
Internet Engineering Task Force S. Cheshire
Internet-Draft M. Krochmal
Intended status: Standards Track Apple Inc.
Expires: July 16, 2011 Jan 12, 2011

Multicast DNS
draft-cheshire-dnsext-multicastdns-13

Abstract

 As networked devices become smaller, more portable, and more
 ubiquitous, the ability to operate with less configured
 infrastructure is increasingly important. In particular, the ability
 to look up DNS resource record data types (including, but not limited
 to, host names) in the absence of a conventional managed DNS server
 is useful.

 Multicast DNS (mDNS) provides the ability to perform DNS-like
 operations on the local link in the absence of any conventional
 unicast DNS server. In addition, mDNS designates a portion of the DNS
 namespace to be free for local use, without the need to pay any
 annual fee, and without the need to set up delegations or otherwise
 configure a conventional DNS server to answer for those names.

 The primary benefits of mDNS names are that (i) they require little
 or no administration or configuration to set them up, (ii) they work
 when no infrastructure is present, and (iii) they work during
 infrastructure failures.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute working
 documents as Internet-Drafts. The list of current Internet-Drafts is
 at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 16, 2011.

Copyright Notice

Cheshire & Krochmal Expires July 16, 2011 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft Multicast DNS Jan 2011

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Cheshire & Krochmal Expires July 16, 2011 [Page 2]

Internet-Draft Multicast DNS Jan 2011

Table of Contents

1. Introduction . 4
2. Conventions and Terminology Used in this Document 4
3. Multicast DNS Names . 5
4. Reverse Address Mapping 7
5. Querying . 8
6. Responding . 13
7. Traffic Reduction . 22
8. Probing and Announcing on Startup 25
9. Conflict Resolution . 31
10. Resource Record TTL Values and Cache Coherency 33
11. Source Address Check . 38
12. Special Characteristics of Multicast DNS Domains 39
13. Enabling and Disabling Multicast DNS 41
14. Considerations for Multiple Interfaces 41
15. Considerations for Multiple Responders on the Same Machine . . 43
16. Multicast DNS Character Set 44
17. Multicast DNS Message Size 46
18. Multicast DNS Message Format 47

 19. Summary of Differences Between Multicast DNS and Unicast
 DNS . 51

20. IPv6 Considerations . 52
21. Security Considerations 52
22. IANA Considerations . 54
23. Domain Name Reservation Considerations 55
24. Acknowledgments . 56
25. References . 57
25.1. Normative References 57
25.2. Informative References 57

Appendix A. Design Rationale for Choice of UDP Port Number . . . 60
Appendix B. Design Rationale for Not Using Hashed Multicast

 Addresses . 61
Appendix C. Design Rationale for Maximum Multicast DNS Name

 Length . 62
Appendix D. Benefits of Multicast Responses 65
Appendix E. Design Rationale for Encoding Negative Responses . . 67
Appendix F. Use of UTF-8 . 68
Appendix G. Private DNS Namespaces 69
Appendix H. Deployment History 70

 Authors' Addresses . 71

Cheshire & Krochmal Expires July 16, 2011 [Page 3]

Internet-Draft Multicast DNS Jan 2011

1. Introduction

 Multicast DNS and its companion technology DNS-based Service
 Discovery [DNS-SD] were created to provide IP networking with the
 ease-of-use and autoconfiguration for which AppleTalk was well known
 [NBP]. When reading this document, familiarity with the concepts of
 Zero Configuration Networking [Zeroconf] and automatic link-local
 addressing [RFC3927] [RFC4862] is helpful.

 This document specifies no change to the structure of DNS messages,
 no new operation codes or response codes, and no new resource record
 types. This document describes how clients send DNS-like queries via
 IP multicast, and how a collection of hosts cooperate to collectively
 answer those queries in a useful manner.

2. Conventions and Terminology Used in this Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in "Key words for use in
 RFCs to Indicate Requirement Levels" [RFC2119].

 When this document uses the term "Multicast DNS", it should be taken
 to mean: "Clients performing DNS-like queries for DNS-like resource
 records by sending DNS-like UDP query and response packets over IP
 Multicast to UDP port 5353." The design rationale for selecting UDP
 port 5353 is discussed in Appendix A.

 This document uses the term "host name" in the strict sense to mean a
 fully-qualified domain name that has an IPv4 or IPv6 address record.
 It does not use the term "host name" in the commonly used but
 incorrect sense to mean just the first DNS label of a host's fully-
 qualified domain name.

 A DNS (or mDNS) packet contains an IP TTL in the IP header, which is
 effectively a hop-count limit for the packet, to guard against
 routing loops. Each Resource Record also contains a TTL, which is the
 number of seconds for which the Resource Record may be cached. This
 document uses the term "IP TTL" to refer to the IP header TTL (hop
 limit), and the term "RR TTL" or just "TTL" to refer to the Resource
 Record TTL (cache lifetime).

 DNS-format messages contain a header, a Question Section, then
 Answer, Authority, and Additional Record Sections. The Answer,
 Authority, and Additional Record Sections all hold resource records
 in the same format. Where this document describes issues that apply
 equally to all three sections, it uses the term "Resource Record

https://datatracker.ietf.org/doc/html/rfc3927
https://datatracker.ietf.org/doc/html/rfc4862
https://datatracker.ietf.org/doc/html/rfc2119

Cheshire & Krochmal Expires July 16, 2011 [Page 4]

Internet-Draft Multicast DNS Jan 2011

 Sections" to refer collectively to these three sections.

 This document uses the terms "shared" and "unique" when referring to
 resource record sets [RFC1034]:

 A "shared" resource record set is one where several Multicast DNS
 Responders may have records with the same name, rrtype, and rrclass,
 and several Responders may respond to a particular query.

 A "unique" resource record set is one where all the records with that
 name, rrtype, and rrclass are conceptually under the control or
 ownership of a single Responder, and it is expected that at most one
 Responder should respond to a query for that name, rrtype, and
 rrclass. Before claiming ownership of a unique resource record set, a
 Responder MUST probe to verify that no other Responder already claims
 ownership of that set, as described in Section 8.1 "Probing". (For
 fault-tolerance and other reasons it is permitted sometimes to have
 more than one Responder answering for a particular "unique" resource
 record set, but such cooperating Responders MUST give answers
 containing identical rdata for these records. If they do not give
 answers containing identical rdata then the probing step will reject
 the data as being inconsistent with what is already being advertised
 on the network for those names.)

 Strictly speaking the terms "shared" and "unique" apply to resource
 record sets, not to individual resource records, but it is sometimes
 convenient to talk of "shared resource records" and "unique resource
 records". When used this way, the terms should be understood to mean
 a record that is a member of a "shared" or "unique" resource record
 set, respectively.

3. Multicast DNS Names

 A host that belongs to an organization or individual who has control
 over some portion of the DNS namespace can be assigned a globally
 unique name within that portion of the DNS namespace, such as,
 "cheshire.example.com." For those of us who have this luxury, this
 works very well. However, the majority of home computer users do not
 have easy access to any portion of the global DNS namespace within
 which they have the authority to create names. This leaves the
 majority of home computers effectively anonymous for practical
 purposes.

 To remedy this problem, this document allows any computer user to
 elect to give their computers link-local Multicast DNS host names of
 the form: "single-dns-label.local." For example, a laptop computer
 may answer to the name "MyComputer.local." Any computer user is

https://datatracker.ietf.org/doc/html/rfc1034

Cheshire & Krochmal Expires July 16, 2011 [Page 5]

Internet-Draft Multicast DNS Jan 2011

 granted the authority to name their computer this way, provided that
 the chosen host name is not already in use on that link. Having named
 their computer this way, the user has the authority to continue using
 that name until such time as a name conflict occurs on the link which
 is not resolved in the user's favor. If this happens, the computer
 (or its human user) MUST cease using the name, and SHOULD attempt to
 allocate a new unique name for use on that link. These conflicts are
 expected to be relatively rare for people who choose reasonably
 imaginative names, but it is still important to have a mechanism in
 place to handle them when they happen.

 This document specifies that the DNS top-level domain ".local." is a
 special domain with special semantics, namely that any fully-
 qualified name ending in ".local." is link-local, and names within
 this domain are meaningful only on the link where they originate.
 This is analogous to IPv4 addresses in the 169.254/16 prefix, or IPv6
 addresses in the FE80::/10 prefix, which are link-local and
 meaningful only on the link where they originate.

