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Abstract

   This document presents a new TCP loss detection algorithm called 

RACK

   ("Recent ACKnowledgment").  RACK uses the notion of time, instead of

   packet or sequence counts, to detect losses, for modern TCP

   implementations that can support per-packet timestamps and the

   selective acknowledgment (SACK) option.  It is intended to replace

   the conventional DUPACK threshold approach and its variants, as well

   as other nonstandard approaches.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the

   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering

   Task Force (IETF).  Note that other groups may also distribute

   working documents as Internet-Drafts.  The list of current Internet-

   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six 

months

   and may be updated, replaced, or obsoleted by other documents at any

   time.  It is inappropriate to use Internet-Drafts as reference

   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on April 21, 2016.

Copyright Notice

   Copyright (c) 2015 IETF Trust and the persons identified as the

   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal

   Provisions Relating to IETF Documents

   (http://trustee.ietf.org/license-info) in effect on the date of

   publication of this document.  Please review these documents

   carefully, as they describe your rights and restrictions with 

respect

   to this document.  Code Components extracted from this document must

   include Simplified BSD License text as described in Section 4.e of
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   the Trust Legal Provisions and are provided without warranty as

   described in the Simplified BSD License.

1.  Introduction

   This document presents a new loss detection algorithm called RACK

   ("Recent ACKnowledgment").  RACK uses the notion of time instead of

   the conventional packet or sequence counting approaches for 

detecting

   losses.  RACK deems a packet lost if some packet sent sufficiently

   later has been cumulatively or selectively acknowledged.  It does

   this by recording packet transmission times and inferring losses

   using cumulative acknowledgments or selective acknowledgment (SACK)

   TCP options.

   The main motivation for RACK is to replace both the standard and

   nonstandard loss detection algorithms

   [RFC5681][RFC6675][RFC5827][RFC4653][FACK][THIN-STREAM] to simplify

   TCP development.

   Another motivation is to improve loss detection for modern traffic

   patterns and underlying network changes.  First, the prevalence of

   interactive request-response traffic means TCP is often application-

   limited.  Second, wide deployment of traffic policers results in

   frequent lost retransmissions and losses at the tail of 

transactions.

   Third, mobile wireless and router load-balancing cause frequent

   occurrences of small degrees of reordering.

   These three factors together make existing packet or sequence

   counting approaches inefficient.  This is because mechanisms based

   purely on counting packets in sequence order can either detect loss

   quickly or accurately, but it is hard to achieve both, especially

   when the sender is application-limited and reordering is

   unpredictable.  And under these conditions none of them can detect

   lost retransmission well.

2.  Requirements

   The reader is expected to be familiar with the definitions given in

   the TCP congestion control [RFC5681] and selective acknowledgment

   [RFC2018] RFCs.  Familiarity with the conservative SACK-based

   recovery for TCP [RFC6675] is not expected but helps.

   RACK has three requirements:

   1.  The connection MUST use selective acknowledgment (SACK) options

       [RFC2018].

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc5827
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc6675
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   2.  For each packet sent, the sender MUST store its most recent

       transmission time with (at least) millisecond granularity.  For

       round-trip times lower than a millisecond (e.g., intra-

datacenter

       communications) microsecond granularity would significantly help

       the detection latency but is not required.

   3.  For each packet sent, the sender MUST store whether the packet

       has been retransmitted or not.

   We assume that requirement 1 implies the sender keeps a SACK

   scoreboard, which is a data structure to store selective

   acknowledgment information on a per-connection basis.  For the ease

   of explaining the algorithm, we use a pseudo-scoreboard that manages

   the data in sequence number ranges.  But the specifics of the data

   structure are left to the implementor.

   RACK does not need any change on the receiver.

3.  Definitions of variables

   A sender needs to store these new RACK variables:

   "Packet.xmit_time" is the time of the last transmission of a data

   packet, including any retransmissions, if any.  The sender needs to

   record the transmission time for each packet sent and not yet

   acknowledged.  The time MUST be stored at millisecond granularity or

   finer.

   "RACK.xmit_time" is the most recent Packet.xmit_time among all the

   packets that were delivered (either cumulatively acknowledged or

   selectively acknowledged) on the connection.

   "RACK.RTT" is the associated RTT measured when RACK.xmit_time, 

above,

   was changed.  It is the RTT of the most recently transmitted packet

   that has been delivered (either cumulatively acknowledged or

   selectively acknowledged) on the connection.

   "RACK.reo_wnd" is a reordering window for the connection, computed 

in

   the unit of time used for recording packet transmission times.  It 

is

   used to defer the moment at which RACK marks a packet lost.

   "RACK.min_RTT" is the estimated minimum round-trip time (RTT) of the

   connection.

   Note that the Packet.xmit_time variable is per packet in flight.  

