
TCP Maintenance Working Group Y.

Cheng

Internet-Draft N.

Cardwell

Intended status: Experimental Google,

Inc

Expires: April 21, 2016 October 19,

2015

 RACK: a time-based fast loss detection algorithm for TCP

 draft-cheng-tcpm-rack-00

Abstract

 This document presents a new TCP loss detection algorithm called

RACK

 ("Recent ACKnowledgment"). RACK uses the notion of time, instead of

 packet or sequence counts, to detect losses, for modern TCP

 implementations that can support per-packet timestamps and the

 selective acknowledgment (SACK) option. It is intended to replace

 the conventional DUPACK threshold approach and its variants, as well

 as other nonstandard approaches.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six

months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 21, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal

 Provisions Relating to IETF Documents

 (http://trustee.ietf.org/license-info) in effect on the date of

 publication of this document. Please review these documents

 carefully, as they describe your rights and restrictions with

respect

 to this document. Code Components extracted from this document must

 include Simplified BSD License text as described in Section 4.e of

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Cheng & Cardwell Expires April 21, 2016 [Page

1]

Internet-Draft RACK October

2015

 the Trust Legal Provisions and are provided without warranty as

 described in the Simplified BSD License.

1. Introduction

 This document presents a new loss detection algorithm called RACK

 ("Recent ACKnowledgment"). RACK uses the notion of time instead of

 the conventional packet or sequence counting approaches for

detecting

 losses. RACK deems a packet lost if some packet sent sufficiently

 later has been cumulatively or selectively acknowledged. It does

 this by recording packet transmission times and inferring losses

 using cumulative acknowledgments or selective acknowledgment (SACK)

 TCP options.

 The main motivation for RACK is to replace both the standard and

 nonstandard loss detection algorithms

 [RFC5681][RFC6675][RFC5827][RFC4653][FACK][THIN-STREAM] to simplify

 TCP development.

 Another motivation is to improve loss detection for modern traffic

 patterns and underlying network changes. First, the prevalence of

 interactive request-response traffic means TCP is often application-

 limited. Second, wide deployment of traffic policers results in

 frequent lost retransmissions and losses at the tail of

transactions.

 Third, mobile wireless and router load-balancing cause frequent

 occurrences of small degrees of reordering.

 These three factors together make existing packet or sequence

 counting approaches inefficient. This is because mechanisms based

 purely on counting packets in sequence order can either detect loss

 quickly or accurately, but it is hard to achieve both, especially

 when the sender is application-limited and reordering is

 unpredictable. And under these conditions none of them can detect

 lost retransmission well.

2. Requirements

 The reader is expected to be familiar with the definitions given in

 the TCP congestion control [RFC5681] and selective acknowledgment

 [RFC2018] RFCs. Familiarity with the conservative SACK-based

 recovery for TCP [RFC6675] is not expected but helps.

 RACK has three requirements:

 1. The connection MUST use selective acknowledgment (SACK) options

 [RFC2018].

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc5827
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc2018

Cheng & Cardwell Expires April 21, 2016 [Page

2]

Internet-Draft RACK October

2015

 2. For each packet sent, the sender MUST store its most recent

 transmission time with (at least) millisecond granularity. For

 round-trip times lower than a millisecond (e.g., intra-

datacenter

 communications) microsecond granularity would significantly help

 the detection latency but is not required.

 3. For each packet sent, the sender MUST store whether the packet

 has been retransmitted or not.

 We assume that requirement 1 implies the sender keeps a SACK

 scoreboard, which is a data structure to store selective

 acknowledgment information on a per-connection basis. For the ease

 of explaining the algorithm, we use a pseudo-scoreboard that manages

 the data in sequence number ranges. But the specifics of the data

 structure are left to the implementor.

 RACK does not need any change on the receiver.

3. Definitions of variables

 A sender needs to store these new RACK variables:

 "Packet.xmit_time" is the time of the last transmission of a data

 packet, including any retransmissions, if any. The sender needs to

 record the transmission time for each packet sent and not yet

 acknowledged. The time MUST be stored at millisecond granularity or

 finer.

