
Document: draft-cheshire-dnsext-multicastdns-05.txt Stuart Cheshire
Category: Standards Track Marc Krochmal
Expires 7th December 2005 Apple Computer, Inc.
 7th June 2005

Multicast DNS

 <draft-cheshire-dnsext-multicastdns-05.txt>

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.
 For the purposes of this document, the term "BCP 79" refers
 exclusively to RFC 3979, "Intellectual Property Rights in IETF
 Technology", published March 2005.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

Abstract

 As networked devices become smaller, more portable, and more
 ubiquitous, the ability to operate with less configured
 infrastructure is increasingly important. In particular, the ability
 to look up DNS resource record data types (including, but not limited
 to, host names) in the absence of a conventional managed DNS server,
 is becoming essential.

 Multicast DNS (mDNS) provides the ability to do DNS-like operations
 on the local link in the absence of any conventional unicast DNS
 server. In addition, mDNS designates a portion of the DNS namespace
 to be free for local use, without the need to pay any annual fee, and
 without the need to set up delegations or otherwise configure a
 conventional DNS server to answer for those names.

https://datatracker.ietf.org/doc/html/draft-cheshire-dnsext-multicastdns-05.txt
https://datatracker.ietf.org/doc/html/draft-cheshire-dnsext-multicastdns-05.txt
https://datatracker.ietf.org/doc/html/bcp79#section-6
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/doc/html/rfc3979
http://www.ietf.org/1id-abstracts.html
http://www.ietf.org/shadow.html

 The primary benefits of mDNS names are that (i) they require little
 or no administration or configuration to set them up, (ii) they work
 when no infrastructure is present, and (iii) they work during
 infrastructure failures.

Expires 7th December 2005 Cheshire & Krochmal [Page 1]

Internet Draft Multicast DNS 7th June 2005

Table of Contents

1. Introduction...3
2. Conventions and Terminology Used in this Document..............4
3. Multicast DNS Names..5
4. Source Address Check...8
5. Reverse Address Mapping..9
6. Querying...9
7. Duplicate Suppression...13
8. Responding..15
9. Probing and Announcing on Startup.............................18
10. Conflict Resolution...22
11. Resource Record TTL Values and Cache Coherency................23
12. Special Characteristics of Multicast DNS Domains..............28
13. Multicast DNS for Service Discovery...........................30
14. Enabling and Disabling Multicast DNS..........................30
15. Considerations for Multiple Interfaces........................31
16. Multicast DNS and Power Management............................32
17. Multicast DNS Character Set...................................33
18. Multicast DNS Message Size....................................34
19. Multicast DNS Message Format..................................35
20. Choice of UDP Port Number.....................................38
21. Summary of Differences Between Multicast DNS and Unicast DNS..39
22. Benefits of Multicast Responses...............................40
23. IPv6 Considerations...41
24. Security Considerations.......................................42
25. IANA Considerations...43
26. Acknowledgments...43
27. Copyright Notice..43
28. Normative References..44
29. Informative References..44
30. Authors' Addresses..45

Expires 7th December 2005 Cheshire & Krochmal [Page 2]

Internet Draft Multicast DNS 7th June 2005

1. Introduction

 When reading this document, familiarity with the concepts of Zero
 Configuration Networking [ZC] and automatic link-local addressing
 [RFC 2462] [RFC 3927] is helpful.

 This document proposes no change to the structure of DNS messages,
 and no new operation codes, response codes, or resource record types.
 This document simply discusses what needs to happen if DNS clients
 start sending DNS queries to a multicast address, and how a
 collection of hosts can cooperate to collectively answer those
 queries in a useful manner.

 There has been discussion of how much burden Multicast DNS might
 impose on a network. It should be remembered that whenever IPv4 hosts
 communicate, they broadcast ARP packets on the network on a regular
 basis, and this is not disastrous. The approximate amount of
 multicast traffic generated by hosts making conventional use of
 Multicast DNS is anticipated to be roughly the same order of
 magnitude as the amount of broadcast ARP traffic those hosts already
 generate.

 New applications making new use of Multicast DNS capabilities for
 unconventional purposes may generate more traffic. If some of those
 new applications are "chatty", then work will be needed to help them
 become less chatty. When performing any analysis, it is important to
 make a distinction between the application behavior and the
 underlying protocol behavior. If a chatty application uses UDP, that
 doesn't mean that UDP is chatty, or that IP is chatty, or that
 Ethernet is chatty. What it means is that the application is chatty.
 The same applies to any future applications that may decide to layer
 increasing portions of their functionality over Multicast DNS.

https://datatracker.ietf.org/doc/html/rfc2462
https://datatracker.ietf.org/doc/html/rfc3927

Expires 7th December 2005 Cheshire & Krochmal [Page 3]

Internet Draft Multicast DNS 7th June 2005

2. Conventions and Terminology Used in this Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in "Key words for use in
 RFCs to Indicate Requirement Levels" [RFC 2119].

 This document uses the term "host name" in the strict sense to mean a
 fully qualified domain name that has an address record. It does not
 use the term "host name" in the commonly used but incorrect sense to
 mean just the first DNS label of a host's fully qualified domain
 name.

 A DNS (or mDNS) packet contains an IP TTL in the IP header, which
 is effectively a hop-count limit for the packet, to guard against
 routing loops. Each Resource Record also contains a TTL, which is
 the number of seconds for which the Resource Record may be cached.

 In any place where there may be potential confusion between these two
 types of TTL, the term "IP TTL" is used to refer to the IP header TTL
 (hop limit), and the term "RR TTL" is used to refer to the Resource
 Record TTL (cache lifetime).

 When this document uses the term "Multicast DNS", it should be taken
 to mean: "Clients performing DNS-like queries for DNS-like resource
 records by sending DNS-like UDP query and response packets over IP
 Multicast to UDP port 5353."

 This document uses the terms "shared" and "unique" when referring to
 resource record sets.

 A "shared" resource record set is one where several Multicast DNS
 responders may have records with that name, rrtype, and rrclass, and
 several responders may respond to a particular query.

 A "unique" resource record set is one where all the records with that
 name, rrtype, and rrclass are under the control or ownership of a
 single responder, and at most one responder should respond to any
 given query. Before claiming ownership of a unique resource record
 set, a responder MUST probe to verify that no other responder
 already claims ownership of that set, as described in Section 9.1
 "Probing".

 Strictly speaking the terms "shared" and "unique" apply to resource
 record sets, not to individual resource records, but it is sometimes
 convenient to talk of "shared resource records" and "unique resource
 records". When used this way, the terms should be understood to mean
 a record that is a member of a "shared" or "unique" resource record
 set, respectively.

https://datatracker.ietf.org/doc/html/rfc2119

Expires 7th December 2005 Cheshire & Krochmal [Page 4]

Internet Draft Multicast DNS 7th June 2005

3. Multicast DNS Names

 This document proposes that the DNS top-level domain ".local." be
 designated a special domain with special semantics, namely that any
 fully-qualified name ending in ".local." is link-local, and names
 within this domain are meaningful only on the link where they
 originate. This is analogous to IPv4 addresses in the 169.254/16
 prefix, which are link-local and meaningful only on the link where
 they originate.

 Any DNS query for a name ending with ".local." MUST be sent
 to the mDNS multicast address (224.0.0.251 or its IPv6 equivalent
 FF02::FB).

 It is unimportant whether a name ending with ".local." occurred
 because the user explicitly typed in a fully qualified domain name
 ending in ".local.", or because the user entered an unqualified
 domain name and the host software appended the suffix ".local."
 because that suffix appears in the user's search list. The ".local."
 suffix could appear in the search list because the user manually
 configured it, or because it was received in a DHCP option, or via
 any other valid mechanism for configuring the DNS search list. In
 this respect the ".local." suffix is treated no differently to any
 other search domain that might appear in the DNS search list.

 DNS queries for names that do not end with ".local." MAY be sent to
 the mDNS multicast address, if no other conventional DNS server is
 available. This can allow hosts on the same link to continue
 communicating using each other's globally unique DNS names during
 network outages which disrupt communication with the greater
 Internet. When resolving global names via local multicast, it is even
 more important to use DNSSEC or other security mechanisms to ensure
 that the response is trustworthy. Resolving global names via local
 multicast is a contentious issue, and this document does not discuss
 it in detail, instead concentrating on the issue of resolving local
 names using DNS packets sent to a multicast address.

 A host which belongs to an organization or individual who has control
 over some portion of the DNS namespace can be assigned a globally
 unique name within that portion of the DNS namespace, for example,
 "cheshire.apple.com." For those of us who have this luxury, this
 works very well. However, the majority of home customers do not have
 easy access to any portion of the global DNS namespace within which
 they have the authority to create names as they wish. This leaves the
 majority of home computers effectively anonymous for practical
 purposes.

 To remedy this problem, this document allows any computer user to

 elect to give their computers link-local Multicast DNS host names of
 the form: "single-dns-label.local." For example, a laptop computer
 may answer to the name "cheshire.local." Any computer user is granted
 the authority to name their computer this way, provided that the
 chosen host name is not already in use on that link. Having named

Expires 7th December 2005 Cheshire & Krochmal [Page 5]

Internet Draft Multicast DNS 7th June 2005

 their computer this way, the user has the authority to continue using
 that name until such time as a name conflict occurs on the link which
 is not resolved in the user's favour. If this happens, the computer
 (or its human user) SHOULD cease using the name, and may choose to
 attempt to allocate a new unique name for use on that link. These
 conflicts are expected to be relatively rare for people who choose
 reasonably imaginative names, but it is still important to have a
 mechanism in place to handle them when they happen.

 The point made in the previous paragraph is very important and bears
 repeating. It is easy for those of us in the IETF community who run
 our own name servers at home to forget that the majority of computer
 users do not run their own name server and have no easy way to create
 their own host names. When these users wish to transfer files between
 two laptop computers, they are frequently reduced to typing in
 dotted-decimal IP addresses because they simply have no other way for
 one host to refer to the other by name. This is a sorry state of
 affairs. What is worse, most users don't even bother trying to use
 dotted-decimal IP addresses. Most users still move data between
 machines by copying it onto a floppy disk or similar removable media.

 In a world of gigabit Ethernet and ubiquitous wireless networking it
 is a sad indictment of the networking community that the preferred
 communication medium for most computer users is still the floppy
 disk.

 Allowing ad-hoc allocation of single-label names in a single flat
 ".local." namespace may seem to invite chaos. However, operational
 experience with AppleTalk NBP names [NBP], which on any given link
 are also effectively single-label names in a flat namespace, shows
 that in practice name collisions happen extremely rarely and are not
 a problem. Groups of computer users from disparate organizations
 bring Macintosh laptop computers to events such as IETF Meetings, the
 Mac Hack conference, the Apple World Wide Developer Conference, etc.,
 and complaints at these events about users suffering conflicts and
 being forced to rename their machines have never been an issue.

 Enforcing uniqueness of host names (i.e. the names of DNS address
 records mapping names to IP addresses) is probably desirable in the
 common case, but this document does not mandate that. It is
 permissible for a collection of coordinated hosts to agree to
 maintain multiple DNS address records with the same name, possibly
 for load balancing or fault-tolerance reasons. This document does not
 take a position on whether that is sensible. It is important that
 both modes of operation are supported. The Multicast DNS protocol
 allows hosts to verify and maintain unique names for resource records
 where that behavior is desired, and it also allows hosts to maintain
 multiple resource records with a single shared name where that

 behavior is desired. This consideration applies to all resource
 records, not just address records (host names). In summary: It is
 required that the protocol have the ability to detect and handle name
 conflicts, but it is not required that this ability be used for every
 record.

Expires 7th December 2005 Cheshire & Krochmal [Page 6]

Internet Draft Multicast DNS 7th June 2005

3.1 Governing Standards Body

 Note that this use of the ".local." suffix falls under IETF
 jurisdiction, not ICANN jurisdiction. DNS is an IETF network
 protocol, governed by protocol rules defined by the IETF. These IETF
 protocol rules dictate character set, maximum name length, packet
 format, etc. ICANN determines additional rules that apply when the
 IETF's DNS protocol is used on the public Internet. In contrast,
 private uses of the DNS protocol on isolated private networks are not
 governed by ICANN. Since this proposed change is a change to the core
 DNS protocol rules, it affects everyone, not just those machines
 using the ICANN-governed Internet. Hence this change falls into the
 category of an IETF protocol rule, not an ICANN usage rule.

