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Delivery Rate Estimation

Abstract

This document describes a generic algorithm for a transport protocol

sender to estimate the current delivery rate of its data. At a high

level, the algorithm estimates the rate at which the network

delivered the most recent flight of outbound data packets for a

single flow. In addition, it tracks whether the rate sample was

application-limited, meaning the transmission rate was limited by

the sending application rather than the congestion control

algorithm. This algorithm can be implemented in any transport

protocol that supports packet-delivery acknowledgment (thus far,

open source implementations are available for TCP [RFC793] and QUIC

[RFC9000]).
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1. Introduction

This document describes a generic algorithm for a transport protocol

sender to estimate the current delivery rate of its data on the fly.

This technique has been used for a congestion control algorithm that
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relies on fresh, reliable, and inexpensive delivery rate information

[draft-cardwell-iccrg-bbr-congestion-control] [CCGHJ17].

At a high level, the algorithm estimates the rate at which the

network delivered the most recent flight of outbound data packets

for a single flow. In addition, it tracks whether the rate sample

was application-limited, meaning the transmission rate was limited

by the sending application rather than the congestion control

algorithm.

Each acknowledgment that cumulatively or selectively acknowledges

that the network has delivered new data produces a rate sample which

records the amount of data delivered over the time interval between

the transmission of a data packet and the acknowledgment of that

packet. The samples reflect the recent goodput through some

bottleneck, which may reside either in the network or on the end

hosts (sender or receiver).

2. Algorithm Overview

2.1. Requirements

This algorithm can be implemented in any transport protocol that

supports packet-delivery acknowledgment (so far, implementations are

available for TCP [RFC793] and QUIC [RFC9000]). This algorithm

requires a small amount of added logic on the sender, and requires

that the sender maintain a small amount of additional per-packet

state for packets sent but not yet delivered. In the most general

case it requires high-precision (microsecond-granularity or better)

timestamps on the sender (though millisecond-granularity may suffice

for lower bandwidths). It does not require any receiver or network

changes. While selective acknowledgments for out-of-order data

(e.g., [RFC2018]) are not required, such a mechanism is highly

recommended for accurate estimation during reordering and loss

recovery phases.

2.2. Estimating Delivery Rate

A delivery rate sample records the estimated rate at which the

network delivered packets for a single flow, calculated over the

time interval between the transmission of a data packet and the

acknowledgment of that packet. Since the rate samples only include

packets actually cumulatively and/or selectively acknowledged, the

sender knows the exact octets that were delivered to the receiver

(not lost), and the sender can can compute an estimate of a

bottleneck delivery rate over that time interval.

The amount of data delivered MAY be tracked in units of either

octets or packets. Tracking data in units of octets is more

accurate, since packet sizes can vary. But for some purposes,
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including congestion control, tracking data in units of packets may

suffice.

2.2.1. ACK Rate

First, consider the rate at which data is acknowledged by the

receiver. In this algorithm, the computation of the ACK rate models

the average slope of a hypothetical "delivered" curve that tracks

the cumulative quantity of data delivered so far on the Y axis, and

time elapsed on the X axis. Since ACKs arrive in discrete events,

this "delivered" curve forms a step function, where each ACK causes

a discrete increase in the "delivered" count that causes a vertical

upward step up in the curve. This "ack_rate" computation is the

average slope of the "delivered" step function, as measured from the

"knee" of the step (ACK) preceding the transmit to the "knee" of the

step (ACK) for packet P.

Given this model, the ack rate sample "slope" is computed as the

ratio between the amount of data marked as delivered over this time

interval, and the time over which it is marked as delivered:

To calculate the amount of data ACKed over the interval, the sender

records in per-packet state "P.delivered", the amount of data that

had been marked delivered before transmitting packet P, and then

records how much data had been marked delivered by the time the ACK

for the packet arrives (in "C.delivered"), and computes the

difference:

To compute the time interval, "ack_elapsed", one might imagine that

it would be feasible to use the round-trip time (RTT) of the packet.

But it is not safe to simply calculate a bandwidth estimate by using

the time between the transmit of a packet and the acknowledgment of

that packet. Transmits and ACKs can happen out of phase with each

other, clocked in separate processes. In general transmits often

happen at some point later than the most recent ACK, due to

processing or pacing delays. Because of this effect, drastic over-

estimates can happen if a sender were to attempt to estimate

bandwidth by using the round-trip time.