 Any DNS query for a name ending with ".local." MUST be sent to the
 mDNS multicast address 224.0.0.251 (or its IPv6 equivalent FF02::FB).
 The design rationale for using a fixed multicast address instead of
 selecting from a range of multicast addresses using a hash function
 is discussed in Appendix B. Implementers MAY choose also to look up
 such names concurrently via other mechanisms (e.g. Unicast DNS) and
 coalesce the results in some fashion. Implementers choosing to do
 this should be aware of the potential for user confusion when a given
 name can produce different results depending on external network
 conditions (such as, but not limited to, which name lookup mechanism
 responds faster).

 It is unimportant whether a name ending with ".local." occurred
 because the user explicitly typed in a fully-qualified domain name
 ending in ".local.", or because the user entered an unqualified
 domain name and the host software appended the suffix ".local."
 because that suffix appears in the user's search list. The ".local."
 suffix could appear in the search list because the user manually
 configured it, or because it was received via DHCP [RFC2132], or via
 any other mechanism for configuring the DNS search list. In this
 respect the ".local." suffix is treated no differently to any other
 search domain that might appear in the DNS search list.

 DNS queries for names that do not end with ".local." MAY be sent to
 the mDNS multicast address, if no other conventional DNS server is
 available. This can allow hosts on the same link to continue
 communicating using each other's globally unique DNS names during
 network outages which disrupt communication with the greater
 Internet. When resolving global names via local multicast, it is even

https://datatracker.ietf.org/doc/html/rfc2132

Cheshire & Krochmal Expires July 16, 2011 [Page 6]

Internet-Draft Multicast DNS Jan 2011

 more important to use DNSSEC [RFC4033] or other security mechanisms
 to ensure that the response is trustworthy. Resolving global names
 via local multicast is a contentious issue, and this document does
 not discuss it further, instead concentrating on the issue of
 resolving local names using DNS packets sent to a multicast address.

 This document recommends a single flat namespace for dot-local host
 names, (i.e. the names of DNS "A" and "AAAA" records, which map names
 to IPv4 and IPv6 addresses), but other DNS record types (such as
 those used by DNS-based Service Discovery [DNS-SD]) may contain as
 many labels as appropriate for the desired usage, up to a maximum of
 255 bytes, plus a terminating zero byte at the end. Name length
 issues are discussed further in Appendix C.

 Enforcing uniqueness of host names is probably desirable in the
 common case, but this document does not mandate that. It is
 permissible for a collection of coordinated hosts to agree to
 maintain multiple DNS address records with the same name, possibly
 for load balancing or fault-tolerance reasons. This document does not
 take a position on whether that is sensible. It is important that
 both modes of operation are supported. The Multicast DNS protocol
 allows hosts to verify and maintain unique names for resource records
 where that behavior is desired, and it also allows hosts to maintain
 multiple resource records with a single shared name where that
 behavior is desired. This consideration applies to all resource
 records, not just address records (host names). In summary: It is
 required that the protocol have the ability to detect and handle name
 conflicts, but it is not required that this ability be used for every
 record.

4. Reverse Address Mapping

 Like ".local.", the IPv4 and IPv6 reverse mapping domains are also
 defined to be link-local:

 Any DNS query for a name ending with "254.169.in-addr.arpa." MUST
 be sent to the IPv4 mDNS multicast address 224.0.0.251 or the IPv6
 mDNS multicast address FF02::FB. Since names under this domain
 correspond to IPv4 link-local addresses, it is logical that the
 local link is the best place to find information pertaining to
 those names.

 Likewise, any DNS query for a name within the reverse mapping
 domains for IPv6 Link-Local addresses ("8.e.f.ip6.arpa.",
 "9.e.f.ip6.arpa.", "a.e.f.ip6.arpa.", and "b.e.f.ip6.arpa.") MUST
 be sent to the IPv6 mDNS link-local multicast address FF02::FB or
 the IPv4 mDNS multicast address 224.0.0.251.

https://datatracker.ietf.org/doc/html/rfc4033

Cheshire & Krochmal Expires July 16, 2011 [Page 7]

Internet-Draft Multicast DNS Jan 2011

5. Querying

 There are two kinds of Multicast DNS Queries, one-shot queries of the
 kind made by legacy DNS resolvers, and continuous ongoing Multicast
 DNS Queries made by fully-compliant Multicast DNS Queriers, which
 support asynchronous operations including DNS-based Service Discovery
 [DNS-SD].

 Except in the rare case of a Multicast DNS Responder that is
 advertising only shared resources records and no unique records, a
 Multicast DNS Responder MUST also implement a Multicast DNS Querier
 so that it can first verify the uniqueness of those records before it
 begins answering queries for them.

5.1. One-Shot Multicast DNS Queries

 The most basic kind of Multicast DNS client may simply send standard
 DNS queries blindly to 224.0.0.251:5353, without necessarily even
 being aware of what a multicast address is. This change can typically
 be implemented with just a few lines of code in an existing DNS
 resolver library. Any time the name being queried for falls within
 one of the reserved mDNS domains (see Section 3 and Section 4) rather
 than using the configured unicast DNS server address, the query is
 instead sent to 224.0.0.251:5353 (or its IPv6 equivalent [FF02::FB]:
 5353). Typically the timeout would also be shortened to two or three
 seconds. It's possible to make a minimal mDNS resolver with only
 these simple changes. These queries are typically done using a high-
 numbered ephemeral UDP source port, but regardless of whether they
 are sent from a dynamic port or from a fixed port, these queries MUST
 NOT be sent using UDP source port 5353, since using UDP source port
 5353 signals the presence of a fully-compliant Multicast DNS Querier,
 as described below.

 A simple DNS resolver like this will typically just take the first
 response it receives. It will not listen for additional UDP
 responses, but in many instances this may not be a serious problem.
 If a user types "http://MyPrinter.local." into their web browser, and
 their simple DNS resolver just takes the first response it receives,
 and the user gets to see the status and configuration web page for
 their printer, then the protocol has met the user's needs in this
 case.

 While a basic DNS resolver like this may be adequate for simple host
 name lookup, it may not get ideal behavior in other cases. Additional
 refinements to create a fully-compliant Multicast DNS Querier are
 described below.

Cheshire & Krochmal Expires July 16, 2011 [Page 8]

Internet-Draft Multicast DNS Jan 2011

5.2. Continuous Multicast DNS Querying

 In One-Shot Queries the underlying assumption is that the transaction
 begins when the application issues a query, and ends when the first
 response is received. There is another type of query operation which
 is more asynchronous, in which having received one response is not
 necessarily an indication that there will be no more relevant
 responses, and the querying operation continues until no further
 responses are required. Determining when no further responses are
 required depends on the type of operation being performed. If the
 operation is looking up the IPv4 and IPv6 addresses of another host,
 then no further responses are required once a successful connection
 has been made to one of those IPv4 or IPv6 addresses. If the
 operation is browsing to present the user with a list of DNS-SD
 services found on the network [DNS-SD] then no further responses are
 required once the user indicates this to the user-interface software,
 e.g. by closing the network browsing window that was displaying the
 list of discovered services.

 Imagine some hypothetical software which allows users to discover
 network printers. The user wishes to discover all printers on the
 local network, not only the printer which is quickest to respond.
 When the user is actively looking for a network printer to use, they
 open a network browsing window which displays the list of discovered
 printers. It would be convenient for the user if they could rely on
 this list of network printers to stay up to date as network printers
 come and go, rather than displaying out-of-date stale information,
 and requiring the user explicitly to click a "refresh" button any
 time they want to see accurate information (which, from the moment it
 is displayed, is itself already beginning to become out-of-date and
 stale). If we are to display a continuously-updated live list like
 this, we need to be able to do it efficiently, without naive constant
 polling which would be an unreasonable burden on the network. It is
 not expected that all users will be browsing to discover new printers
 all the time, but when a user is browsing to discover service
 instances for an extended period, we want to be able to support that
 operation efficiently.

 Therefore, when retransmitting mDNS queries to implement this kind of
 continuous monitoring, the interval between the first two queries
 MUST be at least one second, the intervals between successive queries
 MUST increase by at least a factor of two, and the querier MUST
 implement Known-Answer Suppression, as described below in

Section 7.1. Known-Answer Suppression indicates to Responders who
 have already replied that their responses have been received, and
 they don't need to send them again in response to this repeated
 query. Failure to implement Known-Answer Suppression can result in
 unacceptable levels of network traffic. When the interval between

Cheshire & Krochmal Expires July 16, 2011 [Page 9]

Internet-Draft Multicast DNS Jan 2011

 queries reaches or exceeds 60 minutes, a querier MAY cap the interval
 to a maximum of 60 minutes, and perform subsequent queries at a
 steady-state rate of one query per hour. To avoid accidental
 synchronization when for some reason multiple clients begin querying
 at exactly the same moment (e.g. because of some common external
 trigger event), a Multicast DNS Querier SHOULD also delay the first
 query of the series by a randomly-chosen amount in the range 20-
 120ms.