3.2 Private DNS Namespaces

 Note also that the special treatment of names ending in ".local." has
 been implemented in Macintosh computers since the days of Mac OS 9,
 and continues today in Mac OS X. There are also implementations for
 Linux and other platforms [dotlocal]. Operators setting up private
 internal networks ("intranets") are advised that their lives may be
 easier if they avoid using the suffix ".local." in names in their
 private internal DNS server. Alternative possibilities include:

 .intranet
 .internal
 .private
 .corp
 .home

 Another alternative naming scheme, advocated by Professor D. J.
 Bernstein, is to use a numerical suffix, such as ".6." [djbdl].

3.3 Maximum Multicast DNS Name Length

RFC 1034 says:

 "the total number of octets that represent a domain name (i.e.,
 the sum of all label octets and label lengths) is limited to 255."

 This text implies that the final root label at the end of every name
 is included in this count (a name can't be represented without it),
 but the text does not explicitly state that. Implementations of
 Multicast DNS MUST include the label length byte of the final root
 label at the end of every name when enforcing the rule that no name
 may be longer than 255 bytes. For example, the length of the name
 "apple.com." is considered to be 11, which is the number of bytes it
 takes to represent that name in a packet without using name
 compression:

https://datatracker.ietf.org/doc/html/rfc1034

 --
 | 0x05 | a | p | p | l | e | 0x03 | c | o | m | 0x00 |
 --

Expires 7th December 2005 Cheshire & Krochmal [Page 7]

Internet Draft Multicast DNS 7th June 2005

4. Source Address Check

 All Multicast DNS responses (including responses sent via unicast)
 SHOULD be sent with IP TTL set to 255. This is recommended to provide
 backwards-compatibility with older Multicast DNS clients that check
 the IP TTL on reception to determine whether the packet originated
 on the local link. These older clients discard all packets with TTLs
 other than 255.

 A host sending Multicast DNS queries to a link-local destination
 address (including the 224.0.0.251 link-local multicast address)
 MUST only accept responses to that query that originate from the
 local link, and silently discard any other response packets. Without
 this check, it could be possible for remote rogue hosts to send
 spoof answer packets (perhaps unicast to the victim host) which the
 receiving machine could misinterpret as having originated on the
 local link.

 The test for whether a response originated on the local link
 is done in two ways:

 * All responses sent to the link-local multicast address 224.0.0.251
 are necessarily deemed to have originated on the local link,
 regardless of source IP address. This is essential to allow devices
 to work correctly and reliably in unusual configurations, such as
 multiple logical IP subnets overlayed on a single link, or in cases
 of severe misconfiguration, where devices are physically connected
 to the same link, but are currently misconfigured with completely
 unrelated IP addresses and subnet masks.

 * For responses sent to a unicast destination address, the source IP
 address in the packet is checked to see if it is an address on a
 local subnet. An address is determined to be on a local subnet if,
 for (one of) the address(es) configured on the interface receiving
 the packet, (I & M) == (P & M), where I and M are the interface
 address and subnet mask respectively, P is the source IP address
 from the packet, '&' represents the bitwise logical 'and'
 operation, and '==' represents a bitwise equality test.

 Since queriers will ignore responses apparently originating outside
 the local subnet, responders SHOULD avoid generating responses that
 it can reasonably predict will be ignored. This applies particularly
 in the case of overlayed subnets. If a responder receives a query
 addressed to the link-local multicast address 224.0.0.251, from a
 source address not apparently on the same subnet as the responder,
 then even if the query indicates that a unicast response is preferred
 (see Section 6.5, "Questions Requesting Unicast Responses"), the
 responder SHOULD elect to respond by multicast anyway, since it can

 reasonably predict that a unicast response with an apparently
 non-local source address will probably be ignored.

Expires 7th December 2005 Cheshire & Krochmal [Page 8]

Internet Draft Multicast DNS 7th June 2005

5. Reverse Address Mapping

 Like ".local.", the IPv4 and IPv6 reverse-mapping domains are also
 defined to be link-local.

 Any DNS query for a name ending with "254.169.in-addr.arpa." MUST
 be sent to the mDNS multicast address 224.0.0.251. Since names under
 this domain correspond to IPv4 link-local addresses, it is logical
 that the local link is the best place to find information pertaining
 to those names. As an optimization, these queries MAY be first
 unicast directly to the address in question, but if this query is not
 answered, the query MUST also be sent via multicast, to accommodate
 the case where the machine in question is not answering for itself
 (for example, because it is currently sleeping).

 Likewise, any DNS query for a name ending with "0.8.e.f.ip6.arpa."
 MUST be sent to the IPv6 mDNS link-local multicast address FF02::FB,
 with or without an optional initial query unicast directly to the
 address in question.

6. Querying

 There are three kinds of Multicast DNS Queries, one-shot queries of
 the kind made by today's conventional DNS clients, one-shot queries
 accumulating multiple responses made by multicast-aware DNS clients,
 and continuous ongoing Multicast DNS Queries used by IP network
 browser software.

 A Multicast DNS Responder that is offering records that are intended
 to be unique on the local link MUST also implement a Multicast DNS
 Querier so that it can first verify the uniqueness of those records
 before it begins answering queries for them.

6.1 One-Shot Queries

 An unsophisticated DNS client may simply send its DNS queries
 blindly to the 224.0.0.251 multicast address, without necessarily
 even being aware what a multicast address is.

 Such an unsophisticated DNS client may not get ideal behavior. Such
 a client may simply take the first response it receives and fail to
 wait to see if there are more, but in many instances this may not be
 a serious problem. If a user types "http://cheshire.local." into
 their Web browser and gets to see the page they were hoping for,
 then the protocol has met the user's needs in this case.

Expires 7th December 2005 Cheshire & Krochmal [Page 9]

Internet Draft Multicast DNS 7th June 2005

6.2 One-Shot Queries, Accumulating Multiple Responses

 A more sophisticated DNS client should understand that Multicast DNS
 is not exactly the same as unicast DNS, and should modify its
 behavior in some simple ways.

 As described above, there are some cases, such as looking up the
 address associated with a unique host name, where a single response
 is sufficient, and moreover may be all that is expected. However,
 there are other DNS queries where more than one response is
 possible, and for these queries a more sophisticated Multicast DNS
 client should include the ability to wait for an appropriate period
 of time to collect multiple responses.

 A naive DNS client retransmits its query only so long as it has
 received no response. A more sophisticated Multicast DNS client is
 aware that having received one response is not necessarily an
 indication that it might not receive others, and has the ability to
 retransmit its query an appropriate number of times at appropriate
 intervals until it is satisfied with the collection of responses it
 has gathered.

 A more sophisticated Multicast DNS client that is retransmitting
 a query for which it has already received some responses, MUST
 implement Known Answer Suppression, as described below in Section

7.1. This indicates to responders who have already replied that their
 responses have been received, and they don't need to send them again
 in response to this repeated query. In addition, the interval between
 the first two queries SHOULD be one second, and the intervals between
 subsequent queries SHOULD double.

6.3 Continuous Querying

 In One-Shot Queries, with either a single or multiple responses,
 the underlying assumption is that the transaction begins when the
 application issues a query, and ends when all the desired responses
 have been received. There is another type of operation which is more
 akin to continuous monitoring.

 Macintosh users are accustomed to opening the "Chooser" window,
 selecting a desired printer, and then closing the Chooser window.
 However, when the desired printer does not appear in the list, the
 user will typically leave the "Chooser" window open while they go and
 check to verify that the printer is plugged in, powered on, connected
 to the Ethernet, etc. While the user jiggles the wires, hits the
 Ethernet hub, and so forth, they keep an eye on the Chooser window,
 and when the printer name appears, they know they have fixed whatever
 the problem was. This can be a useful and intuitive troubleshooting

 technique, but a user who goes home for the weekend leaving the
 Chooser window open places a non-trivial burden on the network.

Expires 7th December 2005 Cheshire & Krochmal [Page 10]

Internet Draft Multicast DNS 7th June 2005

 With continuous querying, multiple queries are sent over a long
 period of time, until the user terminates the operation. It is
 important that an IP network browser window displaying live
 information from the network using Multicast DNS, if left running
 for an extended period of time, should generate significantly less
 multicast traffic on the network than the old AppleTalk Chooser.
 Therefore, the interval between the first two queries SHOULD be one
 second, the intervals between subsequent queries SHOULD double, and
 the querier MUST implement Known Answer Suppression, as described
 below in Section 7.1. When the interval between queries reaches or
 exceeds 60 minutes, a querier MAY cap the interval to a maximum of 60
 minutes, and perform subsequent queries at a steady-state rate of one
 query per hour.

 When a Multicast DNS Querier receives an answer, the answer contains
 a TTL value that indicates for how many seconds this answer is valid.
 After this interval has passed, the answer will no longer be valid
 and SHOULD be deleted from the cache. Before this time is reached, a
 Multicast DNS Querier with an ongoing interest in that record SHOULD
 re-issue its query to determine whether the record is still valid,
 and if so update its expiry time.

 To perform this cache maintenance, a Multicast DNS Querier should
 plan to re-query for records after at least 50% of the record
 lifetime has elapsed. This document recommends the following
 specific strategy:

 The Querier should plan to issue a query at 80% of the record
 lifetime, and then if no answer is received, at 85%, 90% and 95%. If
 an answer is received, then the remaining TTL is reset to the value
 given in the answer, and this process repeats for as long as the
 Multicast DNS Querier has an ongoing interest in the record. If after
 four queries no answer is received, the record is deleted when it
 reaches 100% of its lifetime.

 To avoid the case where multiple Multicast DNS Queriers on a network
 all issue their queries simultaneously, a random variation of 2% of
 the record TTL should be added, so that queries are scheduled to be
 performed at 80-82%, 85-87%, 90-92% and then 95-97% of the TTL.

6.4 Multiple Questions per Query

 Multicast DNS allows a querier to place multiple questions in the
 Question Section of a single Multicast DNS query packet.

 The semantics of a Multicast DNS query packet containing multiple
 questions is identical to a series of individual DNS query packets
 containing one question each. Combining multiple questions into a

 single packet is purely an efficiency optimization, and has no other
 semantic significance.

Expires 7th December 2005 Cheshire & Krochmal [Page 11]

Internet Draft Multicast DNS 7th June 2005

 A useful technique for adaptively combining multiple questions into a
 single query is to use a Nagle-style algorithm: When a client issues
 its first question, a Query packet is immediately built and sent,
 without delay. If the client then continues issuing a rapid series of
 questions they are held until either the first query receives at
 least one answer, or 100ms has passed, or there are enough questions
 to fill the Question Section of a Multicast DNS query packet. At this
 time, all the held questions are placed into a Multicast DNS query
 packet and sent.

6.5 Questions Requesting Unicast Responses

 Sending Multicast DNS responses via multicast has the benefit that
 all the other hosts on the network get to see those responses, and
 can keep their caches up to date, and detect conflicting responses.

 However, there are situations where all the other hosts on the
 network don't need to see every response. One example is a laptop
 computer waking from sleep. At that instant it is a brand new
 participant on a new network. Its Multicast DNS cache is empty, and
 it has no knowledge of its surroundings. It may have a significant
 number of queries that it wants answered right away to discover
 information about its new surroundings and present that information
 to the user. As a new participant on the network, it has no idea
 whether the exact same questions may have been asked and answered
 just seconds ago. In this case, trigging a large sudden flood of
 multicast responses may impose an unreasonable burden on the network.
 To avoid this, the Multicast DNS Querier SHOULD set the top bit in
 the class field of its DNS question(s), to indicate that it is
 willing to accept unicast responses instead of the usual multicast
 responses. These questions requesting unicast responses are referred
 to as "QU" questions, to distinguish them from the more usual
 questions requesting multicast responses ("QM" questions).

 When retransmitting a question more than once, the 'unicast response'
 bit SHOULD be set only for the first question of the series. After
 the first question has received its responses, the querier should
 have a large known-answer list (see "Known Answer Suppression" below)
 so that subsequent queries should elicit few, if any, further
 responses. Reverting to multicast responses as soon as possible is
 important because of the benefits that multicast responses provide
 (see "Benefits of Multicast Responses" below).