The

   RACK.xmit_time, RACK.RTT, RACK.reo_wnd, and RACK.min_RTT variables

   are per connection.
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4.  Algorithm Details

4.1.  Transmitting a data packet

   Upon transmitting or retransmitting a packet, record the time in

   Packet.xmit_time.

4.2.  Upon receiving an ACK

   Step 1: Update RACK.min_RTT.

   Use the RTT measurements obtained in [RFC6298] or [RFC7323] to 

update

   the estimated minimum RTT in RACK.min_RTT.  The sender can track a

   simple global minimum of all RTT measurements from the connection, 

or

   a windowed min-filtered value of recent RTT measurements.  This

   document does not specify an exact approach.

   Step 2: Update RACK.reo_wnd.

   To handle the prevalent small degree of reordering, RACK.reo_wnd

   serves as an allowance for settling time before marking a packet

   lost.  By default it is 1 millisecond.  We RECOMMEND implementing 

the

   reordering detection in [REORDER-DETECT][RFC4737] to dynamically

   adjust the reordering window.  When the sender detects packet

   reordering RACK.reo_wnd MAY be changed to RACK.min_RTT/4.  We 

discuss

   more about the reordering window in the next section.

   Step 3: Advance RACK.xmit_time and update RACK.RTT.

   Given the information provided in an ACK, each packet cumulatively

   ACKed or SACKed is marked as delivered in the scoreboard.  Among all

   the packets ACKed or SACKed so far in the connection, record the 

most

   recent Packet.xmit_time in RACK.xmit_time if it is ahead of

   RACK.xmit_time, unless the retransmission is considered as likely

   spurious by the following check.  Ignore the packet if it has been

   retransmitted and either of two condition is true:

   1.  The Timestamp Echo Reply field (TSecr) of the ACK's timestamp

       option [RFC7323], if available, indicates the ACK was not

       acknowledging the last retransmission of the packet.

   2.  The packet was last retransmitted less than RACK.min_rtt ago.

       While it is still possible the packet is spuriously 

retransmitted

       because of a recent RTT decrease, we believe that our experience

       suggests this is a reasonable heuristic.

https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc7323
https://datatracker.ietf.org/doc/html/rfc7323


   If this ACK causes a change to RACK.xmit_time then record the RTT

   implied by this ACK: set RACK.RTT = now - RACK.xmit_time.
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   Exit here and omit step 3 if RACK.xmit_time has not changed.

   Step 3: Detect losses.

   For each packet that has not been fully SACKed, if RACK.xmit_time is

   after Packet.xmit_time + RACK.reo_wnd, then mark the packet (or its

   corresponding sequence range) lost in the scoreboard.  The rationale

   is that if another packet that was sent later has been delivered, 

and

   the reordering window or "reordering settling time" has already

   passed, the packet was likely lost.

   If a packet that was sent later has been delivered, but the

   reordering window has not passed, then it is not yet safe to deem 

the

   given packet lost.  Using the basic algorithm above, the sender 

would

   wait for the next ACK to further advance RACK.xmit_time; but this

   risks a timeout (RTO) if no more ACKs come back (e.g, due to losses

   or application limit).  For timely loss detection, the sender MAY

   install a "reordering settling" timer set to fire at the earliest

   moment at which it is safe to conclude that some packet is lost.  

The

   earliest moment is the time it takes to expire the reordering window

   of the earliest unacked packet in flight, which is the minimum value

   of (Packet.xmit_time + RACK.RTT + RACK.reo_wnd + 1ms) across all

   unacknowledged packets.

   This timer expiration value can be derived as follows.  As a 

starting

   point, we consider that the reordering window has passed if the RACK

   packet was sent sufficiently after the packet in question, or a

   sufficient time has elapsed since the RACK packet was S/ACKed, or

   some combination of the two.  More precisely, RACK marks a packet as

   lost if the reordering window for a packet has elapsed through the

   sum of:

   1.  delta in transmit time between a packet and the RACK packet

   2.  delta in time between the S/ACK of the RACK packet

       (RACK.sacked_time) and now

   So we mark a packet as lost if:

RACK.xmit_time > Packet.xmit_time

  AND

(RACK.xmit_time - Packet.xmit_time) + (now - RACK.sacked_time) > 

RACK.reo_wnd

   If we solve this second condition for "now", the moment at which we

   can declare a packet lost, then we get:



now > Packet.xmit_time + RACK.reo_wnd + (RACK.sacked_time - 

RACK.xmit_time)
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   Then (RACK.sacked_time - RACK.xmit_time) is just the RTT of the

   packet we used to set RACK.xmit_time, so this reduces to:

   now > Packet.xmit_time + RACK.RTT + RACK.reo_wnd

   The following pseudocode implements the algorithm above.  When an 

ACK

   is received or the RACK timer expires, call RACK_detect_loss():