 When a Multicast DNS Querier receives an answer, the answer contains
 a TTL value that indicates for how many seconds this answer is valid.
 After this interval has passed, the answer will no longer be valid
 and SHOULD be deleted from the cache. Before this time is reached, a
 Multicast DNS Querier which has local clients with an active interest
 in the state of that record (e.g. a network browsing window
 displaying a list of discovered services to the user) SHOULD re-issue
 its query to determine whether the record is still valid.

 To perform this cache maintenance, a Multicast DNS Querier should
 plan to retransmit its query after at least 50% of the record
 lifetime has elapsed. This document recommends the following specific
 strategy:

 The Querier should plan to issue a query at 80% of the record
 lifetime, and then if no answer is received, at 85%, 90% and 95%. If
 an answer is received, then the remaining TTL is reset to the value
 given in the answer, and this process repeats for as long as the
 Multicast DNS Querier has an ongoing interest in the record. If after
 four queries no answer is received, the record is deleted when it
 reaches 100% of its lifetime. A Multicast DNS Querier MUST NOT
 perform this cache maintenance for records for which it has no local
 clients with an active interest. If the expiry of a particular record
 from the cache would result in no net effect to any client software
 running on the Querier device, and no visible effect to the human
 user, then there is no reason for the Multicast DNS Querier to waste
 network bandwidth checking whether the record remains valid.

 To avoid the case where multiple Multicast DNS Queriers on a network
 all issue their queries simultaneously, a random variation of 2% of
 the record TTL should be added, so that queries are scheduled to be
 performed at 80-82%, 85-87%, 90-92% and then 95-97% of the TTL.

 An additional efficiency optimization SHOULD be performed when a
 Multicast DNS response is received containing a unique answer (as
 indicated by the cache-flush bit being set, described in

Section 10.2, "Announcements to Flush Outdated Cache Entries"). In
 this case, there is no need for the querier to continue issuing a
 stream of queries with exponentially-increasing intervals, since the

Cheshire & Krochmal Expires July 16, 2011 [Page 10]

Internet-Draft Multicast DNS Jan 2011

 receipt of a unique answer is a good indication that no other answers
 will be forthcoming. In this case, the Multicast DNS Querier SHOULD
 plan to issue its next query for this record at 80-82% of the
 record's TTL, as described above.

 A compliant Multicast DNS Querier, which implements the rules
 specified in this document, MUST send its Multicast DNS Queries from
 UDP source port 5353 (the well-known port assigned to mDNS), and MUST
 listen for Multicast DNS Replies sent to UDP destination port 5353 at
 the mDNS multicast address (224.0.0.251 and/or its IPv6 equivalent
 FF02::FB).

5.3. Multiple Questions per Query

 Multicast DNS allows a querier to place multiple questions in the
 Question Section of a single Multicast DNS query packet.

 The semantics of a Multicast DNS query packet containing multiple
 questions is identical to a series of individual DNS query packets
 containing one question each. Combining multiple questions into a
 single packet is purely an efficiency optimization, and has no other
 semantic significance.

5.4. Questions Requesting Unicast Responses

 Sending Multicast DNS responses via multicast has the benefit that
 all the other hosts on the network get to see those responses, and
 can keep their caches up to date, and can detect conflicting
 responses.

 However, there are situations where all the other hosts on the
 network don't need to see every response. Some examples are a laptop
 computer waking from sleep, or the Ethernet cable being connected to
 a running machine, or a previously inactive interface being activated
 through a configuration change. At the instant of wake-up or link
 activation, the machine is a brand new participant on a new network.
 Its Multicast DNS cache for that interface is empty, and it has no
 knowledge of its peers on that link. It may have a significant number
 of questions that it wants answered right away, to discover
 information about its new surroundings and present that information
 to the user. As a new participant on the network, it has no idea
 whether the exact same questions may have been asked and answered
 just seconds ago. In this case, triggering a large sudden flood of
 multicast responses may impose an unreasonable burden on the network.

 To avoid large floods of potentially unnecessary responses in these
 cases, Multicast DNS defines the top bit in the class field of a DNS
 question as the "unicast response" bit. When this bit is set in a

Cheshire & Krochmal Expires July 16, 2011 [Page 11]

Internet-Draft Multicast DNS Jan 2011

 question, it indicates that the Querier is willing to accept unicast
 responses instead of the usual multicast responses. These questions
 requesting unicast responses are referred to as "QU" questions, to
 distinguish them from the more usual questions requesting multicast
 responses ("QM" questions). A Multicast DNS Querier sending its
 initial batch of questions immediately on wake from sleep or
 interface activation SHOULD set the "QU" bit in those questions.

 When a question is retransmitted (as described in Section 5.2) the
 "QU" bit SHOULD NOT be set in subsequent retransmissions of that
 question. Subsequent retransmissions SHOULD be usual "QM" questions.
 After the first question has received its responses, the querier
 should have a large Known-Answer list (Section 7.1) so that
 subsequent queries should elicit few, if any, further responses.
 Reverting to multicast responses as soon as possible is important
 because of the benefits that multicast responses provide (see

Appendix D). In addition, the "QU" bit SHOULD be set only for
 questions that are active and ready to be sent the moment of wake
 from sleep or interface activation. New questions created by local
 clients afterwards should be treated as normal "QM" questions and
 SHOULD NOT have the "QU" bit set on the first question of the series.

 When receiving a question with the "unicast response" bit set, a
 Responder SHOULD usually respond with a unicast packet directed back
 to the querier. However, if the Responder has not multicast that
 record recently (within one quarter of its TTL), then the Responder
 SHOULD instead multicast the response so as to keep all the peer
 caches up to date, and to permit passive conflict detection. In the
 case of answering a probe question (Section 8.1) with the "unicast
 response" bit set, the Responder should always generate the requested
 unicast response, but may also send a multicast announcement too if
 the time since the last multicast announcement of that record is more
 than a quarter of its TTL.

 Unicast replies are subject to all the same packet generation rules
 as multicast replies, including the cache-flush bit (Section 10.2)
 and (except when defending a unique name against a probe from another
 host) randomized delays to reduce network collisions (Section 6).

5.5. Direct Unicast Queries to port 5353

 In specialized applications there may be rare situations where it
 makes sense for a Multicast DNS Querier to send its query via unicast
 to a specific machine. When a Multicast DNS Responder receives a
 query via direct unicast, it SHOULD respond as it would for a "QU"
 query, as described above in Section 5.4. Since it is possible for a
 unicast query to be received from a machine outside the local link,
 Responders SHOULD check that the source address in the query packet

Cheshire & Krochmal Expires July 16, 2011 [Page 12]

Internet-Draft Multicast DNS Jan 2011

 matches the local subnet for that link (or, in the case of IPv6, the
 source address has an on-link prefix) and silently ignore the packet
 if not.

 There may be specialized situations, outside the scope of this
 document, where it is intended and desirable to create a Responder
 that does answer queries originating outside the local link. Such a
 Responder would need to ensure that these non-local queries are
 always answered via unicast back to the Querier, since an answer sent
 via link-local multicast would not reach a Querier outside the local
 link.

6. Responding

 When a Multicast DNS Responder constructs and sends a Multicast DNS
 response packet, the Resource Record Sections of that packet must
 contain only records for which that Responder is explicitly
 authoritative. These answers may be generated because the record
 answers a question received in a Multicast DNS query packet, or at
 certain other times that the Responder determines than an unsolicited
 announcement is warranted. A Multicast DNS Responder MUST NOT place
 records from its cache, which have been learned from other Responders
 on the network, in the Resource Record Sections of outgoing response
 packets. Only an authoritative source for a given record is allowed
 to issue responses containing that record.

 The determination of whether a given record answers a given question
 is done using the standard DNS rules: The record name must match the
 question name, the record rrtype must match the question qtype unless
 the qtype is "ANY" (255) or the rrtype is "CNAME" (5), and the record
 rrclass must match the question qclass unless the qclass is "ANY"
 (255). As with unicast DNS, generally only DNS class 1 ("Internet")
 is used, but should client software use classes other than 1 the
 matching rules described above MUST be used.