 When receiving a question with the 'unicast response' bit set, a
 responder SHOULD usually respond with a unicast packet directed back
 to the querier. If the responder has not multicast that record
 recently (within one quarter of its TTL), then the responder SHOULD
 instead multicast the response so as to keep all the peer caches up

 to date, and to permit passive conflict detection.

 Unicast replies are subject to all the same packet generation rules
 as multicast replies, including the cache flush bit (see Section

11.3, "Announcements to Flush Outdated Cache Entries") and randomized
 delays to reduce network collisions (see Section 8, "Responding").

Expires 7th December 2005 Cheshire & Krochmal [Page 12]

Internet Draft Multicast DNS 7th June 2005

6.6 Suppressing Initial Query

 If a query is issued for which there already exist one or more
 records in the local cache, and those record(s) were received with
 the cache flush bit set (see Section 11.3, "Announcements to Flush
 Outdated Cache Entries"), indicating that they form a unique RRSet,
 then the host SHOULD suppress its initial "QU" query, and proceed to
 issue a "QM" query. To avoid the situation where a group of hosts
 are synchronized by some external event and all perform the same
 query simultaneously, a host suppressing its initial "QU" query
 SHOULD impose a random delay from 500-1000ms before transmitting its
 first "QM" query for this question. This means that when the first
 host (selected randomly by this algorithm) transmits its "QM" query,
 all the other hosts that were about to transmit the same query can
 suppress their superfluous query, as described in "Duplicate
 Question Suppression" below.

7. Duplicate Suppression

 A variety of techniques are used to reduce the amount of redundant
 traffic on the network.

7.1 Known Answer Suppression

 When a Multicast DNS Querier sends a query to which it already knows
 some answers, it populates the Answer Section of the DNS message with
 those answers.

 A Multicast DNS Responder SHOULD NOT answer a Multicast DNS Query if
 the answer it would give is already included in the Answer Section
 with an RR TTL at least half the correct value. If the RR TTL of the
 answer as given in the Answer Section is less than half of the true
 RR TTL as known by the Multicast DNS Responder, the responder MUST
 send an answer so as to update the Querier's cache before the record
 becomes in danger of expiration.

 Because a Multicast DNS Responder will respond if the remaining TTL
 given in the known answer list is less than half the true TTL, it is
 superfluous for the Querier to include such records in the known
 answer list. Therefore a Multicast DNS Querier SHOULD NOT include
 records in the known answer list whose remaining TTL is less than
 half their original TTL. Doing so would simply consume space in the
 packet without achieving the goal of suppressing responses, and would
 therefore be a pointless waste of network bandwidth.

 A Multicast DNS Querier MUST NOT cache resource records observed in
 the Known Answer Section of other Multicast DNS Queries. The Answer
 Section of Multicast DNS Queries is not authoritative. By placing
 information in the Answer Section of a Multicast DNS Query the

 querier is stating that it *believes* the information to be true.
 It is not asserting that the information *is* true. Some of those
 records may have come from other hosts that are no longer on the
 network. Propagating that stale information to other Multicast DNS
 Queriers on the network would not be helpful.

Expires 7th December 2005 Cheshire & Krochmal [Page 13]

Internet Draft Multicast DNS 7th June 2005

7.2 Multi-Packet Known Answer Suppression

 Sometimes a Multicast DNS Querier will already have too many answers
 to fit in the Known Answer Section of its query packets. In this
 case, it should issue a Multicast DNS Query containing a question and
 as many Known Answer records as will fit. It MUST then set the TC
 (Truncated) bit in the header before sending the Query. It MUST then
 immediately follow the packet with another query packet containing no
 questions, and as many more Known Answer records as will fit. If
 there are still too many records remaining to fit in the packet, it
 again sets the TC bit and continues until all the Known Answer
 records have been sent.

 A Multicast DNS Responder seeing a Multicast DNS Query with the TC
 bit set defers its response for a time period randomly selected in
 the interval 400-500ms. This gives the Multicast DNS Querier time to
 send additional Known Answer packets before the Responder responds.
 If the Responder sees any of its answers listed in the Known Answer
 lists of subsequent packets from the querying host, it SHOULD delete
 that answer from the list of answers it is planning to give, provided
 that no other host on the network is also waiting to receive the same
 answer record.

 Previous versions of this draft specified a delay of 20-120ms before
 answering queries with multi-packet Known Answer lists. However,
 operational experience showed that, while this works well on
 Ethernet, on very busy 802.11 networks, it is not uncommon to observe
 consecutively sent packets arriving separated by as much as
 200-400ms.

7.3 Duplicate Question Suppression

 If a host is planning to send a query, and it sees another host on
 the network send a query containing the same question, and the Known
 Answer Section of that query does not contain any records which this
 host would not also put in its own Known Answer Section, then this
 host should treat its own query as having been sent. When multiple
 clients on the network are querying for the same resource records,
 there is no need for them to all be repeatedly asking the same
 question.

7.4 Duplicate Answer Suppression

 If a host is planning to send an answer, and it sees another host on
 the network send a response packet containing the same answer record,
 and the TTL in that record is not less than the TTL this host would
 have given, then this host should treat its own answer as having been

 sent. When multiple responders on the network have the same data,
 there is no need for all of them to respond.

Expires 7th December 2005 Cheshire & Krochmal [Page 14]

Internet Draft Multicast DNS 7th June 2005

 This feature is particularly useful when multiple Sleep Proxy Servers
 are deployed (see Section 16, "Multicast DNS and Power Management").
 In the future it is possible that every general-purpose OS (Mac,
 Windows, Linux, etc.) will implement Sleep Proxy Service as a matter
 of course. In this case there could be a large number of Sleep Proxy
 Servers on any given network, which is good for reliability and
 fault-tolerance, but would be bad for the network if every Sleep
 Proxy Server were to answer every query.

8. Responding

 When a Multicast DNS Responder constructs and sends a Multicast DNS
 response packet, the Answer Section of that packet must contain only
 records for which that Responder is explicitly authoritative. These
 answers may be generated because the record answers a question
 received in a Multicast DNS query packet, or at certain other times
 that the responder determines than an unsolicited announcement is
 warranted. A Multicast DNS Responder MUST NOT place records from its
 cache, which have been learned from other responders on the network,
 in the Answer Section of outgoing response packets. Only an
 authoritative source for a given record is allowed to issue responses
 containing that record.

 The determination of whether a given record answers a given question
 is done using the standard DNS rules: The record name must match the
 question name, the record rrtype must match the question qtype
 (unless the qtype is "ANY"), and the record rrclass must match the
 question qclass (unless the qclass is "ANY").

 A Multicast DNS Responder MUST only respond when it has a positive
 non-null response to send. Error responses must never be sent. The
 non-existence of any name in a Multicast DNS Domain is ascertained by
 the failure of any machine to respond to the Multicast DNS query, not
 by NXDOMAIN errors.

 Multicast DNS Responses MUST NOT contain any questions in the
 Question Section. Any questions in the Question Section of a received
 Multicast DNS Response MUST be silently ignored. Multicast DNS
 Queriers receiving Multicast DNS Responses do not care what question
 elicited the response; they care only that the information in the
 response is true and accurate.

 A Multicast DNS Responder on Ethernet [IEEE802] and similar shared
 multiple access networks SHOULD have the capability of delaying its
 responses by up to 500ms, as determined by the rules described below.
 If multiple Multicast DNS Responders were all to respond immediately
 to a particular query, a collision would be virtually guaranteed. By

 imposing a small random delay, the number of collisions is
 dramatically reduced. On a full-sized Ethernet using the maximum
 cable lengths allowed and the maximum number of repeaters allowed, an
 Ethernet frame is vulnerable to collisions during the transmission of
 its first 256 bits. On 10Mb/s Ethernet, this equates to a vulnerable

Expires 7th December 2005 Cheshire & Krochmal [Page 15]

Internet Draft Multicast DNS 7th June 2005

 time window of 25.6us. On higher-speed variants of Ethernet, the
 vulnerable time window is shorter.

 In the case where a Multicast DNS Responder has good reason to
 believe that it will be the only responder on the link with a
 positive non-null response, it SHOULD NOT impose any random delay
 before responding, and SHOULD normally generate its response within
 at most 10ms. In particular, this applies to responding to probe
 queries. Since receiving a probe query gives a clear indication that
 some other Responder is planning to start using this name in the very
 near future, answering such probe queries to defend a unique record
 is a high priority and needs to be done immediately, without delay. A
 probe query can be distinguished from a normal query by the fact that
 a probe query contains a proposed record in the Authority Section
 which answers the question in the Question Section (for more details,
 see Section 9.1, "Probing").

 To generate immediate responses safely, it MUST have previously
 verified that the requested name, rrtype and rrclass in the DNS query
 are unique on this link. Responding immediately without delay is
 appropriate for things like looking up the address record for a
 particular host name, when the host name has been previously verified
 unique. Responding immediately without delay is *not* appropriate for
 things like looking up PTR records used for DNS Service Discovery
 [DNS-SD], where a large number of responses may be anticipated.

 In any case where there may be multiple responses, such as queries
 where the answer is a member of a shared resource record set, each
 responder SHOULD delay its response by a random amount of time
 selected with uniform random distribution in the range 20-120ms.

 In the case where the query has the TC (truncated) bit set,
 indicating that subsequent known answer packets will follow,
 responders SHOULD delay their responses by a random amount of time
 selected with uniform random distribution in the range 400-500ms,
 to allow enough time for all the known answer packets to arrive.

 Except when a unicast reply has been explicitly requested via the
 "unicast reply" bit, Multicast DNS Responses MUST be sent to UDP port
 5353 (the well-known port assigned to mDNS) on the 224.0.0.251
 multicast address (or its IPv6 equivalent FF02::FB). Operating in a
 Zeroconf environment requires constant vigilance. Just because a name
 has been previously verified unique does not mean it will continue to
 be so indefinitely. By allowing all Multicast DNS Responders to
 constantly monitor their peers' responses, conflicts arising out of
 network topology changes can be promptly detected and resolved.

 Sending all responses by multicast also facilitates opportunistic

 caching by other hosts on the network.

 To protect the network against excessive packet flooding due to
 software bugs or malicious attack, a Multicast DNS Responder MUST NOT
 multicast a given record on a given interface if it has previously

Expires 7th December 2005 Cheshire & Krochmal [Page 16]

Internet Draft Multicast DNS 7th June 2005

 multicast that record on that interface within the last second. A
 legitimate client on the network should have seen the previous
 transmission and cached it. A client that did not receive and cache
 the previous transmission will retry its request and receive a
 subsequent response. Under no circumstances is there any legitimate
 reason for a Multicast DNS Responder to multicast a given record more
 than once per second on any given interface.

8.1 Legacy Unicast Responses

 If the source UDP port in a received Multicast DNS Query is not port
 5353, this indicates that the client originating the query is a
 simple client that does not fully implement all of Multicast DNS. In
 this case, the Multicast DNS Responder MUST send a UDP response
 directly back to the client, via unicast, to the query packet's
 source IP address and port. This unicast response MUST be a
 conventional unicast response as would be generated by a conventional
 unicast DNS server; for example, it MUST repeat the query ID and the
 question given in the query packet.

 The resource record TTL given in a legacy unicast response SHOULD NOT
 be greater than ten seconds, even if the true TTL of the Multicast
 DNS resource record is higher. This is because Multicast DNS
 Responders that fully participate in the protocol use the cache
 coherency mechanisms described in Section 13 to update and invalidate
 stale data. Were unicast responses sent to legacy clients to use the
 same high TTLs, these legacy clients, which do not implement these
 cache coherency mechanisms, could retain stale cached resource record
 data long after it is no longer valid.

 Having sent this unicast response, if the Responder has not sent this
 record in any multicast response recently, it SHOULD schedule the
 record to be sent via multicast as well, to facilitate passive
 conflict detection. "Recently" in this context means "if the time
 since the record was last sent via multicast is less than one quarter
 of the record's TTL".