RACK_detect_loss():

    min_timeout = 0

    For each packet, Packet, in the scoreboard:

        If Packet is already SACKed, ACKed,

           or marked lost and not yet retransmitted:

            Skip to the next packet

        If Packet.xmit_time > RACK.xmit_time:

            Skip to the next packet

        timeout = Packet.xmit_time + RACK.RTT + RACK.reo_wnd + 1

        If now >= timeout

            Mark Packet lost

        Else If (min_timeout == 0) or (timeout is before min_timeout):

            min_timeout = timeout

    If min_timeout != 0

        Arm the RACK timer to call RACK_detect_loss() at the time 

min_timeout

5.  Algorithm Analysis

5.1.  Advantages

   The biggest advantage of RACK is that every data packet, whether it

   is an original data transmission or a retransmission, can be used to

   detect losses of the packets sent prior to it.

   Example: tail drop.  Consider a sender that transmits a window of

   three data packets (P1, P2, P3), and P1 and P3 are lost.  Suppose 

the

   transmission of each packet is at least RACK.reo_wnd (1 millisecond

   by default) after the transmission of the previous packet.  RACK 

will

   mark P1 as lost when the SACK of P2 is received, and this will

   trigger the retransmission of P1 as R1.  When R1 is cumulatively

   acknowledged, RACK will mark P3 as lost and the sender will

   retransmit P3 as R3.  This example illustrates how RACK is able to

   repair certain drops at the tail of a transaction without any timer.

   Notice that neither the conventional duplicate ACK threshold

   [RFC5681], nor [RFC6675], nor the Forward Acknowledgment [FACK]

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc6675
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   algorithm can detect such losses, because of the required packet or

   sequence count.

   Example: lost retransmit.  Consider a window of three data packets

   (P1, P2, P3) that are sent; P1 and P2 are dropped.  Suppose the

   transmission of each packet is at least RACK.reo_wnd (1 millisecond

   by default) after the transmission of the previous packet.  When P3

   is SACKed, RACK will mark P1 and P2 lost and they will be

   retransmitted as R1 and R2.  Suppose R1 is lost again (as a tail

   drop) but R2 is SACKed; RACK will mark R1 lost for retransmission

   again.  Again, neither the conventional three duplicate ACK 

threshold

   approach, nor [RFC6675], nor the Forward Acknowledgment [FACK]

   algorithm can detect such losses.  And such a lost retransmission is

   very common when TCP is being rate-limited, particularly by token

   bucket policers with large bucket depth and low rate limit.

   Retransmissions are often lost repeatedly because standard 

congestion

   control requires multiple round trips to reduce the rate below the

   policed rate.

   Example: (small) degree of reordering.  Consider a common reordering

   event: a window of packets are sent as (P1, P2, P3).  P1 and P2 

carry

   a full payload of MSS octets, but P3 has only a 1-octet payload due

   to application-limited behavior.  Suppose the sender has detected

   reordering previously (e.g., by implementing the algorithm in

   [REORDER-DETECT]) and thus RACK.reo_wnd is min_RTT/4.  Now P3 is

   reordered and delivered first, before P1 and P2.  As long as P1 and

   P2 are delivered within min_RTT/4, RACK will not consider P1 and P2

   lost.  But if P1 and P2 are delivered outside the reordering window,

   then RACK will still falsely mark P1 and P2 lost.  We discuss how to

   reduce the false positives in the end of this section.

   The examples above show that RACK is particularly useful when the

   sender is limited by the application, which is common for

   interactive, request/response traffic.  Similarly, RACK still works

   when the sender is limited by the receive window, which is common 

for

   applications that use the receive window to throttle the sender.

5.2.  Disadvantages

   RACK requires the sender to record the transmission time of each

   packet sent at a clock granularity of one millisecond or finer.  TCP

   implementations that record this already for RTT estimation do not

   require any new per-packet state.  But implementations that are not

   yet recording packet transmission times will need to add per-packet

   internal state (commonly either 4 or 8 octets per packet) to track

   transmission times.  In contrast, the conventional approach requires

   one variable to track number of duplicate ACK threshold.

https://datatracker.ietf.org/doc/html/rfc6675
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5.3.  Adjusting the reordering window

   RACK uses a reordering window of min_rtt / 4.  It uses the minimum

   RTT to accommodate reordering introduced by packets traversing

   slightly different paths (e.g., router-based parallelism schemes) or

   out-of-order deliveries in the lower link layer (e.g., wireless 

links

   using link-layer retransmission).  Alternatively, RACK can use the

   smoothed RTT used in RTT estimation [RFC6298].  However, smoothed 

RTT

   can be significantly inflated by orders of magnitude due to

   congestion and buffer-bloat, which would result in an overly

   conservative reordering window and slow loss detection.  