 A Multicast DNS Responder MUST only respond when it has a positive
 non-null response to send, or it authoritatively knows that a
 particular record does not exist. For unique records, where the host
 has already established sole ownership of the name, it MUST return
 negative answers to queries for records that it knows not to exist.
 For example, a host with no IPv6 address, that has claimed sole
 ownership of the name "host.local." for all rrtypes, MUST respond to
 AAAA queries for "host.local." by sending a negative answer
 indicating that no AAAA records exist for that name. See Section 6.1
 "Negative Responses". For shared records, which are owned by no
 single host, the nonexistence of a given record is ascertained by the
 failure of any machine to respond to the Multicast DNS query, not by

Cheshire & Krochmal Expires July 16, 2011 [Page 13]

Internet-Draft Multicast DNS Jan 2011

 any explicit negative response. NXDOMAIN and other error responses
 MUST NOT be sent.

 Multicast DNS Responses MUST NOT contain any questions in the
 Question Section. Any questions in the Question Section of a received
 Multicast DNS Response MUST be silently ignored. Multicast DNS
 Queriers receiving Multicast DNS Responses do not care what question
 elicited the response; they care only that the information in the
 response is true and accurate.

 A Multicast DNS Responder on Ethernet [IEEE.802.3] and similar shared
 multiple access networks SHOULD have the capability of delaying its
 responses by up to 500ms, as described below.

 If a large number of Multicast DNS Responders were all to respond
 immediately to a particular query, a collision would be virtually
 guaranteed. By imposing a small random delay, the number of
 collisions is dramatically reduced. On a full-sized Ethernet using
 the maximum cable lengths allowed and the maximum number of repeaters
 allowed, an Ethernet frame is vulnerable to collisions during the
 transmission of its first 256 bits. On 10Mb/s Ethernet, this equates
 to a vulnerable time window of 25.6us. On higher-speed variants of
 Ethernet, the vulnerable time window is shorter.

 In the case where a Multicast DNS Responder has good reason to
 believe that it will be the only Responder on the link that will send
 a response (i.e. because it is able to answer every question in the
 query packet, and for all of those answer records it has previously
 verified that the name, rrtype and rrclass are unique on the link) it
 SHOULD NOT impose any random delay before responding, and SHOULD
 normally generate its response within at most 10ms. In particular,
 this applies to responding to probe queries with the "unicast
 response" bit set. Since receiving a probe query gives a clear
 indication that some other Responder is planning to start using this
 name in the very near future, answering such probe queries to defend
 a unique record is a high priority and needs to be done without
 delay. A probe query can be distinguished from a normal query by the
 fact that a probe query contains a proposed record in the Authority
 Section which answers the question in the Question Section (for more
 details, see Section 8.2, "Simultaneous Probe Tie-Breaking").

 Responding without delay is appropriate for records like the address
 record for a particular host name, when the host name has been
 previously verified unique. Responding without delay is *not*
 appropriate for things like looking up PTR records used for DNS-based
 Service Discovery [DNS-SD], where a large number of responses may be
 anticipated.

Cheshire & Krochmal Expires July 16, 2011 [Page 14]

Internet-Draft Multicast DNS Jan 2011

 In any case where there may be multiple responses, such as queries
 where the answer is a member of a shared resource record set, each
 Responder SHOULD delay its response by a random amount of time
 selected with uniform random distribution in the range 20-120ms. The
 reason for requiring that the delay be at least 20ms is to
 accommodate the situation where two or more query packets are sent
 back-to-back, because in that case we want a Responder with answers
 to more than one of those queries to have the opportunity to
 aggregate all of its answers into a single response packet.

 In the case where the query has the TC (truncated) bit set,
 indicating that subsequent Known-Answer packets will follow,
 Responders SHOULD delay their responses by a random amount of time
 selected with uniform random distribution in the range 400-500ms, to
 allow enough time for all the Known-Answer packets to arrive, as
 described in Section 7.2 "Multi-Packet Known-Answer Suppression".

 The source UDP port in all Multicast DNS Responses MUST be 5353 (the
 well-known port assigned to mDNS). Multicast DNS implementations MUST
 silently ignore any Multicast DNS Responses they receive where the
 source UDP port is not 5353.

 The destination UDP port in all Multicast DNS Responses MUST be 5353
 and the destination address must be the multicast address 224.0.0.251
 or its IPv6 equivalent FF02::FB, except when a unicast response has
 been explicitly requested:

 * via the "unicast response" bit,
 * by virtue of being a Legacy Query (Section 6.7), or
 * by virtue of being a direct unicast query.

 The benefits of sending Responses via multicast are discussed in
Appendix D.

 To protect the network against excessive packet flooding due to
 software bugs or malicious attack, a Multicast DNS Responder MUST NOT
 (except in the one special case of answering probe queries) multicast
 a record on a given interface until at least one second has elapsed
 since the last time that record was multicast on that particular
 interface. A legitimate Querier on the network should have seen the
 previous transmission and cached it. A Querier that did not receive
 and cache the previous transmission will retry its request and
 receive a subsequent response. In the special case of answering probe
 queries, because of the limited time before the probing host will
 make its decision about whether or not to use the name, a Multicast
 DNS Responder MUST respond quickly. In this special case only, when
 responding via multicast to a probe, a Multicast DNS Responder is
 only required to delay its transmission as necessary to ensure an

Cheshire & Krochmal Expires July 16, 2011 [Page 15]

Internet-Draft Multicast DNS Jan 2011

 interval of at least 250ms since the last time the record was
 multicast on that interface.

6.1. Negative Responses

 In the early design of Multicast DNS it was assumed that explicit
 negative responses would never be needed. Hosts can assert the
 existence of the set of records which that host claims to exist, and
 the union of all such sets on a link is the set of Multicast DNS
 records that exist on that link. Asserting the non-existence of every
 record in the complement of that set -- i.e. all possible Multicast
 DNS records that could exist on this link but do not at this moment
 -- was felt to be impractical and unnecessary. The non-existence of a
 record would be ascertained by a Querier querying for it and failing
 to receive a response from any of the hosts currently attached to the
 link.

 However, operational experience showed that explicit negative
 responses can sometimes be valuable. One such example is when a
 Querier is querying for a AAAA record, and the host name in question
 has no associated IPv6 addresses. In this case the responding host
 knows it currently has exclusive ownership of that name, and it knows
 that it currently does not have any IPv6 addresses, so an explicit
 negative response is preferable to the Querier having to retransmit
 its query multiple times and eventually give up with a timeout before
 it can conclude that a given AAAA record does not exist.

 Any time a Responder receives a query for a name for which it has
 verified exclusive ownership, for a type for which that name has no
 records, the Responder MUST (except as allowed in (a) below) respond
 asserting the nonexistence of that record using a DNS NSEC record
 [RFC4034]. In the case of Multicast DNS the NSEC record is not being
 used for its usual DNSSEC [RFC4033] security properties, but simply
 as a way of expressing which records do or do not exist with a given
 name.

 On receipt of a question for a particular name/rrtype/rrclass for
 which a Responder does have one or more unique answers, the Responder
 MAY also include an NSEC record in the additional section indicating
 the non-existence of other rrtypes for that name.

 Implementers working with devices with sufficient memory and CPU
 resources MAY choose to implement code to handle the full generality
 of the DNS NSEC record [RFC4034], including bitmaps up to 65,536 bits
 long. To facilitate use by devices with limited memory and CPU
 resources, Multicast DNS Queriers are only REQUIRED to be able to
 parse a restricted form of the DNS NSEC record. All compliant
 Multicast DNS implementations MUST at least correctly generate and

https://datatracker.ietf.org/doc/html/rfc4034
https://datatracker.ietf.org/doc/html/rfc4033
https://datatracker.ietf.org/doc/html/rfc4034

Cheshire & Krochmal Expires July 16, 2011 [Page 16]

Internet-Draft Multicast DNS Jan 2011

 parse the restricted DNS NSEC record format described below:

 o The 'Next Domain Name' field contains the record's own name. When
 used with name compression, this means that the 'Next Domain Name'
 field always takes exactly two bytes in the packet.

 o The Type Bit Map block number is 0.

 o The Type Bit Map block length byte is a value in the range 1-32.

 o The Type Bit Map data is 1-32 bytes, as indicated by length byte.