8.2 Multi-Question Queries

 Multicast DNS Responders MUST correctly handle DNS query packets
 containing more than one question, by answering any or all of the
 questions to which they have answers. Any (non-defensive) answers
 generated in response to query packets containing more than one
 question SHOULD be randomly delayed in the range 20-120ms, or
 400-500ms if the TC (truncated) bit is set, as described above.
 (Answers defending a name, in response to a probe for that name,
 are not subject to this delay rule and are still sent immediately.)

Expires 7th December 2005 Cheshire & Krochmal [Page 17]

Internet Draft Multicast DNS 7th June 2005

8.3 Response Aggregation

 When possible, a responder SHOULD, for the sake of network
 efficiency, aggregate as many responses as possible into a single
 Multicast DNS response packet. For example, when a responder has
 several responses it plans to send, each delayed by a different
 interval, then earlier responses SHOULD be delayed by up to an
 additional 500ms if that will permit them to be aggregated with
 other responses scheduled to go out a little later.

9. Probing and Announcing on Startup

 Typically a Multicast DNS Responder should have, at the very least,
 address records for all of its active interfaces. Creating and
 advertising an HINFO record on each interface as well can be useful
 to network administrators.

 Whenever a Multicast DNS Responder starts up, wakes up from sleep,
 receives an indication of an Ethernet "Link Change" event, or has any
 other reason to believe that its network connectivity may have
 changed in some relevant way, it MUST perform the two startup steps
 below.

9.1 Probing

 The first startup step is that for all those resource records that a
 Multicast DNS Responder desires to be unique on the local link, it
 MUST send a Multicast DNS Query asking for those resource records, to
 see if any of them are already in use. The primary example of this is
 its address record which maps its unique host name to its unique IP
 address. All Probe Queries SHOULD be done using the desired resource
 record name and query type T_ANY (255), to elicit answers for all
 types of records with that name. This allows a single question to be
 used in place of several questions, which is more efficient on the
 network. It also allows a host to verify exclusive ownership of a
 name, which is desirable in most cases. It would be confusing, for
 example, if one host owned the "A" record for "myhost.local.", but a
 different host owned the HINFO record for that name.

 The ability to place more than one question in a Multicast DNS Query
 is useful here, because it can allow a host to use a single packet
 for all of its resource records instead of needing a separate packet
 for each. For example, a host can simultaneously probe for uniqueness
 of its "A" record and all its SRV records [DNS-SD] in the same query
 packet.

 When ready to send its mDNS probe packet(s) the host should first

 wait for a short random delay time, uniformly distributed in the
 range 0-250ms. This random delay is to guard against the case where a
 group of devices are powered on simultaneously, or a group of devices
 are connected to an Ethernet hub which is then powered on, or some

Expires 7th December 2005 Cheshire & Krochmal [Page 18]

Internet Draft Multicast DNS 7th June 2005

 other external event happens that might cause a group of hosts to all
 send synchronized probes.

 250ms after the first query the host should send a second, then
 250ms after that a third. If, by 250ms after the third probe, no
 conflicting Multicast DNS responses have been received, the host may
 move to the next step, announcing. (Note that this is the one
 exception from the normal rule that there should be at least one
 second between repetitions of the same question, and the interval
 between subsequent repetitions should double.)

 If any conflicting Multicast DNS responses are received, then the
 probing host MUST defer to the existing host, and MUST choose new
 names for some or all of its resource records as appropriate, to
 avoid conflict with pre-existing hosts on the network. In the case
 of a host probing using query type T_ANY as recommended above, any
 answer containing a record with that name, of any type, MUST be
 considered a conflicting response and handled accordingly.

 If fifteen failures occur within any ten-second period, then the host
 MUST wait at least five seconds before each successive additional
 probe attempt. This is to help ensure that in the event of software
 bugs or other unanticipated problems, errant hosts do not flood the
 network with a continuous stream of multicast traffic. For very
 simple devices, a valid way to comply with this requirement is to
 always wait five seconds after any failed probe attempt.

 If a responder knows by other means, with absolute certainty, that
 its unique resource record set name, rrtype and rrclass cannot
 already be in use by any other responder on the network, then it MAY
 skip the probing step for that resource record set. For example, when
 creating the reverse address mapping PTR records, the host can
 reasonably assume that no other host will be trying to create those
 same PTR records, since that would imply that the two hosts were
 trying to use the same IP address, and if that were the case, the two
 hosts would be suffering communication problems beyond the scope of
 what Multicast DNS is designed to solve.

9.2 Simultaneous Probe Tie-Breaking

 The astute reader will observe that there is a race condition
 inherent in the previous description. If two hosts are probing for
 the same name simultaneously, neither will receive any response to
 the probe, and the hosts could incorrectly conclude that they may
 both proceed to use the name. To break this symmetry, each host
 populates the Authority Section of its queries with records giving
 the rdata that it would be proposing to use, should its probing be

 successful. The Authority Section is being used here in a way
 analogous to the Update Section of a DNS Update packet [RFC 2136].

 When a host that is probing for a record sees another host issue a
 query for the same record, it consults the Authority Section of that

Expires 7th December 2005 Cheshire & Krochmal [Page 19]

https://datatracker.ietf.org/doc/html/rfc2136

Internet Draft Multicast DNS 7th June 2005

 query. If it finds any resource record there which answers the query,
 then it compares the data of that resource record with its own
 tentative data. The lexicographically later data wins. This means
 that if the host finds that its own data is lexicographically later,
 it simply ignores the other host's probe. If the host finds that its
 own data is lexicographically earlier, then it treats this exactly
 as if it had received a positive answer to its query, and concludes
 that it may not use the desired name.

 The determination of 'lexicographically later' is performed by first
 comparing the record class, then the record type, then raw comparison
 of the binary content of the rdata without regard for meaning or
 structure. If the record classes differ, then the numerically greater
 class is considered 'lexicographically later'. Otherwise, if the
 record types differ, then the numerically greater type is considered
 'lexicographically later'. If the rrtype and rrclass both match then
 the rdata is compared.

 In the case of resource records containing rdata that is subject to
 name compression, the names MUST be uncompressed before comparison.
 (The details of how a particular name is compressed is an artifact of
 how and where the record is written into the DNS message; it is not
 an intrinsic property of the resource record itself.)

 The bytes of the raw uncompressed rdata are compared in turn,
 interpreting the bytes as eight-bit UNSIGNED values, until a byte
 is found whose value is greater than that of its counterpart (in
 which case the rdata whose byte has the greater value is deemed
 lexicographically later) or one of the resource records runs out
 of rdata (in which case the resource record which still has
 remaining data first is deemed lexicographically later).

 The following is an example of a conflict:

 cheshire.local. A 169.254.99.200
 cheshire.local. A 169.254.200.50

 In this case 169.254.200.50 is lexicographically later (the third
 byte, with value 200, is greater than its counterpart with value 99),
 so it is deemed the winner.

 Note that it is vital that the bytes are interpreted as UNSIGNED
 values, or the wrong outcome may result. In the example above, if
 the byte with value 200 had been incorrectly interpreted as a
 signed value then it would be interpreted as value -56, and the
 wrong address record would be deemed the winner.

9.3 Announcing

 The second startup step is that the Multicast DNS Responder MUST send
 a gratuitous Multicast DNS Response containing, in the Answer
 Section, all of its resource records (both shared records, and unique

Expires 7th December 2005 Cheshire & Krochmal [Page 20]

Internet Draft Multicast DNS 7th June 2005

 records that have completed the probing step). If there are too many
 resource records to fit in a single packet, multiple packets should
 be used.

 In the case of shared records (e.g. the PTR records used by DNS
 Service Discovery [DNS-SD]), the records are simply placed as-is
 into the Answer Section of the DNS Response.

 In the case of records that have been verified to be unique in the
 previous step, they are placed into the Answer Section of the DNS
 Response with the most significant bit of the rrclass set to one.
 The most significant bit of the rrclass for a record in the Answer
 Section of a response packet is the mDNS "cache flush" bit and is
 discussed in more detail below in Section 11.3 "Announcements to
 Flush Outdated Cache Entries".

 The Multicast DNS Responder MUST send at least two gratuitous
 responses, one second apart. A Responder MAY send up to ten
 gratuitous Responses, provided that the interval between gratuitous
 responses doubles with every response sent.

 A Multicast DNS Responder SHOULD NOT continue sending gratuitous
 Responses for longer than the TTL of the record. The purpose of
 announcing new records via gratuitous Responses is to ensure that
 peer caches are up to date. After a time interval equal to the TTL of
 the record has passed, it is very likely that old stale copies of
 that record in peer caches will have expired naturally, so subsequent
 announcements serve little purpose.

 A Multicast DNS Responder MUST NOT send announcements in the absence
 of information that its network connectivity may have changed in some
 relevant way. In particular, a Multicast DNS Responder MUST NOT send
 regular periodic announcements as a matter of course.

 Whenever a Multicast DNS Responder receives any Multicast DNS
 response (gratuitous or otherwise) containing a conflicting resource
 record, the conflict MUST be resolved as described below in "Conflict
 Resolution".

9.4 Updating

 At any time, if the rdata of any of a host's Multicast DNS records
 changes, the host MUST repeat the Announcing step described above to
 update neighboring caches. For example, if any of a host's IP
 addresses change, it MUST re-announce those address records.

 In the case of shared records, a host MUST send a 'goodbye'
 announcement with TTL zero (see Section 11.2 "Goodbye Packets")
 for the old rdata, to cause it to be deleted from peer caches,

 before announcing the new rdata. In the case of unique records,
 a host SHOULD omit the 'goodbye' announcement, since the cache
 flush bit on the newly announced records will cause old rdata
 to be flushed from peer caches anyway.

Expires 7th December 2005 Cheshire & Krochmal [Page 21]

Internet Draft Multicast DNS 7th June 2005

 A host may update the contents of any of its records at any time,
 though a host SHOULD NOT update records more frequently than ten
 times per minute. Frequent rapid updates impose a burden on the
 network. If a host has information to disseminate which changes more
 frequently than ten times per minute, then it may be more appropriate
 to design a protocol for that specific purpose.

10. Conflict Resolution

 A conflict occurs when a Multicast DNS Responder has a unique record
 for which it is authoritative, and it receives, in the Answer Section
 of a Multicast DNS response another record with the same name, rrtype
 and rrclass, but inconsistent rdata. What may be considered
 inconsistent is context sensitive, except that resource records with
 identical rdata are never considered inconsistent, even if they
 originate from different hosts. This is to permit use of proxies and
 other fault-tolerance mechanisms that may cause more than one
 responder to be capable of issuing identical answers on the network.

 A common example of a resource record type that is intended to be
 unique, not shared between hosts, is the address record that maps a
 host's name to its IP address. Should a host witness another host
 announce an address record with the same name but a different IP
 address, then that is considered inconsistent, and that address
 record is considered to be in conflict.

 Whenever a Multicast DNS Responder receives any Multicast DNS
 response (gratuitous or otherwise) containing a conflicting resource
 record in the Answer Section, the Multicast DNS Responder MUST
 immediately reset its conflicted unique record to probing state, and
 go through the startup steps described above in Section 9. "Probing
 and Announcing on Startup". The protocol used in the Probing phase
 will determine a winner and a loser, and the loser MUST cease using
 the name, and reconfigure.

 It is very important that any host receiving a resource record that
 conflicts with one of its own MUST take action as described above.
 In the case of two hosts using the same host name, where one has been
 configured to require a unique host name and the other has not, the
 one that has not been configured to require a unique host name will
 not perceive any conflict, and will not take any action. By reverting
 to Probing state, the host that desires a unique host name will go
 through the necessary steps to ensure that a unique host is obtained.

 The recommended course of action after probing and failing is as
 follows:

 o Programmatically change the resource record name in an attempt to

 find a new name that is unique. This could be done by adding some
 further identifying information (e.g. the model name of the
 hardware) if it is not already present in the name, appending the
 digit "2" to the name, or incrementing a number at the end of the
 name if one is already present.