This document specifies the following approach for computing

"ack_elapsed". The starting time is "P.delivered_time", the time of

the delivery curve "knee" from the ACK preceding the transmit. The

ending time is "C.delivered_time", the time of the delivery curve

"knee" from the ACK for P. Then we compute "ack_elapsed" as:

¶
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  ack_rate = data_acked / ack_elapsed¶

¶

  data_acked = C.delivered - P.delivered¶

¶

¶

  ack_elapsed = C.delivered_time - P.delivered_time¶



This yields our equation for computing the ACK rate, as the "slope"

from the "knee" preceding the transmit to the "knee" at ACK:

2.2.2. Compression and Aggregation

For computing the delivery_rate, the sender prefers ack_rate, the

rate at which packets were acknowledged, since this usually the most

reliable metric. However, this approach of directly using "ack_rate"

faces a challenge when used with paths featuring aggregation,

compression, or ACK decimation, which are prevalent [A15]. In such

cases, ACK arrivals can temporarily make it appear as if data

packets were delivered much faster than the bottleneck rate. To

filter out such implausible ack_rate samples, we consider the send

rate for each flight of data, as follows.

2.2.3. Send Rate

The sender calculates the send rate, "send_rate", for a flight of

data as follows. Define "P.first_sent_time" as the time of the first

send in a flight of data, and "P.sent_time" as the time the final

send in that flight of data (the send that transmits packet "P").

The elapsed time for sending the flight is:

Then we calculate the send_rate as:

Using our "delivery" curve model above, the send_rate can be viewed

as the average slope of a "send" curve that traces the amount of

data sent on the Y axis, and the time elapsed on the X axis: the

average slope of the transmission of this flight of data.

2.2.4. Delivery Rate

Since it is physically impossible to have data delivered faster than

it is sent in a sustained fashion, when the estimator notices that

the ack_rate for a flight is faster than the send rate for the

flight, it filters out the implausible ack_rate by capping the

delivery rate sample to be no higher than the send rate.

More precisely, over the interval between each transmission and

corresponding ACK, the sender calculates a delivery rate sample,

"delivery_rate", using the minimum of the rate at which packets were

acknowledged or the rate at which they were sent:

¶

  ack_rate = data_acked / ack_elapsed

  ack_rate = (C.delivered - P.delivered) /

             (C.delivered_time - P.delivered_time)

¶

¶

¶

  send_elapsed = (P.sent_time - P.first_sent_time)¶

¶

  send_rate = data_acked / send_elapsed¶
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Since ack_rate and send_rate both have data_acked as a numerator,

this can be computed more efficiently with a single division

(instead of two), as follows:

2.3. Tracking application-limited phases

In application-limited phases the transmission rate is limited by

the application rather than the congestion control algorithm. Modern

transport protocol connections are often application-limited, either

due to request/response workloads (e.g. Web traffic, RPC traffic) or

because the sender transmits data in chunks (e.g. adaptive streaming

video).

Knowing whether a delivery rate sample was application-limited is

crucial for congestion control algorithms and applications to use

the estimated delivery rate samples properly. For example,

congestion control algorithms may not want to react to a delivery

rate that is lower simply because the sender is application-limited;

for congestion control the key metric is the rate at which the

network path can deliver data, and not simply the rate at which the

application happens to be transmitting data at any moment.

To track this, the estimator marks a bandwidth sample as

application-limited if there was some moment during the sampled

flight of data packets when there was no data ready to send.

An application-limited phase starts when the sending application

requests to send new data, or the connection's retransmission

mechanisms decide to retransmit data, and the connection meets all

of the following conditions

The transport send buffer has less than one SMSS of unsent data

available to send.

The sending flow is not currently in the process of

transmitting a packet.

The amount of data considered in flight is less than the

congestion window (cwnd).

All the packets considered lost have been retransmitted.

If these conditions are all met then the sender has run out of data

to feed the network. This would effectively create a "bubble" of

idle time in the data pipeline. This idle time means that any

  delivery_rate = min(send_rate, ack_rate)¶

¶

  delivery_elapsed = max(ack_elapsed, send_elapsed)

  delivery_rate = data_acked / delivery_elapsed

¶
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delivery rate sample obtained from this data packet, and any rate

sample from a packet that follows it in the next round trip, is

going to be an application-limited sample that potentially

underestimates the true available bandwidth. Thus, when the

algorithm marks a transport flow as application-limited, it marks

all bandwidth samples for the next round trip as application-limited

(at which point, the "bubble" can be said to have exited the data

pipeline).