 "RACK.xmit_time" is the most recent Packet.xmit_time among all the

 packets that were delivered (either cumulatively acknowledged or

 selectively acknowledged) on the connection.

 "RACK.RTT" is the associated RTT measured when RACK.xmit_time,

above,

 was changed. It is the RTT of the most recently transmitted packet

 that has been delivered (either cumulatively acknowledged or

 selectively acknowledged) on the connection.

 "RACK.reo_wnd" is a reordering window for the connection, computed

in

 the unit of time used for recording packet transmission times. It

is

 used to defer the moment at which RACK marks a packet lost.

 "RACK.min_RTT" is the estimated minimum round-trip time (RTT) of the

 connection.

 Note that the Packet.xmit_time variable is per packet in flight.

The

 RACK.xmit_time, RACK.RTT, RACK.reo_wnd, and RACK.min_RTT variables

 are per connection.

Cheng & Cardwell Expires April 21, 2016 [Page

3]

Internet-Draft RACK October

2015

4. Algorithm Details

4.1. Transmitting a data packet

 Upon transmitting or retransmitting a packet, record the time in

 Packet.xmit_time.

4.2. Upon receiving an ACK

 Step 1: Update RACK.min_RTT.

 Use the RTT measurements obtained in [RFC6298] or [RFC7323] to

update

 the estimated minimum RTT in RACK.min_RTT. The sender can track a

 simple global minimum of all RTT measurements from the connection,

or

 a windowed min-filtered value of recent RTT measurements. This

 document does not specify an exact approach.

 Step 2: Update RACK.reo_wnd.

 To handle the prevalent small degree of reordering, RACK.reo_wnd

 serves as an allowance for settling time before marking a packet

 lost. By default it is 1 millisecond. We RECOMMEND implementing

the

 reordering detection in [REORDER-DETECT][RFC4737] to dynamically

 adjust the reordering window. When the sender detects packet

 reordering RACK.reo_wnd MAY be changed to RACK.min_RTT/4. We

discuss

 more about the reordering window in the next section.

 Step 3: Advance RACK.xmit_time and update RACK.RTT.

 Given the information provided in an ACK, each packet cumulatively

 ACKed or SACKed is marked as delivered in the scoreboard. Among all

 the packets ACKed or SACKed so far in the connection, record the

most

 recent Packet.xmit_time in RACK.xmit_time if it is ahead of

 RACK.xmit_time, unless the retransmission is considered as likely

 spurious by the following check. Ignore the packet if it has been

 retransmitted and either of two condition is true:

 1. The Timestamp Echo Reply field (TSecr) of the ACK's timestamp

 option [RFC7323], if available, indicates the ACK was not

 acknowledging the last retransmission of the packet.

 2. The packet was last retransmitted less than RACK.min_rtt ago.

 While it is still possible the packet is spuriously

retransmitted

 because of a recent RTT decrease, we believe that our experience

 suggests this is a reasonable heuristic.

https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc7323
https://datatracker.ietf.org/doc/html/rfc7323

 If this ACK causes a change to RACK.xmit_time then record the RTT

 implied by this ACK: set RACK.RTT = now - RACK.xmit_time.

Cheng & Cardwell Expires April 21, 2016 [Page

4]

Internet-Draft RACK October

2015

 Exit here and omit step 3 if RACK.xmit_time has not changed.

 Step 3: Detect losses.

 For each packet that has not been fully SACKed, if RACK.xmit_time is

 after Packet.xmit_time + RACK.reo_wnd, then mark the packet (or its

 corresponding sequence range) lost in the scoreboard. The rationale

 is that if another packet that was sent later has been delivered,

and

 the reordering window or "reordering settling time" has already

 passed, the packet was likely lost.

 If a packet that was sent later has been delivered, but the

 reordering window has not passed, then it is not yet safe to deem

the

 given packet lost. Using the basic algorithm above, the sender

would

 wait for the next ACK to further advance RACK.xmit_time; but this

 risks a timeout (RTO) if no more ACKs come back (e.g, due to losses

 or application limit). For timely loss detection, the sender MAY

 install a "reordering settling" timer set to fire at the earliest

 moment at which it is safe to conclude that some packet is lost.