Expires 7th December 2005 Cheshire & Krochmal [Page 22]

Internet Draft Multicast DNS 7th June 2005

 o Probe again, and repeat until a unique name is found.

 o Record this newly chosen name in persistent storage so that the
 device will use the same name the next time it is power-cycled.

 o Display a message to the user or operator informing them of the
 name change. For example:

 The name "Bob's Music" is in use by another iTunes music
 server on the network. Your music has been renamed to
 "Bob's Music (G4 Cube)". If you want to change this name,
 use [describe appropriate menu item or preference dialog].

 How the user or operator is informed depends on context. A desktop
 computer with a screen might put up a dialog box. A headless server
 in the closet may write a message to a log file, or use whatever
 mechanism (email, SNMP trap, etc.) it uses to inform the
 administrator of other error conditions. On the other hand a headless
 server in the closet may not inform the user at all -- if the user
 cares, they will notice the name has changed, and connect to the
 server in the usual way (e.g. via Web Browser) to configure a new
 name.

 The examples in this section focus on address records (i.e. host
 names), but the same considerations apply to all resource records
 where uniqueness (or maintenance of some other defined constraint)
 is desired.

11. Resource Record TTL Values and Cache Coherency

 As a general rule, the recommended TTL value for Multicast DNS
 resource records with a host name as the resource record's name
 (e.g. A, AAAA, HINFO, etc.) or contained within the resource record's
 rdata (e.g. SRV, reverse mapping PTR record, etc.) is 120 seconds.

 The recommended TTL value for other Multicast DNS resource records
 is 75 minutes.

 A client with an active outstanding query will issue a query packet
 when one or more of the resource record(s) in its cache is (are) 80%
 of the way to expiry. If the TTL on those records is 75 minutes,
 this ongoing cache maintenance process yields a steady-state query
 rate of one query every 60 minutes.

 Any distributed cache needs a cache coherency protocol. If Multicast
 DNS resource records follow the recommendation and have a TTL of 75
 minutes, that means that stale data could persist in the system for
 a little over an hour. Making the default TTL significantly lower

 would reduce the lifetime of stale data, but would produce too much
 extra traffic on the network. Various techniques are available to
 minimize the impact of such stale data.

Expires 7th December 2005 Cheshire & Krochmal [Page 23]

Internet Draft Multicast DNS 7th June 2005

11.1 Cooperating Multicast DNS Responders

 If a Multicast DNS Responder ("A") observes some other Multicast DNS
 Responder ("B") send a Multicast DNS Response packet containing a
 resource record with the same name, rrtype and rrclass as one of A's
 resource records, but different rdata, then:

 o If A's resource record is intended to be a shared resource record,
 then this is no conflict, and no action is required.

 o If A's resource record is intended to be a member of a unique
 resource record set owned solely by that responder, then this
 is a conflict and MUST be handled as described in Section 10
 "Conflict Resolution".

 If a Multicast DNS Responder ("A") observes some other Multicast DNS
 Responder ("B") send a Multicast DNS Response packet containing a
 resource record with the same name, rrtype and rrclass as one of A's
 resource records, and identical rdata, then:

 o If the TTL of B's resource record given in the packet is at least
 half the true TTL from A's point of view, then no action is
 required.

 o If the TTL of B's resource record given in the packet is less than
 half the true TTL from A's point of view, then A MUST mark its
 record to be announced via multicast. Clients receiving the record
 from B would use the TTL given by B, and hence may delete the
 record sooner than A expects. By sending its own multicast response
 correcting the TTL, A ensures that the record will be retained for
 the desired time.

 These rules allow multiple Multicast DNS Responders to offer the same
 data on the network (perhaps for fault tolerance reasons) without
 conflicting with each other.

11.2 Goodbye Packets

 In the case where a host knows that certain resource record data is
 about to become invalid (for example when the host is undergoing a
 clean shutdown) the host SHOULD send a gratuitous announcement mDNS
 response packet, giving the same resource record name, rrtype,
 rrclass and rdata, but an RR TTL of zero. This has the effect of
 updating the TTL stored in neighboring hosts' cache entries to zero,
 causing that cache entry to be promptly deleted.

 Clients receiving a Multicast DNS Response with a TTL of zero SHOULD
 NOT immediately delete the record from the cache, but instead record

 a TTL of 1 and then delete the record one second later. In the case
 of multiple Multicast DNS Responders on the network described in

Section 11.1 above, if one of the Responders shuts down and
 incorrectly sends goodbye packets for its records, it gives the other

Expires 7th December 2005 Cheshire & Krochmal [Page 24]

Internet Draft Multicast DNS 7th June 2005

 cooperating Responders one second to send out their own response to
 "rescue" the records before they expire and are deleted.

 Generally speaking, it is more important to send goodbye packets for
 shared records than unique records. A given shared record name (such
 as a PTR record used for DNS Service Discovery [DNS-SD]) by its
 nature often has many representatives from many different hosts, and
 tends to be the subject of long-lived ongoing queries. Those
 long-lived queries are often concerned not just about being informed
 when records appear, but also about being informed if those records
 vanish again. In contrast, a unique record set (such as an SRV
 record, or a host address record), by its nature, often has far fewer
 members than a shared record set, and is usually the subject of
 one-shot queries which simply retrieve the data and then cease
 querying once they have the answer they are seeking. Therefore,
 sending a goodbye packet for a unique record set is likely to offer
 less benefit, because it is likely at any given moment that no one
 has an active query running for that record set. One example where
 goodbye packets for SRV and address records are useful is when
 transferring control to a Sleep Proxy Server (see Section 16,
 "Multicast DNS and Power Management").

11.3 Announcements to Flush Outdated Cache Entries

 Whenever a host has a resource record with potentially new data (e.g.
 after rebooting, waking from sleep, connecting to a new network link,
 changing IP address, etc.), the host MUST send a series of gratuitous
 announcements to update cache entries in its neighbor hosts. In
 these gratuitous announcements, if the record is one that is intended
 to be unique, the host sets the most significant bit of the rrclass
 field of the resource record. This bit, the "cache flush" bit, tells
 neighboring hosts that this is not a shared record type. Instead of
 merging this new record additively into the cache in addition to any
 previous records with the same name, rrtype and rrclass, all old
 records with that name, type and class that were received more than
 one second ago are declared invalid, and marked to expire from the
 cache in one second.

 The semantics of the cache flush bit are as follows: Normally when a
 resource record appears in the Answer Section of the DNS Response, it
 means, "This is an assertion that this information is true." When a
 resource record appears in the Answer Section of the DNS Response
 with the "cache flush" bit set, it means, "This is an assertion that
 this information is the truth and the whole truth, and anything you
 may have heard more than a second ago regarding records of this
 name/rrtype/rrclass is no longer valid".

 To accommodate the case where the set of records from one host
 constituting a single unique RRSet is too large to fit in a single
 packet, only cache records that are more than one second old are
 flushed. This allows the announcing host to generate a quick burst of
 packets back-to-back on the wire containing all the members

Expires 7th December 2005 Cheshire & Krochmal [Page 25]

Internet Draft Multicast DNS 7th June 2005

 of the RRSet. When receiving records with the "cache flush" bit set,
 all records older than one second are marked to be deleted one second
 in the future. One second after the end of the little packet burst,
 any records not represented within that packet burst will then be
 expired from all peer caches.

 Any time a host sends a response packet containing some members of a
 unique RRSet, it SHOULD send the entire RRSet, preferably in a single
 packet, or if the entire RRSet will not fit in a single packet, in a
 quick burst of packets sent as close together as possible. The host
 SHOULD set the cache flush bit on all members of the unique RRSet.
 In the event that for some reason the host chooses not to send the
 entire unique RRSet in a single packet or a rapid packet burst,
 it MUST NOT set the cache flush bit on any of those records.

 The reason for waiting one second before deleting stale records from
 the cache is to accommodate bridged networks. For example, a host's
 address record announcement on a wireless interface may be bridged
 onto a wired Ethernet, and cause that same host's Ethernet address
 records to be flushed from peer caches. The one-second delay gives
 the host the chance to see its own announcement arrive on the wired
 Ethernet, and immediately re-announce its Ethernet interface's
 address records so that both sets remain valid and live in peer
 caches.

 These rules apply regardless of *why* the response packet is being
 generated. They apply to startup announcements as described in

Section 9.3, and to responses generated as a result of receiving
 query packets.

 The "cache flush" bit is only set in records in the Answer Section of
 Multicast DNS responses sent to UDP port 5353. The "cache flush" bit
 MUST NOT be set in any resource records in a response packet sent in
 legacy unicast responses to UDP ports other than 5353.

 The "cache flush" bit MUST NOT be set in any resource records in the
 known-answer list of any query packet.

 The "cache flush" bit MUST NOT ever be set in any shared resource
 record. To do so would cause all the other shared versions of this
 resource record with different rdata from different Responders to be
 immediately deleted from all the caches on the network.

 The "cache flush" bit does apply to questions listed in the Question
 Section of a Multicast DNS packet. The top bit of the rrclass field
 in questions is used for an entirely different purpose (see Section

6.5, "Questions Requesting Unicast Responses").

 Note that the "cache flush" bit is NOT part of the resource record

 class. The "cache flush" bit is the most significant bit of the
 second 16-bit word of a resource record in the Answer Section of
 an mDNS packet (the field conventionally referred to as the rrclass
 field), and the actual resource record class is the least-significant

Expires 7th December 2005 Cheshire & Krochmal [Page 26]

Internet Draft Multicast DNS 7th June 2005

 fifteen bits of this field. There is no mDNS resource record class
 0x8001. The value 0x8001 in the rrclass field of a resource record in
 an mDNS response packet indicates a resource record with class 1,
 with the "cache flush" bit set. When receiving a resource record with
 the "cache flush" bit set, implementations should take care to mask
 off that bit before storing the resource record in memory.

11.4 Cache Flush on Topology change

 If the hardware on a given host is able to indicate physical changes
 of connectivity, then when the hardware indicates such a change, the
 host should take this information into account in its mDNS cache
 management strategy. For example, a host may choose to immediately
 flush all cache records received on a particular interface when that
 cable is disconnected. Alternatively, a host may choose to adjust the
 remaining TTL on all those records to a few seconds so that if the
 cable is not reconnected quickly, those records will expire from the
 cache.

 Likewise, when a host reboots, or wakes from sleep, or undergoes some
 other similar discontinuous state change, the cache management
 strategy should take that information into account.

11.5 Cache Flush on Failure Indication

 Sometimes a cache record can be determined to be stale when a client
 attempts to use the rdata it contains, and finds that rdata to be
 incorrect.

 For example, the rdata in an address record can be determined to be
 incorrect if attempts to contact that host fail, either because
 ARP/ND requests for that address go unanswered (for an address on a
 local subnet) or because a router returns an ICMP "Host Unreachable"
 error (for an address on a remote subnet).

 The rdata in an SRV record can be determined to be incorrect if
 attempts to communicate with the indicated service at the host and
 port number indicated are not successful.

 The rdata in a DNS-SD PTR record can be determined to be incorrect if
 attempts to look up the SRV record it references are not successful.

 In any such case, the software implementing the mDNS resource record
 cache should provide a mechanism so that clients detecting stale
 rdata can inform the cache.

 When the cache receives this hint that it should reconfirm some

 record, it MUST issue two or more queries for the resource record in
 question. If no response is received in a reasonable amount of time,
 then, even though its TTL may indicate that it is not yet due to
 expire, that record SHOULD be promptly flushed from the cache.

Expires 7th December 2005 Cheshire & Krochmal [Page 27]

Internet Draft Multicast DNS 7th June 2005

 The end result of this is that if a printer suffers a sudden power
 failure or other abrupt disconnection from the network, its name
 may continue to appear in DNS-SD browser lists displayed on users'
 screens. Eventually that entry will expire from the cache naturally,
 but if a user tries to access the printer before that happens, the
 failure to successfully contact the printer will trigger the more
 hasty demise of its cache entries. This is a sensible trade-off
 between good user-experience and good network efficiency. If we were
 to insist that printers should disappear from the printer list within
 30 seconds of becoming unavailable, for all failure modes, the only
 way to achieve this would be for the client to poll the printer at
 least every 30 seconds, or for the printer to announce its presence
 at least every 30 seconds, both of which would be an unreasonable
 burden on most networks.

11.6 Passive Observation of Failures

 A host observes the multicast queries issued by the other hosts on
 the network. One of the major benefits of also sending responses
 using multicast is that it allows all hosts to see the responses (or
 lack thereof) to those queries.