3. Detailed Algorithm

3.1. Variables

3.1.1. Per-connection (C) state

This algorithm requires the following new state variables for each

transport connection:

C.delivered: The total amount of data (measured in octets or in

packets) delivered so far over the lifetime of the transport

connection. This does not include pure ACK packets.

C.delivered_time: The wall clock time when C.delivered was last

updated.

C.first_sent_time: If packets are in flight, then this holds the

send time of the packet that was most recently marked as delivered.

Else, if the connection was recently idle, then this holds the send

time of most recently sent packet.

C.app_limited: The index of the last transmitted packet marked as

application-limited, or 0 if the connection is not currently

application-limited.

We also assume that the transport protocol sender implementation

tracks the following state per connection. If the following state

variables are not tracked by an existing implementation, all the

following parameters MUST be tracked to implement this algorithm:

C.write_seq: The data sequence number one higher than that of the

last octet queued for transmission in the transport layer write

buffer.

C.pending_transmissions: The number of bytes queued for transmission

on the sending host at layers lower than the transport layer (i.e.

network layer, traffic shaping layer, network device layer).

C.lost_out: The number of packets in the current outstanding window

that are marked as lost.
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C.retrans_out: The number of packets in the current outstanding

window that are being retransmitted.

C.pipe: The sender's estimate of the amount of data outstanding in

the network (measured in octets or packets). This includes data

packets in the current outstanding window that are being transmitted

or retransmitted and have not been SACKed or marked lost (e.g.

"pipe" from [RFC6675]). This does not include pure ACK packets.

3.1.2. Per-packet (P) state

This algorithm requires the following new state variables for each

packet that has been transmitted but not yet ACKed or SACKed:

P.delivered: C.delivered when the packet was sent from transport

connection C.

P.delivered_time: C.delivered_time when the packet was sent.

P.first_sent_time: C.first_sent_time when the packet was sent.

P.is_app_limited: true if C.app_limited was non-zero when the packet

was sent, else false.

P.sent_time: The time when the packet was sent.

3.1.3. Rate Sample (rs) Output

This algorithm provides its output in a RateSample structure rs,

containing the following fields:

rs.delivery_rate: The delivery rate sample (in most cases

rs.delivered / rs.interval).

rs.is_app_limited: The P.is_app_limited from the most recent packet

delivered; indicates whether the rate sample is application-limited.

rs.interval: The length of the sampling interval.

rs.delivered: The amount of data marked as delivered over the

sampling interval.

rs.prior_delivered: The P.delivered count from the most recent

packet delivered.

rs.prior_time: The P.delivered_time from the most recent packet

delivered.

rs.send_elapsed: Send time interval calculated from the most recent

packet delivered (see the "Send Rate" section above).
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rs.ack_elapsed: ACK time interval calculated from the most recent

packet delivered (see the "ACK Rate" section above).

3.2. Transmitting or retransmitting a data packet

Upon transmitting or retransmitting a data packet, the sender

snapshots the current delivery information in per-packet state. This

will allow the sender to generate a rate sample later, in the

UpdateRateSample() step, when the packet is (S)ACKed.

If there are packets already in flight, then we need to start

delivery rate samples from the time we received the most recent ACK,

to try to ensure that we include the full time the network needs to

deliver all in-flight packets. If there are no packets in flight

yet, then we can start the delivery rate interval at the current

time, since we know that any ACKs after now indicate that the

network was able to deliver those packets completely in the sampling

interval between now and the next ACK.

Upon each packet transmission, the sender executes the following

steps:

3.3. Upon receiving an ACK

When an ACK arrives, the sender invokes GenerateRateSample() to fill

in a rate sample. For each packet that was newly SACKed or ACKed,

UpdateRateSample() updates the rate sample based on a snapshot of

connection delivery information from the time at which the packet

was last transmitted. UpdateRateSample() is invoked multiple times

when a stretched ACK acknowledges multiple data packets. In this

case we use the information from the most recently sent packet,

i.e., the packet with the highest "P.delivered" value.