The

 earliest moment is the time it takes to expire the reordering window

 of the earliest unacked packet in flight, which is the minimum value

 of (Packet.xmit_time + RACK.RTT + RACK.reo_wnd + 1ms) across all

 unacknowledged packets.

 This timer expiration value can be derived as follows. As a

starting

 point, we consider that the reordering window has passed if the RACK

 packet was sent sufficiently after the packet in question, or a

 sufficient time has elapsed since the RACK packet was S/ACKed, or

 some combination of the two. More precisely, RACK marks a packet as

 lost if the reordering window for a packet has elapsed through the

 sum of:

 1. delta in transmit time between a packet and the RACK packet

 2. delta in time between the S/ACK of the RACK packet

 (RACK.sacked_time) and now

 So we mark a packet as lost if:

RACK.xmit_time > Packet.xmit_time

 AND

(RACK.xmit_time - Packet.xmit_time) + (now - RACK.sacked_time) >

RACK.reo_wnd

 If we solve this second condition for "now", the moment at which we

 can declare a packet lost, then we get:

now > Packet.xmit_time + RACK.reo_wnd + (RACK.sacked_time -

RACK.xmit_time)

Cheng & Cardwell Expires April 21, 2016 [Page

5]

Internet-Draft RACK October

2015

 Then (RACK.sacked_time - RACK.xmit_time) is just the RTT of the

 packet we used to set RACK.xmit_time, so this reduces to:

 now > Packet.xmit_time + RACK.RTT + RACK.reo_wnd

 The following pseudocode implements the algorithm above. When an

ACK

 is received or the RACK timer expires, call RACK_detect_loss():

RACK_detect_loss():

 min_timeout = 0

 For each packet, Packet, in the scoreboard:

 If Packet is already SACKed, ACKed,

 or marked lost and not yet retransmitted:

 Skip to the next packet

 If Packet.xmit_time > RACK.xmit_time:

 Skip to the next packet

 timeout = Packet.xmit_time + RACK.RTT + RACK.reo_wnd + 1

 If now >= timeout

 Mark Packet lost

 Else If (min_timeout == 0) or (timeout is before min_timeout):

 min_timeout = timeout

 If min_timeout != 0

 Arm the RACK timer to call RACK_detect_loss() at the time

min_timeout

5. Algorithm Analysis

5.1. Advantages

 The biggest advantage of RACK is that every data packet, whether it

 is an original data transmission or a retransmission, can be used to

 detect losses of the packets sent prior to it.

 Example: tail drop. Consider a sender that transmits a window of

 three data packets (P1, P2, P3), and P1 and P3 are lost. Suppose

the

 transmission of each packet is at least RACK.reo_wnd (1 millisecond

 by default) after the transmission of the previous packet. RACK

will

 mark P1 as lost when the SACK of P2 is received, and this will

 trigger the retransmission of P1 as R1. When R1 is cumulatively

 acknowledged, RACK will mark P3 as lost and the sender will

 retransmit P3 as R3. This example illustrates how RACK is able to

 repair certain drops at the tail of a transaction without any timer.

 Notice that neither the conventional duplicate ACK threshold

 [RFC5681], nor [RFC6675], nor the Forward Acknowledgment [FACK]

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc6675

Cheng & Cardwell Expires April 21, 2016 [Page

6]

Internet-Draft RACK October

2015

 algorithm can detect such losses, because of the required packet or

 sequence count.

 Example: lost retransmit. Consider a window of three data packets

 (P1, P2, P3) that are sent; P1 and P2 are dropped. Suppose the

 transmission of each packet is at least RACK.reo_wnd (1 millisecond

 by default) after the transmission of the previous packet. When P3

 is SACKed, RACK will mark P1 and P2 lost and they will be

 retransmitted as R1 and R2. Suppose R1 is lost again (as a tail

 drop) but R2 is SACKed; RACK will mark R1 lost for retransmission

 again. Again, neither the conventional three duplicate ACK

threshold

 approach, nor [RFC6675], nor the Forward Acknowledgment [FACK]

 algorithm can detect such losses. And such a lost retransmission is

 very common when TCP is being rate-limited, particularly by token

 bucket policers with large bucket depth and low rate limit.