 If a host sees queries, for which a record in its cache would be
 expected to be given as an answer in a multicast response, but no
 such answer is seen, then the host may take this as an indication
 that the record may no longer be valid.

 After seeing two or more of these queries, and seeing no multicast
 response containing the expected answer within a reasonable amount of
 time, then even though its TTL may indicate that it is not yet due to
 expire, that record MAY be flushed from the cache. The host SHOULD
 NOT perform its own queries to re-confirm that the record is truly
 gone. If every host on a large network were to do this, it would
 cause a lot of unnecessary multicast traffic. If host A sends
 multicast queries that remain unanswered, then there is no reason
 to suppose that host B or any other host is likely to be any more
 successful.

 The previous section, "Cache Flush on Failure Indication", describes
 a situation where a user trying to print discovers that the printer
 is no longer available. By implementing the passive observation
 described here, when one user fails to contact the printer, all
 hosts on the network observe that failure and update their caches
 accordingly.

Expires 7th December 2005 Cheshire & Krochmal [Page 28]

Internet Draft Multicast DNS 7th June 2005

12. Special Characteristics of Multicast DNS Domains

 Unlike conventional DNS names, names that end in ".local.",
 "254.169.in-addr.arpa." or "0.8.e.f.ip6.arpa." have only local
 significance. Conventional DNS seeks to provide a single unified
 namespace, where a given DNS query yields the same answer no matter
 where on the planet it is performed or to which recursive DNS server
 the query is sent. (However, split views, firewalls, intranets and
 the like have somewhat interfered with this goal of DNS representing
 a single universal truth.) In contrast, each IP link has its own
 private ".local.", "254.169.in-addr.arpa." and "0.8.e.f.ip6.arpa."
 namespaces, and the answer to any query for a name within those
 domains depends on where that query is asked.

 Multicast DNS Domains are not delegated from their parent domain via
 use of NS records. There are no NS records anywhere in Multicast DNS
 Domains. Instead, all Multicast DNS Domains are delegated to the IP
 addresses 224.0.0.251 and FF02::FB by virtue of the individual
 organizations producing DNS client software deciding how to handle
 those names. It would be extremely valuable for the industry if this
 special handling were ratified and recorded by IANA, since otherwise
 the special handling provided by each vendor is likely to be
 inconsistent.

 The IPv4 name server for a Multicast DNS Domain is 224.0.0.251. The
 IPv6 name server for a Multicast DNS Domain is FF02::FB. These are
 multicast addresses; therefore they identify not a single host but a
 collection of hosts, working in cooperation to maintain some
 reasonable facsimile of a competently managed DNS zone. Conceptually
 a Multicast DNS Domain is a single DNS zone, however its server is
 implemented as a distributed process running on a cluster of loosely
 cooperating CPUs rather than as a single process running on a single
 CPU.

 No delegation is performed within Multicast DNS Domains. Because the
 cluster of loosely coordinated CPUs is cooperating to administer a
 single zone, delegation is neither necessary nor desirable. Just
 because a particular host on the network may answer queries for a
 particular record type with the name "example.local." does not imply
 anything about whether that host will answer for the name
 "child.example.local.", or indeed for other record types with the
 name "example.local."

 Multicast DNS Zones have no SOA record. A conventional DNS zone's
 SOA record contains information such as the email address of the zone
 administrator and the monotonically increasing serial number of the
 last zone modification. There is no single human administrator for
 any given Multicast DNS Zone, so there is no email address. Because

 the hosts managing any given Multicast DNS Zone are only loosely
 coordinated, there is no readily available monotonically increasing
 serial number to determine whether or not the zone contents have
 changed. A host holding part of the shared zone could crash or be

Expires 7th December 2005 Cheshire & Krochmal [Page 29]

Internet Draft Multicast DNS 7th June 2005

 disconnected from the network at any time without informing the other
 hosts. There is no reliable way to provide a zone serial number that
 would, whenever such a crash or disconnection occurred, immediately
 change to indicate that the contents of the shared zone had changed.

 Zone transfers are not possible for any Multicast DNS Zone.

13. Multicast DNS for Service Discovery

 This document does not describe using Multicast DNS for network
 browsing or service discovery. However, the mechanisms this document
 describes are compatible with (and support) the browsing and service
 discovery mechanisms proposed in "DNS-Based Service Discovery"
 [DNS-SD].

14. Enabling and Disabling Multicast DNS

 The option to fail-over to Multicast DNS for names not ending in
 ".local." SHOULD be a user-configured option, and SHOULD
 be disabled by default because of the possible security issues
 related to unintended local resolution of apparently global names.

 The option to lookup unqualified (relative) names by appending
 ".local." (or not) is controlled by whether ".local." appears
 (or not) in the client's DNS search list.

 No special control is needed for enabling and disabling Multicast DNS
 for names explicitly ending with ".local." as entered by the user.
 The user doesn't need a way to disable Multicast DNS for names ending
 with ".local.", because if the user doesn't want to use Multicast
 DNS, they can achieve this by simply not using those names. If a user
 does enter a name ending in ".local.", then we can safely assume
 the user's intention was probably that it should work. Having user
 configuration options that can be (intentionally or unintentionally)
 set so that local names don't work is just one more way of
 frustrating the user's ability to perform the tasks they want,
 perpetuating the view that, "IP networking is too complicated to
 configure and too hard to use." This in turn perpetuates the
 continued use of protocols like AppleTalk. If we want to retire
 AppleTalk, NetBIOS, etc., we need to offer users equivalent IP
 functionality that they can rely on to, "always work, like
 AppleTalk." A little Multicast DNS traffic may be a burden on the
 network, but it is an insignificant burden compared to continued
 widespread use of AppleTalk.

Expires 7th December 2005 Cheshire & Krochmal [Page 30]

Internet Draft Multicast DNS 7th June 2005

15. Considerations for Multiple Interfaces

 A host should defend its host name (FQDN) on all active interfaces on
 which it is answering Multicast DNS queries.

 In the event of a name conflict on *any* interface, a host should
 configure a new host name, if it wishes to maintain uniqueness of its
 host name.

 A host may choose to use the same name for all of its address records
 on all interfaces, or it may choose to manage its Multicast DNS host
 name(s) independently on each interface, potentially answering to
 different names on different interfaces.

 When answering a Multicast DNS query, a multi-homed host with a
 link-local address (or addresses) should take care to ensure that
 any address going out in a Multicast DNS response is valid for use
 on the interface on which the response is going out.

 Just as the same link-local IP address may validly be in use
 simultaneously on different links by different hosts, the same
 link-local host name may validly be in use simultaneously on
 different links, and this is not an error. A multi-homed host with
 connections to two different links may be able to communicate with
 two different hosts that are validly using the same name. While this
 kind of name duplication should be rare, it means that a host that
 wants to fully support this case needs network programming APIs that
 allow applications to specify on what interface to perform a
 link-local Multicast DNS query, and to discover on what interface a
 Multicast DNS response was received.

Expires 7th December 2005 Cheshire & Krochmal [Page 31]

Internet Draft Multicast DNS 7th June 2005

16. Multicast DNS and Power Management

 Many modern network devices have the ability to go into a low-power
 mode where only a small part of the Ethernet hardware remains
 powered, and the device can be woken up by sending a specially
 formatted Ethernet frame which the device's power-management hardware
 recognizes.

 To make use of this in conjunction with Multicast DNS, we propose a
 network power management service called Sleep Proxy Service. A device
 that wishes to enter low-power mode first uses DNS-SD to determine if
 Sleep Proxy Service is available on the local network. In some
 networks there may be more than one piece of hardware implementing
 Sleep Proxy Service, for fault-tolerance reasons.

 If the device finds the network has Sleep Proxy Service, the device
 transmits two or more gratuitous mDNS announcements setting the TTL
 of its relevant resource records to zero, to delete them from
 neighboring caches. The relevant resource records include address
 records and SRV records, and other resource records as may apply to a
 particular device. The device then communicates all of its remaining
 active records, plus the names, rrtypes and rrclasses of the deleted
 records, to the Sleep Proxy Service(s), along with a copy of the
 specific "magic packet" required to wake the device up.

 When a Sleep Proxy Service sees an mDNS query for one of the
 device's active records (e.g. a DNS-SD PTR record), it answers on
 behalf of the device without waking it up. When a Sleep Proxy Service
 sees an mDNS query for one of the device's deleted resource
 records, it deduces that some client on the network needs to make an
 active connection to the device, and sends the specified "magic
 packet" to wake the device up. The device then wakes up, reactivates
 its deleted resource records, and re-announces them to the network.
 The client waiting to connect sees the announcements, learns the
 current IP address and port number of the desired service on the
 device, and proceeds to connect to it.

 The connecting client does not need to be aware of how Sleep Proxy
 Service works. Only devices that implement low power mode and wish to
 make use of Sleep Proxy Service need to be aware of how that protocol
 works.

 The reason that a device using a Sleep Proxy Service should send more
 than one goodbye packet is to ensure deletion of the resource records
 from all peer caches. If resource records were to inadvertently
 remain in some peer caches, then those peers may not issue any query
 packets for those records when attempting to access the sleeping
 device, so the Sleep Proxy Service would not receive any queries for

 the device's SRV and/or address records, and the necessary wake-up
 message would not be triggered.

 The full specification of mDNS / DNS-SD Sleep Proxy Service
 is described in another document [not yet published].

Expires 7th December 2005 Cheshire & Krochmal [Page 32]

Internet Draft Multicast DNS 7th June 2005

17. Multicast DNS Character Set

 Unicast DNS has been plagued by the lack of any support for non-US
 characters. Indeed, conventional DNS is usually limited to just
 letters, digits and hyphens, with no spaces or other punctuation.
 Attempts to remedy this for unicast DNS have been badly constrained
 by the need to accommodate old buggy legacy DNS implementations.
 In reality, the DNS specification actually imposes no limits on what
 characters may be used in names, and good DNS implementations handle
 any arbitrary eight-bit data without trouble. However, the old rules
 for ARPANET host names back in the 1980s required names to be just
 letters, digits, and hyphens [RFC 1034], and since the predominant
 use of DNS is to store host address records, many have assumed that
 the DNS protocol itself suffers from the same limitation. It would be
 more accurate to say that certain bad implementations may not handle
 eight-bit data correctly, not that the protocol doesn't support it.

 Multicast DNS is a new protocol and doesn't (yet) have old buggy
 legacy implementations to constrain the design choices. Accordingly,
 it adopts the simple obvious elegant solution: all names in
 Multicast DNS are encoded using precomposed UTF-8 [RFC 3629]. The
 characters SHOULD conform to Unicode Normalization Form C (NFC): Use
 precomposed characters instead of combining sequences where possible,
 e.g. use U+00C4 ("Latin capital letter A with diaeresis") instead
 of U+0041 U+0308 ("Latin capital letter A", "combining diaeresis").
 Some users of 16-bit Unicode have taken to stuffing a "zero-width
 non-breaking space" character (U+FEFF) at the start of each UTF-16
 file, as a hint to identify whether the data is big-endian or little-
 endian, and calling it a "Byte Order Mark" (BOM). Since there is only
 one possible byte order for UTF-8 data, a BOM is neither necessary
 nor permitted. Multicast DNS names MUST NOT contain a "Byte Order
 Mark". Any occurrence of the Unicode character U+FEFF in a Multicast
 DNS name MUST be interpreted as a zero-width non-breaking space.

 For names that are restricted to letters, digits and hyphens, the
 UTF-8 encoding is identical to the US-ASCII encoding, so this is
 entirely compatible with existing host names. For characters outside
 the US-ASCII range, UTF-8 encoding is used.

 Multicast DNS implementations MUST NOT use any other encodings apart
 from precomposed UTF-8 (US-ASCII being considered a compatible subset
 of UTF-8).