 Because this restricted form of the DNS NSEC record is limited to
 Type Bit Map block number zero, it cannot express the existence of
 rrtypes above 255. Because of this, if a Multicast DNS Responder were
 to have records with rrtypes above 255, it MUST NOT generate these
 restricted-form NSEC records for those names, since to do so would
 imply that the name has no records with rrtypes above 255, which
 would be false. In such cases a Multicast DNS Responder MUST either
 (a) emit no NSEC record for that name, or (b) emit a full NSEC record
 containing the appropriate Type Bit Map block(s) with the correct
 bits set for all the record types that exist. In practice this is not
 a significant limitation, since rrtypes above 255 are not currently
 in widespread use.

 If a Multicast DNS implementation receives an NSEC record where the
 'Next Domain Name' field is not the record's own name, then the
 implementation SHOULD ignore the 'Next Domain Name' field and process
 the remainder of the NSEC record as usual. In Multicast DNS the 'Next
 Domain Name' field is not currently used, but it could be used in a
 future version of this protocol, which is why a Multicast DNS
 implementation MUST NOT reject or ignore an NSEC record it receives
 just because it finds an unexpected value in the 'Next Domain Name'
 field.

 If a Multicast DNS implementation receives an NSEC record containing
 more than one Type Bit Map, or where the Type Bit Map block number is
 not zero, or where the block length is not in the range 1-32, then
 the Multicast DNS implementation MAY silently ignore the entire NSEC
 record. A Multicast DNS implementation MUST NOT ignore an entire
 packet just because that packet contains one or more NSEC record(s)
 that the Multicast DNS implementation cannot parse. This provision is
 to allow future enhancements to the protocol to be introduced in a
 backwards-compatible way that does not break compatibility with older
 Multicast DNS implementations.

 To help differentiate these synthesized NSEC records (generated
 programmatically on-the-fly) from conventional Unicast DNS NSEC

Cheshire & Krochmal Expires July 16, 2011 [Page 17]

Internet-Draft Multicast DNS Jan 2011

 records (which actually exist in a signed DNS zone) the synthesized
 Multicast DNS NSEC records MUST NOT have the 'NSEC' bit set in the
 Type Bit Map, whereas conventional Unicast DNS NSEC records do have
 the 'NSEC' bit set.

 The TTL of the NSEC record indicates the intended lifetime of the
 negative cache entry. In general, the TTL given for an NSEC record
 SHOULD be the same as the TTL that the record would have had, had it
 existed. For example, the TTL for address records in Multicast DNS is
 typically 120 seconds (see Section 10) so the negative cache lifetime
 for an address record that does not exist should also be 120 seconds.

 A Responder MUST only generate negative responses to queries for
 which it has legitimate ownership of the name/rrtype/rrclass in
 question, and can legitimately assert that no record with that name/
 rrtype/rrclass exists. A Responder can assert that a specified rrtype
 does not exist for one of its names if it knows a priori that it has
 exclusive ownership of that name (e.g. names of reverse address
 mapping PTR records, which are derived from IP addresses, which
 should be unique on the local link) or if it previously claimed
 unique ownership of that name using probe queries for rrtype "ANY".
 (If it were to use probe queries for a specific rrtype, then it would
 only own the name for that rrtype, and could not assert that other
 rrtypes do not exist.)

 The design rationale for this mechanism for encoding Negative
 Responses is discussed further in Appendix E.

6.2. Responding to Address Queries

 In Multicast DNS, whenever a Responder places an IPv4 or IPv6 address
 record (rrtype "A" or "AAAA") into a response packet, it SHOULD also
 place the corresponding other address type into the additional
 section, if there is space in the packet.

 This is to provide fate sharing, so that all a device's addresses are
 delivered atomically in a single packet, to reduce the risk that
 packet loss could cause a querier to receive only the IPv4 addresses
 and not the IPv6 addresses, or vice versa.

 In the event that a device has only IPv4 addresses but no IPv6
 addresses, or vice versa, then the appropriate NSEC record SHOULD be
 placed into the additional section, so that queriers can know with
 certainty that the device has no addresses of that kind.

 Some Multicast DNS Responders treat a physical interface with both
 IPv4 and IPv6 address as a single interface with two addresses. Other
 Multicast DNS Responders treat this case as logically two interfaces,

Cheshire & Krochmal Expires July 16, 2011 [Page 18]

Internet-Draft Multicast DNS Jan 2011

 each with one address, but Responders that operate this way MUST NOT
 put the corresponding automatic NSEC records in replies they send
 (i.e. a negative IPv4 assertion in their IPv6 responses, and a
 negative IPv6 assertion in their IPv4 responses) because this would
 cause incorrect operation in Responders on the network that work the
 former way.

6.3. Responding to Multi-Question Queries

 Multicast DNS Responders MUST correctly handle DNS query packets
 containing more than one question, by answering any or all of the
 questions to which they have answers. Unlike single-question queries
 where responding without delay is allowed in appropriate cases, for
 query packets containing more than one question all (non-defensive)
 answers SHOULD be randomly delayed in the range 20-120ms, or 400-
 500ms if the TC (truncated) bit is set. This is because when a query
 packet contains more than one question a Multicast DNS Responder
 cannot generally be certain that other Responders will not also be
 simultaneously generating answers to other questions in that query
 packet. (Answers defending a name, in response to a probe for that
 name, are not subject to this delay rule and are still sent
 immediately.)

6.4. Response Aggregation

 When possible, a Responder SHOULD, for the sake of network
 efficiency, aggregate as many responses as possible into a single
 Multicast DNS response packet. For example, when a Responder has
 several responses it plans to send, each delayed by a different
 interval, then earlier responses SHOULD be delayed by up to an
 additional 500ms if that will permit them to be aggregated with other
 responses scheduled to go out a little later.

6.5. Wildcard Queries (qtype "ANY" and qclass "ANY")

 When responding to queries using qtype "ANY" (255) and/or qclass
 "ANY" (255), a Multicast DNS Responder MUST respond with *ALL* of its
 records that match the query. This is subtly different to how qtype
 "ANY" and qclass "ANY" work in Unicast DNS.

 A common misconception is that a Unicast DNS query for qtype "ANY"
 will elicit a response containing all matching records. This is
 incorrect. If there are any records that match the query, the
 response is required only to contain at least one of them, not
 necessarily all of them.

 This somewhat surprising behavior is commonly seen with caching (i.e.
 "recursive") name servers. If a caching server receives a qtype "ANY"

Cheshire & Krochmal Expires July 16, 2011 [Page 19]

Internet-Draft Multicast DNS Jan 2011

 query for which it has at least one valid answer, it is allowed to
 return only those matching answers it happens to have already in its
 cache, and is not required to reconsult the authoritative name server
 to check if there are any more records that also match the qtype
 "ANY" query.

 For example, one might imagine that a query for qtype "ANY" for name
 "host.example.com" would return both the IPv4 (A) and the IPv6 (AAAA)
 address records for that host. In reality what happens is that it
 depends on the history of what queries have been previously received
 by intervening caching servers. If a caching server has no records
 for "host.example.com" then it will consult another server (usually
 the authoritative name server for the name in question) and in that
 case it will typically return all IPv4 and IPv6 address records. If
 however some other host has recently done a query for qtype "A" for
 name "host.example.com", so that the caching server already has IPv4
 address records for "host.example.com" in its cache, but no IPv6
 address records, then it will return only the IPv4 address records it
 already has cached, and no IPv6 address records.

 Multicast DNS does not share this property that qtype "ANY" and
 qclass "ANY" queries return some undefined subset of the matching
 records. When responding to queries using qtype "ANY" (255) and/or
 qclass "ANY" (255), a Multicast DNS Responder MUST respond with *ALL*
 of its records that match the query.

6.6. Cooperating Multicast DNS Responders

 If a Multicast DNS Responder ("A") observes some other Multicast DNS
 Responder ("B") send a Multicast DNS Response packet containing a
 resource record with the same name, rrtype and rrclass as one of A's
 resource records, but different rdata, then:

 o If A's resource record is intended to be a shared resource record,
 then this is no conflict, and no action is required.

 o If A's resource record is intended to be a member of a unique
 resource record set owned solely by that Responder, then this is a
 conflict and MUST be handled as described in Section 9 "Conflict
 Resolution".

 If a Multicast DNS Responder ("A") observes some other Multicast DNS
 Responder ("B") send a Multicast DNS Response packet containing a
 resource record with the same name, rrtype and rrclass as one of A's
 resource records, and identical rdata, then:

 o If the TTL of B's resource record given in the packet is at least
 half the true TTL from A's point of view, then no action is

Cheshire & Krochmal Expires July 16, 2011 [Page 20]

Internet-Draft Multicast DNS Jan 2011

 required.

 o If the TTL of B's resource record given in the packet is less than
 half the true TTL from A's point of view, then A MUST mark its
 record to be announced via multicast. Queriers receiving the record
 from B would use the TTL given by B, and hence may delete the
 record sooner than A expects. By sending its own multicast response
 correcting the TTL, A ensures that the record will be retained for
 the desired time.