 Retransmissions are often lost repeatedly because standard

congestion

 control requires multiple round trips to reduce the rate below the

 policed rate.

 Example: (small) degree of reordering. Consider a common reordering

 event: a window of packets are sent as (P1, P2, P3). P1 and P2

carry

 a full payload of MSS octets, but P3 has only a 1-octet payload due

 to application-limited behavior. Suppose the sender has detected

 reordering previously (e.g., by implementing the algorithm in

 [REORDER-DETECT]) and thus RACK.reo_wnd is min_RTT/4. Now P3 is

 reordered and delivered first, before P1 and P2. As long as P1 and

 P2 are delivered within min_RTT/4, RACK will not consider P1 and P2

 lost. But if P1 and P2 are delivered outside the reordering window,

 then RACK will still falsely mark P1 and P2 lost. We discuss how to

 reduce the false positives in the end of this section.

 The examples above show that RACK is particularly useful when the

 sender is limited by the application, which is common for

 interactive, request/response traffic. Similarly, RACK still works

 when the sender is limited by the receive window, which is common

for

 applications that use the receive window to throttle the sender.

5.2. Disadvantages

 RACK requires the sender to record the transmission time of each

 packet sent at a clock granularity of one millisecond or finer. TCP

 implementations that record this already for RTT estimation do not

 require any new per-packet state. But implementations that are not

 yet recording packet transmission times will need to add per-packet

 internal state (commonly either 4 or 8 octets per packet) to track

 transmission times. In contrast, the conventional approach requires

 one variable to track number of duplicate ACK threshold.

https://datatracker.ietf.org/doc/html/rfc6675

Cheng & Cardwell Expires April 21, 2016 [Page

7]

Internet-Draft RACK October

2015

5.3. Adjusting the reordering window

 RACK uses a reordering window of min_rtt / 4. It uses the minimum

 RTT to accommodate reordering introduced by packets traversing

 slightly different paths (e.g., router-based parallelism schemes) or

 out-of-order deliveries in the lower link layer (e.g., wireless

links

 using link-layer retransmission). Alternatively, RACK can use the

 smoothed RTT used in RTT estimation [RFC6298]. However, smoothed

RTT

 can be significantly inflated by orders of magnitude due to

 congestion and buffer-bloat, which would result in an overly

 conservative reordering window and slow loss detection.

Furthermore,

 RACK uses a quarter of minimum RTT because Linux TCP uses the same

 factor in its implementation to delay Early Retransmit [RFC5827] to

 reduce spurious loss detections in the presence of reordering, and

 experience shows that this seems to work reasonably well.

 One potential improvement is to further adapt the reordering window

 by measuring the degree of reordering in time, instead of packet

 distances. But that requires storing the delivery timestamp of each

 packet. Some scoreboard implementations currently merge SACKed

 packets together to support TSO (TCP Segmentation Offload) for

faster

 scoreboard indexing. Supporting per-packet delivery timestamps is

 difficult in such implementations. However, we acknowledge that the

 current metric can be improved by further research.

5.4. Relationships with other loss recovery algorithms

 The primary motivation of RACK is to ultimately provide a simple and

 general replacement for some of the standard loss recovery

algorithms

 [RFC5681][RFC6675][RFC5827][RFC4653] and nonstandard ones

 [FACK][THIN-STREAM]. While RACK can be a supplemental loss

detection

 on top of these algorithms, this is not necessary, because the RACK

 implicitly subsumes most of them.

 [RFC5827][RFC4653][THIN-STREAM] dynamically adjusts the duplicate

ACK

 threshold based on the current or previous flight sizes. RACK takes

 a different approach, by using only one ACK event and a reordering

 window. RACK can be seen as an extended Early Retransmit [RFC5827]

 without a FlightSize limit but with an additional reordering window.

 [FACK] considers an original packet to be lost when its sequence

 range is sufficiently far below the highest SACKed sequence. In

some

 sense RACK can be seen as a generalized form of FACK that operates

in

 time space instead of sequence space, enabling it to better handle

https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc5827
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc5827
https://datatracker.ietf.org/doc/html/rfc5827
https://datatracker.ietf.org/doc/html/rfc5827

 reordering, application-limited traffic, and lost retransmissions.