 This point bears repeating: After many years of debate, as a result
 of the need to accommodate certain DNS implementations that
 apparently couldn't handle any character that's not a letter, digit
 or hyphen (and apparently never will be updated to remedy this
 limitation) the unicast DNS community settled on an extremely baroque

https://datatracker.ietf.org/doc/html/rfc1034
https://datatracker.ietf.org/doc/html/rfc3629

 encoding called "Punycode" [RFC 3492]. Punycode is a remarkably
 ingenious encoding solution, but it is complicated, hard to
 understand, and hard to implement, using sophisticated techniques
 including insertion unsort coding, generalized variable-length
 integers, and bias adaptation. The resulting encoding is remarkably

Expires 7th December 2005 Cheshire & Krochmal [Page 33]

https://datatracker.ietf.org/doc/html/rfc3492

Internet Draft Multicast DNS 7th June 2005

 compact given the constraints, but it's still not as good as simple
 straightforward UTF-8, and it's hard even to predict whether a given
 input string will encode to a Punycode string that fits within DNS's
 63-byte limit, except by simply trying the encoding and seeing
 whether it fits. Indeed, the encoded size depends not only on the
 input characters, but on the order they appear, so the same set of
 characters may or may not encode to a legal Punycode string that fits
 within DNS's 63-byte limit, depending on the order the characters
 appear. This is extremely hard to present in a user interface that
 explains to users why one name is allowed, but another name
 containing the exact same characters is not. Neither Punycode nor any
 other of the "Ascii Compatible Encodings" proposed for Unicast DNS
 may be used in Multicast DNS packets. Any text being represented
 internally in some other representation MUST be converted to
 canonical precomposed UTF-8 before being placed in any Multicast DNS
 packet.

 The simple rules for case-insensitivity in Unicast DNS also apply in
 Multicast DNS; that is to say, in name comparisons, the lower-case
 letters "a" to "z" (0x61 to 0x7A) match their upper-case equivalents
 "A" to "Z" (0x41 to 0x5A). Hence, if a client issues a query for an
 address record with the name "cheshire.local", then a responder
 having an address record with the name "Cheshire.local" should
 issue a response. No other automatic equivalences should be assumed.
 In particular all UTF-8 multi-byte characters (codes 0x80 and higher)
 are compared by simple binary comparison of the raw byte values.

 No other automatic character equivalence is defined in Multicast DNS.
 For example, accented characters are not defined to be automatically
 equivalent to their unaccented counterparts. Where automatic
 equivalences are desired, this may be achieved through the use of
 programmatically-generated CNAME records. For example, if a responder
 has an address record for an accented name Y, and a client issues a
 query for a name X, where X is the same as Y with all the accents
 removed, then the responder may issue a response containing two
 resource records: A CNAME record "X CNAME Y", asserting that the
 requested name X (unaccented) is an alias for the true (accented)
 name Y, followed by the address record for Y.

18. Multicast DNS Message Size

RFC 1035 restricts DNS Messages carried by UDP to no more than 512
 bytes (not counting the IP or UDP headers). For UDP packets carried
 over the wide-area Internet in 1987, this was appropriate. For
 link-local multicast packets on today's networks, there is no reason
 to retain this restriction. Given that the packets are by definition
 link-local, there are no Path MTU issues to consider.

https://datatracker.ietf.org/doc/html/rfc1035

 Multicast DNS Messages carried by UDP may be up to the IP MTU of the
 physical interface, less the space required for the IP header (20
 bytes for IPv4; 40 bytes for IPv6) and the UDP header (8 bytes).

Expires 7th December 2005 Cheshire & Krochmal [Page 34]

Internet Draft Multicast DNS 7th June 2005

 In the case of a single mDNS Resource Record which is too large to
 fit in a single MTU-sized multicast response packet, a Multicast DNS
 Responder SHOULD send the Resource Record alone, in a single IP
 datagram, sent using multiple IP fragments. Resource Records this
 large SHOULD be avoided, except in the very rare cases where they
 really are the appropriate solution to the problem at hand.
 Implementers should be aware that many simple devices do not
 re-assemble fragmented IP datagrams, so large Resource Records SHOULD
 NOT be used except in specialized cases where the implementer knows
 that all receivers implement reassembly.

 A Multicast DNS packet larger than the interface MTU, which is sent
 using fragments, MUST NOT contain more than one Resource Record.

 Even when fragmentation is used, a Multicast DNS packet, including IP
 and UDP headers, MUST NOT exceed 9000 bytes.

19. Multicast DNS Message Format

 This section describes specific restrictions on the allowable
 values for the header fields of a Multicast DNS message.

19.1. ID (Query Identifier)

 Multicast DNS clients SHOULD listen for gratuitous responses
 issued by hosts booting up (or waking up from sleep or otherwise
 joining the network). Since these gratuitous responses may contain a
 useful answer to a question for which the client is currently
 awaiting an answer, Multicast DNS clients SHOULD examine all received
 Multicast DNS response messages for useful answers, without regard to
 the contents of the ID field or the Question Section. In Multicast
 DNS, knowing which particular query message (if any) is responsible
 for eliciting a particular response message is less interesting than
 knowing whether the response message contains useful information.

 Multicast DNS clients MAY cache any or all Multicast DNS response
 messages they receive, for possible future use, provided of course
 that normal TTL aging is performed on these cached resource records.

 In multicast query messages, the Query ID SHOULD be set to zero on
 transmission.

 In multicast responses, including gratuitous multicast responses, the
 Query ID MUST be set to zero on transmission, and MUST be ignored on
 reception.

 In unicast response messages generated specifically in response to a
 particular (unicast or multicast) query, the Query ID MUST match the

 ID from the query message.

Expires 7th December 2005 Cheshire & Krochmal [Page 35]

Internet Draft Multicast DNS 7th June 2005

19.2. QR (Query/Response) Bit

 In query messages, MUST be zero.
 In response messages, MUST be one.

19.3. OPCODE

 In both multicast query and multicast response messages, MUST be zero
 (only standard queries are currently supported over multicast, unless
 other queries are allowed by future IETF Standards Action).

19.4. AA (Authoritative Answer) Bit

 In query messages, the Authoritative Answer bit MUST be zero on
 transmission, and MUST be ignored on reception.

 In response messages for Multicast Domains, the Authoritative Answer
 bit MUST be set to one (not setting this bit implies there's some
 other place where "better" information may be found) and MUST be
 ignored on reception.

19.5. TC (Truncated) Bit

 In query messages, if the TC bit is set, it means that additional
 Known Answer records may be following shortly. A responder MAY choose
 to record this fact, and wait for those additional Known Answer
 records, before deciding whether to respond. If the TC bit is clear,
 it means that the querying host has no additional Known Answers.

 In multicast response messages, the TC bit MUST be zero on
 transmission, and MUST be ignored on reception.

 In legacy unicast response messages, the TC bit has the same meaning
 as in conventional unicast DNS: it means that the response was too
 large to fit in a single packet, so the client SHOULD re-issue its
 query using TCP in order to receive the larger response.

19.6. RD (Recursion Desired) Bit

 In both multicast query and multicast response messages, the
 Recursion Desired bit SHOULD be zero on transmission, and MUST be
 ignored on reception.

19.7. RA (Recursion Available) Bit

 In both multicast query and multicast response messages, the
 Recursion Available bit MUST be zero on transmission, and MUST be
 ignored on reception.

Expires 7th December 2005 Cheshire & Krochmal [Page 36]

Internet Draft Multicast DNS 7th June 2005

19.8. Z (Zero) Bit

 In both query and response messages, the Zero bit MUST be zero on
 transmission, and MUST be ignored on reception.

19.9. AD (Authentic Data) Bit [RFC 2535]

 In query messages the Authentic Data bit MUST be zero on
 transmission, and MUST be ignored on reception.

 In response messages, the Authentic Data bit MAY be set. Resolvers
 receiving response messages with the AD bit set MUST NOT trust the AD
 bit unless they trust the source of the message and either have a
 secure path to it or use DNS transaction security.

19.10. CD (Checking Disabled) Bit [RFC 2535]

 In query messages, a resolver willing to do cryptography SHOULD set
 the Checking Disabled bit to permit it to impose its own policies.

 In response messages, the Checking Disabled bit MUST be zero on
 transmission, and MUST be ignored on reception.

19.11. RCODE (Response Code)

 In both multicast query and multicast response messages, the Response
 Code MUST be zero on transmission. Multicast DNS messages received
 with non-zero Response Codes MUST be silently ignored.

19.12. Repurposing of top bit of qclass in Question Section

 In the Question Section of a Multicast DNS Query, the top bit of the
 qclass field is used to indicate that unicast responses are preferred
 for this particular question.

19.13. Repurposing of top bit of rrclass in Answer Section

 In the Answer Section of a Multicast DNS Response, the top bit of the
 rrclass field is used to indicate that the record is a member of a
 unique RRSet, and the entire RRSet has been sent together (in the
 same packet, or in consecutive packets if there are too many records
 to fit in a single packet).

https://datatracker.ietf.org/doc/html/rfc2535
https://datatracker.ietf.org/doc/html/rfc2535

Expires 7th December 2005 Cheshire & Krochmal [Page 37]

Internet Draft Multicast DNS 7th June 2005

20. Choice of UDP Port Number

 Arguments were made for and against using Multicast on UDP port 53.
 The final decision was to use UDP port 5353. Some of the arguments
 for and against are given below.

20.1 Arguments for using UDP port 53:

 * This is "just DNS", so it should be the same port.

 * There is less work to be done updating old clients to do simple
 mDNS queries. Only the destination address need be changed.
 In some cases, this can be achieved without any code changes,
 just by adding the address 224.0.0.251 to a configuration file.

20.2 Arguments for using a different port (UDP port 5353):

 * This is not "just DNS". This is a DNS-like protocol, but different.

 * Changing client code to use a different port number is not hard.

 * Using the same port number makes it hard to run an mDNS Responder
 and a conventional unicast DNS server on the same machine. If a
 conventional unicast DNS server wishes to implement mDNS as well,
 it can still do that, by opening two sockets. Having two different
 port numbers is important to allow this flexibility.

 * Some VPN software hijacks all outgoing traffic to port 53 and
 redirects it to a special DNS server set up to serve those VPN
 clients while they are connected to the corporate network. It is
 questionable whether this is the right thing to do, but it is
 common, and redirecting link-local multicast DNS packets to a
 remote server rarely produces any useful results. It does mean,
 for example, that the user becomes unable to access their local
 network printer sitting on their desk right next to their computer.
 Using a different UDP port eliminates this particular problem.

 * On many operating systems, unprivileged clients may not send or
 receive packets on low-numbered ports. This means that any client
 sending or receiving mDNS packets on port 53 would have to run as
 "root", which is an undesirable security risk. Using a higher-
 numbered UDP port eliminates this particular problem.

 Continuing the previous point, since using an unprivileged port
 allows normal user-level code to bind, a given machine may have more
 than one such user-level application running at a time. Because of
 this, any code binding to UDP port 5353 MUST use the SO_REUSEPORT

 option, so as to be a good citizen and not block other clients on the
 machine from also binding to that port.

Expires 7th December 2005 Cheshire & Krochmal [Page 38]

Internet Draft Multicast DNS 7th June 2005

21. Summary of Differences Between Multicast DNS and Unicast DNS

 The value of Multicast DNS is that it shares, as much as possible,
 the familiar APIs, naming syntax, resource record types, etc., of
 Unicast DNS. There are of course necessary differences by virtue of
 it using Multicast, and by virtue of it operating in a community of
 cooperating peers, rather than a precisely defined authoritarian
 hierarchy controlled by a strict chain of formal delegations from the
 top. These differences are listed below:

 Multicast DNS...
 * uses multicast
 * uses UDP port 5353 instead of port 53
 * operates in well-defined parts of the DNS namespace
 * uses UTF-8, and only UTF-8, to encode resource record names
 * defines a clear limit on the maximum legal domain name (255 bytes)
 * allows larger UDP packets
 * allows more than one question in a query packet
 * uses the Answer Section of a query to list Known Answers
 * uses the TC bit in a query to indicate additional Known Answers
 * uses the Authority Section of a query for probe tie-breaking
 * ignores the Query ID field (except for generating legacy responses)
 * doesn't require the question to be repeated in the response packet
 * uses gratuitous responses to announce new records to the peer group
 * defines a "unicast response" bit in the rrclass of query questions
 * defines a "cache flush" bit in the rrclass of response answers
 * uses DNS TTL 0 to indicate that a record has been deleted
 * monitors queries to perform Duplicate Question Suppression
 * monitors responses to perform Duplicate Answer Suppression...
 * ... and Ongoing Conflict Detection
 * ... and Opportunistic Caching

Expires 7th December 2005 Cheshire & Krochmal [Page 39]

Internet Draft Multicast DNS 7th June 2005

22. Benefits of Multicast Responses

 Some people have argued that sending responses via multicast is
 inefficient on the network. In fact using multicast responses results
 in a net lowering of overall multicast traffic, for a variety of
 reasons, in addition to other benefits.