¶
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  SendPacket(Packet P):

    if (SND.NXT == SND.UNA)  /* no packets in flight yet? */

      C.first_sent_time  = C.delivered_time = Now()

    P.first_sent_time = C.first_sent_time

    P.delivered_time  = C.delivered_time

    P.delivered       = C.delivered

    P.is_app_limited  = (C.app_limited != 0)

¶

¶



  /* Upon receiving ACK, fill in delivery rate sample rs. */

  GenerateRateSample(RateSample rs):

    for each newly SACKed or ACKed packet P

      UpdateRateSample(P, rs)

    /* Clear app-limited field if bubble is ACKed and gone. */

    if (C.app_limited and C.delivered > C.app_limited)

      C.app_limited = 0

    if (rs.prior_time == 0)

      return false  /* nothing delivered on this ACK */

    /* Use the longer of the send_elapsed and ack_elapsed */

    rs.interval = max(rs.send_elapsed, rs.ack_elapsed)

    rs.delivered = C.delivered - rs.prior_delivered

    /* Normally we expect interval >= MinRTT.

     * Note that rate may still be over-estimated when a spuriously

     * retransmitted skb was first (s)acked because "interval"

     * is under-estimated (up to an RTT). However, continuously

     * measuring the delivery rate during loss recovery is crucial

     * for connections that suffer heavy or prolonged losses.

     */

    if (rs.interval <  MinRTT(tp))

      rs.interval = -1

      return false  /* no reliable sample */

    if (rs.interval != 0)

      rs.delivery_rate = rs.delivered / rs.interval

    return true;  /* we filled in rs with a rate sample */

  /* Update rs when packet is SACKed or ACKed. */

  UpdateRateSample(Packet P, RateSample rs):

    if P.delivered_time == 0

      return /* P already SACKed */

    C.delivered += P.data_length

    C.delivered_time = Now()

    /* Update info using the newest packet: */

    if (P.delivered > rs.prior_delivered)

      rs.prior_delivered  = P.delivered

      rs.prior_time       = P.delivered_time

      rs.is_app_limited   = P.is_app_limited

      rs.send_elapsed     = P.sent_time - P.first_sent_time

      rs.ack_elapsed      = C.delivered_time - P.delivered_time

      C.first_sent_time   = P.sent_time



    /* Mark the packet as delivered once it's SACKed to

     * avoid being used again when it's cumulatively acked.

     */

    P.delivered_time = 0

¶



3.4. Detecting application-limited phases

An application-limited phase starts when the connection decides to

send more data, at a point in time when the connection has run out

of data. Some decisions to send more data are triggered by the

application writing more data to the connection, and some are

triggered by loss detection (during ACK processing or upon the

triggering of a timer) estimating that some sequence ranges need to

be retransmitted. To detect all such cases, the algorithm calls

CheckIfApplicationLimited() to check for application-limited

behavior in the following situations:

The sending application asks the transport layer to send more

data; i.e., upon each write from the application, before new

application data is enqueued in the transport send buffer or

transmitted.

At the beginning of ACK processing, before updating the estimated

number of packets in flight, and before congestion control

modifies the cwnd or pacing rate.

At the beginning of connection timer processing, for all timers

that might result in the transmission of one or more data

segments. For example: RTO timers, TLP timers, RACK reordering

timers, or Zero Window Probe timers.

When checking for application-limited behavior, the connection

checks all the conditions previously described in the "Tracking

application-limited phases" section, and if all are met then it

marks the connection as application-limited:

4. Discussion

4.1. Offload Mechanisms

If a transport sender implementation uses an offload mechanism (such

as TSO, GSO, etc.) to combine multiple SMSS of data into a single

packet "aggregate" for the purposes of scheduling transmissions,

then it is RECOMMENDED that the per-packet state be tracked for each

packet "aggregate" rather than each SMSS. For simplicity this

document refers to such state as "per-packet", whether it is per

"aggregate" or per SMSS.
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  CheckIfApplicationLimited():

    if (C.write_seq - SND.NXT < SND.MSS and

        C.pending_transmissions == 0 and

        C.pipe < cwnd and

        C.lost_out <= C.retrans_out)

      C.app_limited = (C.delivered + C.pipe) ? : 1

¶

¶



4.2. Impact of ACK losses

Delivery rate samples are generated upon receiving each ACK; ACKs

may contain both cumulative and selective acknowledgment

information. Losing an ACK results in losing the delivery rate

sample corresponding to that ACK, and generating a delivery rate

sample at later a time (upon the arrival of the next ACK). This can

underestimate the delivery rate due the artificially inflated

"rs.interval". As with any effect that can cause underestimation, it

is RECOMMENDED that applications or congestion control algorithms

using the output of this algorithm apply appropriate filtering to

mitigate the impact of this effect.