 These rules allow multiple Multicast DNS Responders to offer the same
 data on the network (perhaps for fault tolerance reasons) without
 conflicting with each other.

6.7. Legacy Unicast Responses

 If the source UDP port in a received Multicast DNS Query is not port
 5353, this indicates that the Querier originating the query is a
 simple resolver such as described in Section 5.1 "One-Shot Multicast
 DNS Queries", which does not fully implement all of Multicast DNS. In
 this case, the Multicast DNS Responder MUST send a UDP response
 directly back to the Querier, via unicast, to the query packet's
 source IP address and port. This unicast response MUST be a
 conventional unicast response as would be generated by a conventional
 unicast DNS server; for example, it MUST repeat the query ID and the
 question given in the query packet. In addition, the "cache-flush"
 bit described in Section 10.2 "Announcements to Flush Outdated Cache
 Entries" MUST NOT be set in legacy unicast responses.

 The resource record TTL given in a legacy unicast response SHOULD NOT
 be greater than ten seconds, even if the true TTL of the Multicast
 DNS resource record is higher. This is because Multicast DNS
 Responders that fully participate in the protocol use the cache
 coherency mechanisms described in Section 10 "Resource Record TTL
 Values and Cache Coherency" to update and invalidate stale data. Were
 unicast responses sent to legacy resolvers to use the same high TTLs,
 these legacy resolvers, which do not implement these cache coherency
 mechanisms, could retain stale cached resource record data long after
 it is no longer valid.

Cheshire & Krochmal Expires July 16, 2011 [Page 21]

Internet-Draft Multicast DNS Jan 2011

7. Traffic Reduction

 A variety of techniques are used to reduce the amount of redundant
 traffic on the network.

7.1. Known-Answer Suppression

 When a Multicast DNS Querier sends a query to which it already knows
 some answers, it populates the Answer Section of the DNS query
 message with those answers.

 Generally this applies only to Shared records, not Unique records,
 since if a Multicast DNS Querier already has at least one Unique
 record in its cache then it should not be expecting further different
 answers to this question, since the Unique record(s) it already has
 comprise the complete answer, so it has no reason to be sending the
 query at all. In contrast, having some Shared records in its cache
 does not necessarily imply that a Multicast DNS Querier will not
 receive further answers to this query, and it is in this case that it
 is beneficial to use the Known-Answer list to suppress repeated
 sending of redundant answers that the Querier already knows.

 A Multicast DNS Responder MUST NOT answer a Multicast DNS Query if
 the answer it would give is already included in the Answer Section
 with an RR TTL at least half the correct value. If the RR TTL of the
 answer as given in the Answer Section is less than half of the true
 RR TTL as known by the Multicast DNS Responder, the Responder MUST
 send an answer so as to update the Querier's cache before the record
 becomes in danger of expiration.

 Because a Multicast DNS Responder will respond if the remaining TTL
 given in the Known-Answer list is less than half the true TTL, it is
 superfluous for the Querier to include such records in the Known-
 Answer list. Therefore a Multicast DNS Querier SHOULD NOT include
 records in the Known-Answer list whose remaining TTL is less than
 half their original TTL. Doing so would simply consume space in the
 packet without achieving the goal of suppressing responses, and would
 therefore be a pointless waste of network bandwidth.

 A Multicast DNS Querier MUST NOT cache resource records observed in
 the Known-Answer Section of other Multicast DNS Queries. The Answer
 Section of Multicast DNS Queries is not authoritative. By placing
 information in the Answer Section of a Multicast DNS Query the
 querier is stating that it *believes* the information to be true. It
 is not asserting that the information *is* true. Some of those
 records may have come from other hosts that are no longer on the
 network. Propagating that stale information to other Multicast DNS
 Queriers on the network would not be helpful.

Cheshire & Krochmal Expires July 16, 2011 [Page 22]

Internet-Draft Multicast DNS Jan 2011

7.2. Multi-Packet Known-Answer Suppression

 Sometimes a Multicast DNS Querier will already have too many answers
 to fit in the Known-Answer Section of its query packets. In this
 case, it should issue a Multicast DNS Query containing a question and
 as many Known-Answer records as will fit. It MUST then set the TC
 (Truncated) bit in the header before sending the Query. It MUST then
 immediately follow the packet with another query packet containing no
 questions, and as many more Known-Answer records as will fit. If
 there are still too many records remaining to fit in the packet, it
 again sets the TC bit and continues until all the Known-Answer
 records have been sent.

 A Multicast DNS Responder seeing a Multicast DNS Query with the TC
 bit set defers its response for a time period randomly selected in
 the interval 400-500ms. This gives the Multicast DNS Querier time to
 send additional Known-Answer packets before the Responder responds.
 If the Responder sees any of its answers listed in the Known-Answer
 lists of subsequent packets from the querying host, it MUST delete
 that answer from the list of answers it is planning to give (provided
 that no other host on the network has also issued a query for that
 record and is waiting to receive an answer).

 If the Responder receives additional Known-Answer packets with the TC
 bit set, it SHOULD extend the delay as necessary to ensure a pause of
 400-500ms after the last such packet before it sends its answer. This
 opens the potential risk that a continuous stream of Known-Answer
 packets could, theoretically, prevent a Responder from answering
 indefinitely. In practice answers are never actually delayed
 significantly, and should a situation arise where significant delays
 did happen, that would be a scenario where the network is so
 overloaded that it would be desirable to err on the side of caution.
 The consequence of delaying an answer may be that it takes a user
 longer than usual to discover all the services on the local network;
 in contrast, the consequence of incorrectly answering before all the
 Known-Answer packets have been received would be wasted bandwidth
 sending unnecessary answers on an already overloaded network. In this
 (rare) situation, sacrificing speed to preserve reliable network
 operation is the right trade-off.

7.3. Duplicate Question Suppression

 If a host is planning to transmit (or retransmit) a query, and it
 sees another host on the network send a QM query containing the same
 question, and the Known-Answer Section of that query does not contain
 any records which this host would not also put in its own Known-
 Answer Section, then this host SHOULD treat its own query as having
 been sent. When multiple Queriers on the network are querying for the

Cheshire & Krochmal Expires July 16, 2011 [Page 23]

Internet-Draft Multicast DNS Jan 2011

 same resource records, there is no need for them to all be repeatedly
 asking the same question.

7.4. Duplicate Answer Suppression

 If a host is planning to send an answer, and it sees another host on
 the network send a response packet containing the same answer record,
 and the TTL in that record is not less than the TTL this host would
 have given, then this host SHOULD treat its own answer as having been
 sent, and not also send an identical answer itself. When multiple
 Responders on the network have the same data, there is no need for
 all of them to respond.

 This occurs when a host has received a query, and is delaying its
 response for some pseudo-random interval up to 500ms, as described
 elsewhere in this document, and then, before the host sends its
 response, it sees some other host on the network send a response
 packet containing the same answer record.

 This feature is particularly useful when Multicast DNS Proxy Servers
 are in use, where there could be more than one proxy on the network
 giving Multicast DNS answers on behalf of some other host (e.g.
 because that other host is currently asleep and is not itself
 responding to queries).

Cheshire & Krochmal Expires July 16, 2011 [Page 24]

Internet-Draft Multicast DNS Jan 2011

8. Probing and Announcing on Startup

 Typically a Multicast DNS Responder should have, at the very least,
 address records for all of its active interfaces. Creating and
 advertising an HINFO record on each interface as well can be useful
 to network administrators.

 Whenever a Multicast DNS Responder starts up, wakes up from sleep,
 receives an indication of a network interface "Link Change" event, or
 has any other reason to believe that its network connectivity may
 have changed in some relevant way, it MUST perform the two startup
 steps below: Probing (Section 8.1) and Announcing (Section 8.3).

8.1. Probing

 The first startup step is that for all those resource records that a
 Multicast DNS Responder desires to be unique on the local link, it
 MUST send a Multicast DNS Query asking for those resource records, to
 see if any of them are already in use. The primary example of this is
 a host's address records which map its unique host name to its unique
 IPv4 and/or IPv6 addresses. All Probe Queries SHOULD be done using
 the desired resource record name and class (usually class 1,
 "Internet"), and query type "ANY" (255), to elicit answers for all
 types of records with that name. This allows a single question to be
 used in place of several questions, which is more efficient on the
 network. It also allows a host to verify exclusive ownership of a
 name for all rrtypes, which is desirable in most cases. It would be
 confusing, for example, if one host owned the "A" record for
 "myhost.local.", but a different host owned the "AAAA" record for
 that name.