 Nevertheless RACK is still an experimental algorithm. Since the

 oldest loss detection algorithm, the 3 duplicate ACK threshold

 [RFC5681], has been standardized and widely deployed, we RECOMMEND

Cheng & Cardwell Expires April 21, 2016 [Page

8]

https://datatracker.ietf.org/doc/html/rfc5681

Internet-Draft RACK October

2015

 TCP implementations use both RACK and the algorithm specified in

 Section 3.2 in [RFC5681] for compatibility.

 RACK is compatible with and does not interfere with the the standard

 RTO [RFC6298], RTO-restart [RTO-RESTART], F-RTO [RFC5682] and Eifel

 algorithms [RFC3522]. This is because RACK only detects loss by

 using ACK events. It neither changes the timer calculation nor

 detects spurious timeouts.

 Furthermore, RACK naturally works well with Tail Loss Probe [TLP]

 because a tail loss probe solicit seither an ACK or SACK, which can

 be used by RACK to detect more losses. RACK can be used to relax

 TLP's requirement for using FACK and retransmitting the the highest-

 sequenced packet, because RACK is agnostic to packet sequence

 numbers, and uses transmission time instead. Thus TLP can be

 modified to retransmit the first unacknowledged packet, which can

 improve application latency.

5.5. Interaction with congestion control

 RACK intentionally decouples loss detection from congestion control.

 RACK only detects losses; it does not modify the congestion control

 algorithm [RFC5681][RFC6937]. However, RACK may detect losses

 earlier or later than the conventional duplicate ACK threshold

 approach does. A packet marked lost by RACK SHOULD NOT be

 retransmitted until congestion control deems this appropriate (e.g.

 using [RFC6937]).

 RACK is applicable for both fast recovery and recovery after a

 retransmission timeout (RTO) in [RFC5681]. The distinction between

 fast recovery or RTO recovery is not necessary because RACK is

purely

 based on the transmission time order of packets. When a packet

 retransmitted by RTO is acknowledged, RACK will mark any unacked

 packet sent sufficiently prior to the RTO as lost, because at least

 one RTT has elapsed since these packets were sent.

6. Security Considerations

 RACK does not change the risk profile for TCP.

 An interesting scenario is ACK-splitting attacks [SCWA99]: for an

 MSS-size packet sent, the receiver or the attacker might send MSS

 ACKs that SACK or acknowledge one additional byte per ACK. This

 would not fool RACK. RACK.xmit_time would not advance because all

 the sequences of the packet are transmitted at the same time (carry

 the same transmission timestamp). In other words, SACKing only one

 byte of a packet or SACKing the packet in entirety have the same

 effect on RACK.

https://datatracker.ietf.org/doc/html/rfc5681#section-3.2
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc5682
https://datatracker.ietf.org/doc/html/rfc3522
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc6937
https://datatracker.ietf.org/doc/html/rfc5681

Cheng & Cardwell Expires April 21, 2016 [Page

9]

Internet-Draft RACK October

2015

7. IANA Considerations

 This document makes no request of IANA.

 Note to RFC Editor: this section may be removed on publication as an

 RFC.

8. Acknowledgments

 The authors wish to thank Matt Mathis for his insights in FACK that

 inspired this work. Nandita Dukkipati, Eric Dumazet, Van Jacobson,

 Ian Swett, and Jana Iyengar contributed to the algorithm and the

 implementations in TCP and QUIC. We thank the authors of RFC3517

for

 a great document on an excellent loss recovery algorithm that this

 draft is trying to improve upon.

9. References

9.1. Normative References

 [RFC793] Postel, J., "Transmission Control Protocol", September

 1981.

 [RFC2018] Mathis, M. and J. Mahdavi, "TCP Selective Acknowledgment

 Options", RFC 2018, October 1996.

 [RFC6937] Mathis, M., Dukkipati, N., and Y. Cheng, "Proportional

 Rate Reduction for TCP", May 2013.