Furthermore,

   RACK uses a quarter of minimum RTT because Linux TCP uses the same

   factor in its implementation to delay Early Retransmit [RFC5827] to

   reduce spurious loss detections in the presence of reordering, and

   experience shows that this seems to work reasonably well.

   One potential improvement is to further adapt the reordering window

   by measuring the degree of reordering in time, instead of packet

   distances.  But that requires storing the delivery timestamp of each

   packet.  Some scoreboard implementations currently merge SACKed

   packets together to support TSO (TCP Segmentation Offload) for 

faster

   scoreboard indexing.  Supporting per-packet delivery timestamps is

   difficult in such implementations.  However, we acknowledge that the

   current metric can be improved by further research.

5.4.  Relationships with other loss recovery algorithms

   The primary motivation of RACK is to ultimately provide a simple and

   general replacement for some of the standard loss recovery 

algorithms

   [RFC5681][RFC6675][RFC5827][RFC4653] and nonstandard ones

   [FACK][THIN-STREAM].  While RACK can be a supplemental loss 

detection

   on top of these algorithms, this is not necessary, because the RACK

   implicitly subsumes most of them.

   [RFC5827][RFC4653][THIN-STREAM] dynamically adjusts the duplicate 

ACK

   threshold based on the current or previous flight sizes.  RACK takes

   a different approach, by using only one ACK event and a reordering

   window.  RACK can be seen as an extended Early Retransmit [RFC5827]

   without a FlightSize limit but with an additional reordering window.

   [FACK] considers an original packet to be lost when its sequence

   range is sufficiently far below the highest SACKed sequence.  In 

some

   sense RACK can be seen as a generalized form of FACK that operates 

in

   time space instead of sequence space, enabling it to better handle

https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc5827
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc5827
https://datatracker.ietf.org/doc/html/rfc5827
https://datatracker.ietf.org/doc/html/rfc5827


   reordering, application-limited traffic, and lost retransmissions.

   Nevertheless RACK is still an experimental algorithm.  Since the

   oldest loss detection algorithm, the 3 duplicate ACK threshold

   [RFC5681], has been standardized and widely deployed, we RECOMMEND
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   TCP implementations use both RACK and the algorithm specified in

   Section 3.2 in [RFC5681] for compatibility.

   RACK is compatible with and does not interfere with the the standard

   RTO [RFC6298], RTO-restart [RTO-RESTART], F-RTO [RFC5682] and Eifel

   algorithms [RFC3522].  This is because RACK only detects loss by

   using ACK events.  It neither changes the timer calculation nor

   detects spurious timeouts.

   Furthermore, RACK naturally works well with Tail Loss Probe [TLP]

   because a tail loss probe solicit seither an ACK or SACK, which can

   be used by RACK to detect more losses.  RACK can be used to relax

   TLP's requirement for using FACK and retransmitting the the highest-

   sequenced packet, because RACK is agnostic to packet sequence

   numbers, and uses transmission time instead.  Thus TLP can be

   modified to retransmit the first unacknowledged packet, which can

   improve application latency.

5.5.  Interaction with congestion control

   RACK intentionally decouples loss detection from congestion control.

   RACK only detects losses; it does not modify the congestion control

   algorithm [RFC5681][RFC6937].  However, RACK may detect losses

   earlier or later than the conventional duplicate ACK threshold

   approach does.  A packet marked lost by RACK SHOULD NOT be

   retransmitted until congestion control deems this appropriate (e.g.

   using [RFC6937]).

   RACK is applicable for both fast recovery and recovery after a

   retransmission timeout (RTO) in [RFC5681].  The distinction between

   fast recovery or RTO recovery is not necessary because RACK is 

purely

   based on the transmission time order of packets.  When a packet

   retransmitted by RTO is acknowledged, RACK will mark any unacked

   packet sent sufficiently prior to the RTO as lost, because at least

   one RTT has elapsed since these packets were sent.

6.  Security Considerations

   RACK does not change the risk profile for TCP.

   An interesting scenario is ACK-splitting attacks [SCWA99]: for an

   MSS-size packet sent, the receiver or the attacker might send MSS

   ACKs that SACK or acknowledge one additional byte per ACK.  This

   would not fool RACK.  RACK.xmit_time would not advance because all

   the sequences of the packet are transmitted at the same time (carry

   the same transmission timestamp).  In other words, SACKing only one

   byte of a packet or SACKing the packet in entirety have the same

   effect on RACK.

https://datatracker.ietf.org/doc/html/rfc5681#section-3.2
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc5682
https://datatracker.ietf.org/doc/html/rfc3522
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc6937
https://datatracker.ietf.org/doc/html/rfc5681
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7.  IANA Considerations

   This document makes no request of IANA.

   Note to RFC Editor: this section may be removed on publication as an

   RFC.
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