 The ability to place more than one question in a Multicast DNS Query
 is useful here, because it can allow a host to use a single packet to
 probe for all of its resource records instead of needing a separate
 packet for each. For example, a host can simultaneously probe for
 uniqueness of its "A" record and all its SRV records [DNS-SD] in the
 same query packet.

 When ready to send its mDNS probe packet(s) the host should first
 wait for a short random delay time, uniformly distributed in the
 range 0-250ms. This random delay is to guard against the case where a
 group of devices are powered on simultaneously, or a group of devices
 are connected to an Ethernet hub which is then powered on, or some
 other external event happens that might cause a group of hosts to all
 send synchronized probes.

 250ms after the first query the host should send a second, then 250ms
 after that a third. If, by 250ms after the third probe, no

Cheshire & Krochmal Expires July 16, 2011 [Page 25]

Internet-Draft Multicast DNS Jan 2011

 conflicting Multicast DNS responses have been received, the host may
 move to the next step, announcing. (Note that probing is the one
 exception from the normal rule that there should be at least one
 second between repetitions of the same question, and the interval
 between subsequent repetitions should at least double.)

 When sending probe queries, a host MUST NOT consult its cache for
 potential answers. Only conflicting Multicast DNS responses received
 "live" from the network are considered valid for the purposes of
 determining whether probing has succeeded or failed.

 In order to allow services to announce their presence without
 unreasonable delay, the time window for probing is intentionally set
 quite short. As a result of this, from the time the first probe
 packet is sent, another device on the network using that name has
 just 750ms to respond to defend its name. On networks that are slow,
 or busy, or both, it is possible for round-trip latency to account
 for a few hundred milliseconds, and software delays in slow devices
 can add additional delay. For this reason, it is important that when
 a device receives a probe query for a name that it is currently using
 it SHOULD generate its response to defend that name immediately and
 send it as quickly as possible. The usual rules about random delays
 before responding, to avoid sudden bursts of simultaneous answers
 from different hosts, do not apply here since normally at most one
 host should ever respond to a given probe question. Even when a
 single DNS query packet contains multiple probe questions, it would
 be unusual for that packet to elicit a defensive response from more
 than one other host. Because of the mDNS multicast rate limiting
 rules, the probes SHOULD be sent as "QU" questions with the "unicast
 response" bit set, to allow a defending host to respond immediately
 via unicast, instead of potentially having to wait before replying
 via multicast.

 If during probing, from the time the first probe packet is sent until
 250ms after the third probe, any conflicting Multicast DNS response
 is received, then the probing host MUST defer to the existing host,
 and SHOULD choose new names for some or all of its resource records
 as appropriate. Apparently conflicting Multicast DNS responses
 received *before* the first probe packet is sent MUST be silently
 ignored (see discussion of stale probe packets in Section 8.2
 "Simultaneous Probe Tie-Breaking" below). In the case of a host
 probing using query type "ANY" as recommended above, any answer
 containing a record with that name, of any type, MUST be considered a
 conflicting response and handled accordingly.

 If fifteen conflicts occur within any ten-second period, then the
 host MUST wait at least five seconds before each successive
 additional probe attempt. This is to help ensure that in the event of

Cheshire & Krochmal Expires July 16, 2011 [Page 26]

Internet-Draft Multicast DNS Jan 2011

 software bugs or other unanticipated problems, errant hosts do not
 flood the network with a continuous stream of multicast traffic. For
 very simple devices, a valid way to comply with this requirement is
 to always wait five seconds after any failed probe attempt before
 trying again.

 If a Responder knows by other means that its unique resource record
 set name, rrtype and rrclass cannot already be in use by any other
 Responder on the network, then it SHOULD skip the probing step for
 that resource record set. For example, when creating the reverse
 address mapping PTR records, the host can reasonably assume that no
 other host will be trying to create those same PTR records, since
 that would imply that the two hosts were trying to use the same IP
 address, and if that were the case, the two hosts would be suffering
 communication problems beyond the scope of what Multicast DNS is
 designed to solve. Similarly, if a Responder is acting as a proxy,
 taking over from another Multicast DNS Responder that has already
 verified the uniqueness of the record, then the proxy SHOULD NOT
 repeat the probing step for those records.

8.2. Simultaneous Probe Tie-Breaking

 The astute reader will observe that there is a race condition
 inherent in the previous description. If two hosts are probing for
 the same name simultaneously, neither will receive any response to
 the probe, and the hosts could incorrectly conclude that they may
 both proceed to use the name. To break this symmetry, each host
 populates the Query packets's Authority Section with the record or
 records with the rdata that it would be proposing to use, should its
 probing be successful. The Authority Section is being used here in a
 way analogous to the way it is used as the "Update Section" in a DNS
 Update packet [RFC2136].

 When a host is probing for a group of related records with the same
 name (e.g. the SRV and TXT record describing a DNS-SD service), only
 a single question need be placed in the Question Section, since query
 type "ANY" (255) is used, which will elicit answers for all records
 with that name. However, for tie-breaking to work correctly in all
 cases, the Authority Section must contain *all* the records and
 proposed rdata being probed for uniqueness.

 When a host that is probing for a record sees another host issue a
 query for the same record, it consults the Authority Section of that
 query. If it finds any resource record(s) there which answers the
 query, then it compares the data of that (those) resource record(s)
 with its own tentative data. We consider first the simple case of a
 host probing for a single record, receiving a simultaneous probe from
 another host also probing for a single record. The two records are

https://datatracker.ietf.org/doc/html/rfc2136

Cheshire & Krochmal Expires July 16, 2011 [Page 27]

Internet-Draft Multicast DNS Jan 2011

 compared and the lexicographically later data wins. This means that
 if the host finds that its own data is lexicographically later, it
 simply ignores the other host's probe. If the host finds that its own
 data is lexicographically earlier, then it defers to the winning host
 by waiting one second, and then begins probing for this record again.
 The logic for waiting one second and then trying again is to guard
 against stale probe packets on the network (possibly even stale probe
 packets sent moments ago by this host itself, before some
 configuration change, which may be echoed back after a short delay by
 some Ethernet switches and some 802.11 base stations). If the winning
 simultaneous probe was from a real other host on the network, then
 after one second it will have completed its probing, and will answer
 subsequent probes. If the apparently winning simultaneous probe was
 in fact just an old stale packet on the network (maybe from the host
 itself), then when it retries its probing in one second, its probes
 will go unanswered, and it will successfully claim the name.

 The determination of "lexicographically later" is performed by first
 comparing the record class (excluding the cache-flush bit described
 in Section 10.2), then the record type, then raw comparison of the
 binary content of the rdata without regard for meaning or structure.
 If the record classes differ, then the numerically greater class is
 considered "lexicographically later". Otherwise, if the record types
 differ, then the numerically greater type is considered
 "lexicographically later". If the rrtype and rrclass both match then
 the rdata is compared.

 In the case of resource records containing rdata that is subject to
 name compression [RFC1035], the names MUST be uncompressed before
 comparison. (The details of how a particular name is compressed is an
 artifact of how and where the record is written into the DNS message;
 it is not an intrinsic property of the resource record itself.)

 The bytes of the raw uncompressed rdata are compared in turn,
 interpreting the bytes as eight-bit UNSIGNED values, until a byte is
 found whose value is greater than that of its counterpart (in which
 case the rdata whose byte has the greater value is deemed
 lexicographically later) or one of the resource records runs out of
 rdata (in which case the resource record which still has remaining
 data first is deemed lexicographically later). The following is an
 example of a conflict:

 MyPrinter.local. A 169.254.99.200
 MyPrinter.local. A 169.254.200.50

 In this case 169.254.200.50 is lexicographically later (the third
 byte, with value 200, is greater than its counterpart with value 99),
 so it is deemed the winner.

https://datatracker.ietf.org/doc/html/rfc1035

Cheshire & Krochmal Expires July 16, 2011 [Page 28]

Internet-Draft Multicast DNS Jan 2011

 Note that it is vital that the bytes are interpreted as UNSIGNED
 values in the range 0-255, or the wrong outcome may result. In the
 example above, if the byte with value 200 had been incorrectly
 interpreted as a signed eight-bit value then it would be interpreted
 as value -56, and the wrong address record would be deemed the
 winner.