 [RFC4737] Morton, A., Ciavattone, L., Ramachandran, G., Shalunov,

 S., and J. Perser, "Packet Reordering Metrics", RFC 4737,

 November 2006.

 [RFC6675] Blanton, E., Allman, M., Wang, L., Jarvinen, I., Kojo,

M.,

 and Y. Nishida, "A Conservative Loss Recovery Algorithm

 Based on Selective Acknowledgment (SACK) for TCP",

 RFC 6675, August 2012.

 [RFC6298] Paxson, V., Allman, M., Chu, J., and M. Sargent,

 "Computing TCP's Retransmission Timer", RFC 6298, June

 2011.

 [RFC5827] Allman, M., Ayesta, U., Wang, L., Blanton, J., and P.

 Hurtig, "Early Retransmit for TCP and Stream Control

 Transmission Protocol (SCTP)", RFC 5827, April 2010.

https://datatracker.ietf.org/doc/html/rfc3517
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc4737
https://datatracker.ietf.org/doc/html/rfc6675
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc5827

Cheng & Cardwell Expires April 21, 2016 [Page

10]

Internet-Draft RACK October

2015

 [RFC5682] Sarolahti, P., Kojo, M., Yamamoto, K., and M. Hata,

 "Forward RTO-Recovery (F-RTO): An Algorithm for Detecting

 Spurious Retransmission Timeouts with TCP", RFC 5682,

 September 2009.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", RFC 2119, March 1997.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion

 Control", RFC 5681, September 2009.

 [RFC2883] Floyd, S., Mahdavi, J., Mathis, M., and M. Podolsky, "An

 Extension to the Selective Acknowledgement (SACK) Option

 for TCP", RFC 2883, July 2000.

 [RFC7323] Borman, D., Braden, B., Jacobson, V., and R.

 Scheffenegger, "TCP Extensions for High Performance",

 September 2014.

9.2. Informative References

 [FACK] Mathis, M. and M. Jamshid, "Forward acknowledgement:

 refining TCP congestion control", ACM SIGCOMM Computer

 Communication Review, Volume 26, Issue 4, Oct. 1996. ,

 1996.

 [TLP] Dukkipati, N., Cardwell, N., Cheng, Y., and M. Mathis,

 "Tail Loss Probe (TLP): An Algorithm for Fast Recovery of

 Tail Drops", draft-dukkipati-tcpm-tcp-loss-probe-01 (work

 in progress), August 2013.

 [RTO-RESTART]

 Hurtig, P., Brunstrom, A., Petlund, A., and M. Welzl,

"TCP

 and SCTP RTO Restart", draft-ietf-tcpm-rtorestart-08

(work

 in progress), June 2015.

 [REORDER-DETECT]

 Zimmermann, A., Schulte, L., Wolff, C., and A. Hannemann,

 "Detection and Quantification of Packet Reordering with

 TCP", draft-zimmermann-tcpm-reordering-detection-02 (work

 in progress), November 2014.

 [THIN-STREAM]

 Petlund, A., Evensen, K., Griwodz, C., and P. Halvorsen,

 "TCP enhancements for interactive thin-stream

 applications", NOSSDAV , 2008.

https://datatracker.ietf.org/doc/html/rfc5682
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc2883
https://datatracker.ietf.org/doc/html/draft-dukkipati-tcpm-tcp-loss-probe-01
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-rtorestart-08
https://datatracker.ietf.org/doc/html/draft-zimmermann-tcpm-reordering-detection-02

Cheng & Cardwell Expires April 21, 2016 [Page

11]

Internet-Draft RACK October

2015

 [SCWA99] Savage, S., Cardwell, N., Wetherall, D., and T. Anderson,

 "TCP Congestion Control With a Misbehaving Receiver", ACM

 Computer Communication Review, 29(5) , 1999.

Authors' Addresses

 Yuchung Cheng

 Google, Inc

 1600 Amphitheater Parkway

 Mountain View, California 93117

 USA

 Email: ycheng@google.com

 Neal Cardwell

 Google, Inc

 76 Ninth Avenue

 New York, NY 10011

 USA

 Email: ncardwell@google.com

Cheng & Cardwell Expires April 21, 2016 [Page

12]