4.3. Impact of packet reordering

This algorithm is robust to packet reordering; it makes no

assumptions about the order in which packets are delivered or ACKed.

In particular, for a particular packet P, it does not matter which

packets are delivered between the transmission of P and the ACK of

packet P, since C.delivered will be incremented appropriately in any

case.

4.4. Impact of packet loss and retransmissions

There are several possible approaches for handling cases where a

delivery rate sample is based on an ACK or SACK for a retransmitted

packet.

If the transport protocol supports unambiguous ACKs for

retransmitted data sequence ranges (as in QUIC [RFC9000]) then the

algorithm is perfectly robust to retransmissions, because the

starting packet, P, for the sample can be unambiguously retrieved.

If the transport protocol, like TCP [RFC793], has ambiguous ACKs for

retransmitted sequence ranges, then the following approaches MAY be

used:

The sender MAY choose to filter out implausible delivery rate

samples, as described in the GenerateRateSample() step in the

"Upon receiving an ACK" section, by discarding samples whose

rs.interval is lower than the minimum RTT seen on the

connection.

The sender MAY choose to skip the generation of a delivery rate

sample for a retransmitted sequence range.

4.5. Connections without SACK support

If the transport connection does not use SACK (i.e., either or both

ends of the connections do not accept SACK), then this algorithm can
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be extended to estimate approximate delivery rates using duplicate

ACKs (much like Reno and [RFC5681] estimates that each duplicate ACK

indicates that a data packet has been delivered). The details of

this extension will be described in a future version of this draft.

5. Implementation Status

This section records the status of known implementations of the

algorithm defined by this specification at the time of posting of

this Internet-Draft, and is based on a proposal described in

[RFC7942]. The description of implementations in this section is

intended to assist the IETF in its decision processes in progressing

drafts to RFCs. Please note that the listing of any individual

implementation here does not imply endorsement by the IETF.

Furthermore, no effort has been spent to verify the information

presented here that was supplied by IETF contributors. This is not

intended as, and must not be construed to be, a catalog of available

implementations or their features. Readers are advised to note that

other implementations may exist.

According to [RFC7942], "this will allow reviewers and working

groups to assign due consideration to documents that have the

benefit of running code, which may serve as evidence of valuable

experimentation and feedback that have made the implemented

protocols more mature. It is up to the individual working groups to

use this information as they see fit".

As of the time of writing, the following implementations of this

algorithm have been publicly released:

Linux TCP

Source code URL:

GPLv2 license: https://git.kernel.org/pub/scm/linux/kernel/

git/torvalds/linux.git/tree/net/ipv4/tcp_rate.c

BSD-style license: https://groups.google.com/d/msg/bbr-dev/

X0LbDptlOzo/EVgkRjVHBQAJ

Source: Google

Maturity: production

License: dual-licensed: GPLv2 / BSD-style

Contact: https://groups.google.com/d/forum/bbr-dev

Last updated: September 24, 2021
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QUIC

Source code URLs:

https://source.chromium.org/chromium/chromium/src/+/

master:net/third_party/quiche/src/quic/core/

congestion_control/bandwidth_sampler.cc

https://source.chromium.org/chromium/chromium/src/+/

master:net/third_party/quiche/src/quic/core/

congestion_control/bandwidth_sampler.h

Source: Google

Maturity: production

License: BSD-style

Contact: https://groups.google.com/d/forum/bbr-dev

Last updated: October 5, 2021

6. Security Considerations

This proposal makes no changes to the underlying security of

transport protocols or congestion control algorithms. This algorithm

adds no security considerations beyond those involved in the

existing standard congestion control algorithm [RFC5681].

7. IANA Considerations

This document makes no request of IANA.

Note to RFC Editor: this section may be removed on publication as an

RFC.
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