf-quic-transport-00

Cheng, et al. Expires January 4, 2018 [Page 15]

Internet-Draft DRE July 2017

Authors' Addresses

 Yuchung Cheng
 Google, Inc
 1600 Amphitheater Parkway
 Mountain View, California 94043
 USA

 Email: ycheng@google.com

 Neal Cardwell
 Google, Inc
 76 Ninth Avenue
 New York, NY 10011
 USA

 Email: ncardwell@google.com

 Soheil Hassas Yeganeh
 Google, Inc
 76 Ninth Avenue
 New York, NY 10011
 USA

 Email: soheil@google.com

 Van Jacobson
 Google, Inc
 1600 Amphitheater Parkway
 Mountain View, California 94043

 Email: vanj@google.com

Cheng, et al. Expires January 4, 2018 [Page 16]