 * One multicast response can update the cache on all machines on the
 network. If another machine later wants to issue the same query, it
 already has the answer in its cache, so it may not need to even
 transmit that multicast query on the network at all.

 * When more than one machine has the same ongoing long-lived query
 running, every machine does not have to transmit its own
 independent query. When one machine transmits a query, all the
 other hosts see the answers, so they can suppress their own
 queries.

 * When a host sees a multicast query, but does not see the corres-
 ponding multicast response, it can use this information to promptly
 delete stale data from its cache. To achieve the same level of
 user-interface quality and responsiveness without multicast
 responses would require lower cache lifetimes and more frequent
 network polling, resulting in a significantly higher packet rate.

 * Multicast responses allow passive conflict detection. Without this
 ability, some other conflict detection mechanism would be needed,
 imposing its own additional burden on the network.

 * When using delayed responses to reduce network collisions, clients
 need to maintain a list recording to whom each answer should be
 sent. The option of multicast responses allows clients with limited
 storage, which cannot store an arbitrarily long list of response
 addresses, to choose to fail-over to a single multicast response in
 place of multiple unicast responses, when appropriate.

 * In the case of overlayed subnets, multicast responses allow a
 receiver to know with certainty that a response originated on the
 local link, even when its source address may apparently suggest
 otherwise.

 * Link-local multicast transcends virtually every conceivable network
 misconfiguration. Even if you have a collection of devices where
 every device's IP address, subnet mask, default gateway, and DNS
 server address are all wrong, packets sent by any of those devices
 addressed to a link-local multicast destination address will still
 be delivered to all peers on the local link. This can be extremely
 helpful when diagnosing and rectifying network problems, since
 it facilitates a direct communication channel between client and

 server that works without reliance on ARP, IP routing tables, etc.
 Being able to discover what IP address a device has (or thinks it
 has) is frequently a very valuable first step in diagnosing why it
 unable to communicate on the local network.

Expires 7th December 2005 Cheshire & Krochmal [Page 40]

Internet Draft Multicast DNS 7th June 2005

23. IPv6 Considerations

 An IPv4-only host and an IPv6-only host behave as "ships that pass in
 the night". Even if they are on the same Ethernet, neither is aware
 of the other's traffic. For this reason, each physical link may have
 two unrelated ".local." zones, one for IPv4 and one for IPv6.
 Since for practical purposes, a group of IPv4-only hosts and a group
 of IPv6-only hosts on the same Ethernet act as if they were on two
 entirely separate Ethernet segments, it is unsurprising that their
 use of the ".local." zone should occur exactly as it would if
 they really were on two entirely separate Ethernet segments.

 A dual-stack (v4/v6) host can participate in both ".local."
 zones, and should register its name(s) and perform its lookups both
 using IPv4 and IPv6. This enables it to reach, and be reached by,
 both IPv4-only and IPv6-only hosts. In effect this acts like a
 multi-homed host, with one connection to the logical "IPv4 Ethernet
 segment", and a connection to the logical "IPv6 Ethernet segment".

23.1 IPv6 Multicast Addresses by Hashing

 Some discovery protocols use a range of multicast addresses, and
 determine the address to be used by a hash function of the name being
 sought. Queries are sent via multicast to the address as indicated by
 the hash function, and responses are returned to the querier via
 unicast. Particularly in IPv6, where multicast addresses are
 extremely plentiful, this approach is frequently advocated.

 There are some problems with this:

 * When a host has a large number of records with different names, the
 host may have to join a large number of multicast groups. This can
 place undue burden on the Ethernet hardware, which typically
 supports a limited number of multicast addresses efficiently. When
 this number is exceeded, the Ethernet hardware may have to resort
 to receiving all multicasts and passing them up to the host
 software for filtering, thereby defeating the point of using a
 multicast address range in the first place.

 * Multiple questions cannot be placed in one packet if they don't all
 hash to the same multicast address.

 * Duplicate Question Suppression doesn't work if queriers are not
 seeing each other's queries.

 * Duplicate Answer Suppression doesn't work if responders are not
 seeing each other's responses.

 * Opportunistic Caching doesn't work.

 * Ongoing Conflict Detection doesn't work.

Expires 7th December 2005 Cheshire & Krochmal [Page 41]

Internet Draft Multicast DNS 7th June 2005

24. Security Considerations

 The algorithm for detecting and resolving name conflicts is, by its
 very nature, an algorithm that assumes cooperating participants. Its
 purpose is to allow a group of hosts to arrive at a mutually disjoint
 set of host names and other DNS resource record names, in the absence
 of any central authority to coordinate this or mediate disputes. In
 the absence of any higher authority to resolve disputes, the only
 alternative is that the participants must work together cooperatively
 to arrive at a resolution.

 In an environment where the participants are mutually antagonistic
 and unwilling to cooperate, other mechanisms are appropriate, like
 manually administered DNS.

 In an environment where there is a group of cooperating participants,
 but there may be other antagonistic participants on the same physical
 link, the cooperating participants need to use IPSEC signatures
 and/or DNSSEC [RFC 2535] signatures so that they can distinguish mDNS
 messages from trusted participants (which they process as usual) from
 mDNS messages from untrusted participants (which they silently
 discard).

 When DNS queries for *global* DNS names are sent to the mDNS
 multicast address (during network outages which disrupt communication
 with the greater Internet) it is *especially* important to use
 DNSSEC, because the user may have the impression that he or she is
 communicating with some authentic host, when in fact he or she is
 really communicating with some local host that is merely masquerading
 as that name. This is less critical for names ending with ".local.",
 because the user should be aware that those names have only local
 significance and no global authority is implied.

 Most computer users neglect to type the trailing dot at the end of a
 fully qualified domain name, making it a relative domain name (e.g.
 "www.example.com"). In the event of network outage, attempts to
 positively resolve the name as entered will fail, resulting in
 application of the search list, including ".local.", if present.
 A malicious host could masquerade as "www.example.com" by answering
 the resulting Multicast DNS query for "www.example.com.local."
 To avoid this, a host MUST NOT append the search suffix
 ".local.", if present, to any relative (partially qualified)
 domain name containing two or more labels. Appending ".local." to
 single-label relative domain names is acceptable, since the user
 should have no expectation that a single-label domain name will
 resolve as-is.

https://datatracker.ietf.org/doc/html/rfc2535

Expires 7th December 2005 Cheshire & Krochmal [Page 42]

Internet Draft Multicast DNS 7th June 2005

25. IANA Considerations

 IANA has allocated the IPv4 link-local multicast address 224.0.0.251
 for the use described in this document.

 IANA has allocated the IPv6 multicast address set FF0X::FB for the
 use described in this document. Only address FF02::FB (Link-Local
 Scope) is currently in use by deployed software, but it is possible
 that in future implementers may experiment with Multicast DNS using
 larger-scoped addresses, such as FF05::FB (Site-Local Scope).

 When this document is published, IANA should designate a list of
 domains which are deemed to have only link-local significance, as
 described in Section 12 of this document ("Special Characteristics of
 Multicast DNS Domains").

 The re-use of the top bit of the rrclass field in the Question and
 Answer Sections means that Multicast DNS can only carry DNS records
 with classes in the range 0-32767. Classes in the range 32768 to
 65535 are incompatible with Multicast DNS. However, since to-date
 only three DNS classes have been assigned by IANA (1, 3 and 4),
 and only one (1, "Internet") is actually in widespread use, this
 limitation is likely to remain a purely theoretical one.

 No other IANA services are required by this document.

26. Acknowledgments

 The concepts described in this document have been explored, developed
 and implemented with help from Freek Dijkstra, Erik Guttman, Paul
 Vixie, Bill Woodcock, and others.

 Special thanks go to Bob Bradley, Josh Graessley, Scott Herscher,
 Roger Pantos and Kiren Sekar for their significant contributions.

27. Copyright Notice

 Copyright (C) The Internet Society (2005).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights. For the purposes of this document,
 the term "BCP 78" refers exclusively to RFC 3978, "IETF Rights
 in Contributions", published March 2005.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/rfc3978

 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Expires 7th December 2005 Cheshire & Krochmal [Page 43]

Internet Draft Multicast DNS 7th June 2005

28. Normative References

 [RFC 1034] Mockapetris, P., "Domain Names - Concepts and
 Facilities", STD 13, RFC 1034, November 1987.

 [RFC 1035] Mockapetris, P., "Domain Names - Implementation and
 Specifications", STD 13, RFC 1035, November 1987.

 [RFC 2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", RFC 2119, March 1997.

 [RFC 3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", RFC 3629, November 2003.

29. Informative References

 [dotlocal] <http://www.dotlocal.org/>

 [djbdl] <http://cr.yp.to/djbdns/dot-local.html>

 [DNS-SD] Cheshire, S., and M. Krochmal, "DNS-Based Service
 Discovery", Internet-Draft (work in progress),

draft-cheshire-dnsext-dns-sd-03.txt, June 2005.

 [IEEE802] IEEE Standards for Local and Metropolitan Area Networks:
 Overview and Architecture.
 Institute of Electrical and Electronic Engineers,
 IEEE Standard 802, 1990.

 [NBP] Cheshire, S., and M. Krochmal,
 "Requirements for a Protocol to Replace AppleTalk NBP",
 Internet-Draft (work in progress),

draft-cheshire-dnsext-nbp-04.txt, June 2005.

 [RFC 2136] Vixie, P., et al., "Dynamic Updates in the Domain Name
 System (DNS UPDATE)", RFC 2136, April 1997.

 [RFC 2462] S. Thomson and T. Narten, "IPv6 Stateless Address
 Autoconfiguration", RFC 2462, December 1998.

 [RFC 2535] Eastlake, D., "Domain Name System Security Extensions",
RFC 2535, March 1999.

 [RFC 3492] Costello, A., "Punycode: A Bootstring encoding of
 Unicode for use with Internationalized Domain Names
 in Applications (IDNA)", RFC 3492, March 2003.

 [RFC 3927] Cheshire, S., B. Aboba, and E. Guttman,
 "Dynamic Configuration of IPv4 Link-Local Addresses",

https://datatracker.ietf.org/doc/html/rfc1034
https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3629
http://www.dotlocal.org/
http://cr.yp.to/djbdns/dot-local.html
https://datatracker.ietf.org/doc/html/draft-cheshire-dnsext-dns-sd-03.txt
https://datatracker.ietf.org/doc/html/draft-cheshire-dnsext-nbp-04.txt
https://datatracker.ietf.org/doc/html/rfc2136
https://datatracker.ietf.org/doc/html/rfc2462
https://datatracker.ietf.org/doc/html/rfc2535
https://datatracker.ietf.org/doc/html/rfc3492

RFC 3927, May 2005.

 [ZC] Williams, A., "Requirements for Automatic Configuration
 of IP Hosts", Internet-Draft (work in progress),

draft-ietf-zeroconf-reqts-12.txt, September 2002.

Expires 7th December 2005 Cheshire & Krochmal [Page 44]

https://datatracker.ietf.org/doc/html/rfc3927
https://datatracker.ietf.org/doc/html/draft-ietf-zeroconf-reqts-12.txt

Internet Draft Multicast DNS 7th June 2005

30. Authors' Addresses

 Stuart Cheshire
 Apple Computer, Inc.
 1 Infinite Loop
 Cupertino
 California 95014
 USA

 Phone: +1 408 974 3207
 EMail: rfc [at] stuartcheshire [dot] org

 Marc Krochmal
 Apple Computer, Inc.
 1 Infinite Loop
 Cupertino
 California 95014
 USA

 Phone: +1 408 974 4368
 EMail: marc [at] apple [dot] com

Expires 7th December 2005 Cheshire & Krochmal [Page 45]