8.2.1. Simultaneous Probe Tie-Breaking for Multiple Records

 When a host is probing for a set of records with the same name, or a
 packet is received containing multiple tie-breaker records answering
 a given probe question in the Question Section, the host's records
 and the tie-breaker records from the packet are each sorted into
 order, and then compared pairwise, using the same comparison
 technique described above, until a difference is found.

 The records are sorted using the same lexicographical order as
 described above, that is: if the record classes differ, the record
 with the lower class number comes first. If the classes are the same
 but the rrtypes differ, the record with the lower rrtype number comes
 first. If the class and rrtype match, then the rdata is compared
 bytewise until a difference is found. For example, in the common case
 of advertising DNS-SD services with a TXT record and an SRV record,
 the TXT record comes first (the rrtype value for TXT is 16) and the
 SRV record comes second (the rrtype value for SRV is 33).

 When comparing the records, if the first records match perfectly,
 then the second records are compared, and so on. If either list of
 records runs out of records before any difference is found, then the
 list with records remaining is deemed to have won the tie-break. If
 both lists run out of records at the same time without any difference
 being found, then this indicates that two devices are advertising
 identical sets of records, as is sometimes done for fault tolerance,
 and there is in fact no conflict.

8.3. Announcing

 The second startup step is that the Multicast DNS Responder MUST send
 an unsolicited Multicast DNS Response containing, in the Answer
 Section, all of its newly registered resource records (both shared
 records, and unique records that have completed the probing step). If
 there are too many resource records to fit in a single packet,
 multiple packets should be used.

 In the case of shared records (e.g. the PTR records used by DNS-based
 Service Discovery [DNS-SD]), the records are simply placed as-is into
 the Answer Section of the DNS Response.

Cheshire & Krochmal Expires July 16, 2011 [Page 29]

Internet-Draft Multicast DNS Jan 2011

 In the case of records that have been verified to be unique in the
 previous step, they are placed into the Answer Section of the DNS
 Response with the most significant bit of the rrclass set to one. The
 most significant bit of the rrclass for a record in the Answer
 Section of a response packet is the mDNS "cache-flush" bit and is
 discussed in more detail below in Section 10.2 "Announcements to
 Flush Outdated Cache Entries".

 The Multicast DNS Responder MUST send at least two unsolicited
 responses, one second apart. To provide increased robustness against
 packet loss a Responder MAY send up to eight unsolicited Responses,
 provided that the interval between unsolicited responses increases by
 at least a factor of two with every response sent.

 A Multicast DNS Responder MUST NOT send announcements in the absence
 of information that its network connectivity may have changed in some
 relevant way. In particular, a Multicast DNS Responder MUST NOT send
 regular periodic announcements as a matter of course.

 Whenever a Multicast DNS Responder receives any Multicast DNS
 response (solicited or otherwise) containing a conflicting resource
 record, the conflict MUST be resolved as described in Section 9
 "Conflict Resolution".

8.4. Updating

 At any time, if the rdata of any of a host's Multicast DNS records
 changes, the host MUST repeat the Announcing step described above to
 update neighboring caches. For example, if any of a host's IP
 addresses change, it MUST re-announce those address records. The host
 does not need to repeat the Probing step because it has already
 established unique ownership of that name.

 In the case of shared records, a host MUST send a "goodbye"
 announcement with RR TTL zero (see Section 10.1 "Goodbye Packets")
 for the old rdata, to cause it to be deleted from peer caches, before
 announcing the new rdata. In the case of unique records, a host
 SHOULD omit the "goodbye" announcement, since the cache-flush bit on
 the newly announced records will cause old rdata to be flushed from
 peer caches anyway.

 A host may update the contents of any of its records at any time,
 though a host SHOULD NOT update records more frequently than ten
 times per minute. Frequent rapid updates impose a burden on the
 network. If a host has information to disseminate which changes more
 frequently than ten times per minute, then it may be more appropriate
 to design a protocol for that specific purpose.

Cheshire & Krochmal Expires July 16, 2011 [Page 30]

Internet-Draft Multicast DNS Jan 2011

9. Conflict Resolution

 A conflict occurs when a Multicast DNS Responder has a unique record
 for which it is currently authoritative, and it receives a Multicast
 DNS response packet containing a record with the same name, rrtype
 and rrclass, but inconsistent rdata. What may be considered
 inconsistent is context sensitive, except that resource records with
 identical rdata are never considered inconsistent, even if they
 originate from different hosts. This is to permit use of proxies and
 other fault-tolerance mechanisms that may cause more than one
 Responder to be capable of issuing identical answers on the network.

 A common example of a resource record type that is intended to be
 unique, not shared between hosts, is the address record that maps a
 host's name to its IP address. Should a host witness another host
 announce an address record with the same name but a different IP
 address, then that is considered inconsistent, and that address
 record is considered to be in conflict.

 Whenever a Multicast DNS Responder receives any Multicast DNS
 response (solicited or otherwise) containing a conflicting resource
 record in any of the Resource Record Sections, the Multicast DNS
 Responder MUST immediately reset its conflicted unique record to
 probing state, and go through the startup steps described above in

Section 8, "Probing and Announcing on Startup". The protocol used in
 the Probing phase will determine a winner and a loser, and the loser
 MUST cease using the name, and reconfigure.

 It is very important that any host receiving a resource record that
 conflicts with one of its own MUST take action as described above. In
 the case of two hosts using the same host name, where one has been
 configured to require a unique host name and the other has not, the
 one that has not been configured to require a unique host name will
 not perceive any conflict, and will not take any action. By reverting
 to Probing state, the host that desires a unique host name will go
 through the necessary steps to ensure that a unique host name is
 obtained.

 The recommended course of action after probing and failing is as
 follows:

 1. Programmatically change the resource record name in an attempt to
 find a new name that is unique. This could be done by adding some
 further identifying information (e.g. the model name of the
 hardware) if it is not already present in the name, or appending
 the digit "2" to the name, or incrementing a number at the end of
 the name if one is already present.

Cheshire & Krochmal Expires July 16, 2011 [Page 31]

Internet-Draft Multicast DNS Jan 2011

 2. Probe again, and repeat as necessary until a unique name is found.

 3. Once an available unique name has been determined, by probing
 without receiving any conflicting response, record this newly
 chosen name in persistent storage so that the device will use the
 same name the next time it is power-cycled.

 4. Display a message to the user or operator informing them of the
 name change. For example:

 The name "Bob's Music" is in use by another music
 server on the network. Your music has been renamed to
 "Bob's Music (2)". If you want to change this name, use
 [describe appropriate menu item or preference dialog here].

 The details of how the user or operator is informed of the new
 name depends on context. A desktop computer with a screen might
 put up a dialog box. A headless server in the closet may write a
 message to a log file, or use whatever mechanism (email, SNMP
 trap, etc.) it uses to inform the administrator of error
 conditions. On the other hand a headless server in the closet may
 not inform the user at all -- if the user cares, they will notice
 the name has changed, and connect to the server in the usual way
 (e.g. via web browser) to configure a new name.

 5. If after one minute of probing the Multicast DNS Responder has
 been unable to find any unused name, it should log an error
 message to inform the user or operator of this fact. This
 situation should never occur in normal operation. The only
 situations that would cause this to happen would be either a
 deliberate denial-of-service attack, or some kind of very obscure
 hardware or software bug that acts like a deliberate denial-of-
 service attack.

 These considerations apply to address records (i.e. host names) and
 to all resource records where uniqueness (or maintenance of some
 other defined constraint) is desired.

Cheshire & Krochmal Expires July 16, 2011 [Page 32]

Internet-Draft Multicast DNS Jan 2011

10. Resource Record TTL Values and Cache Coherency

 As a general rule, the recommended TTL value for Multicast DNS
 resource records with a host name as the resource record's name (e.g.
 A, AAAA, HINFO, etc.) or a host name contained within the resource
 record's rdata (e.g. SRV, reverse mapping PTR record, etc.) SHOULD be
 120 seconds.

 The recommended TTL value for other Multicast DNS resource records is
 75 minutes.

 A Querier with an active outstanding query will issue a query packet
 when one or more of the resource record(s) in its cache is (are) 80%
 of the way to expiry. If the TTL on those records is 75 minutes, this
 ongoing cache maintenance process yields a steady-state query rate of
 one query every 60 minutes.

 Any distributed cache needs a cache coherency protocol. If Multicast
 DNS resource records follow the recommendation and have a TTL of 75
 minutes, that means that stale data could persist in the system for a
 little over an hour. Making the default RR TTL significantly lower
 would reduce the lifetime of stale data, but would produce too much
 extra traffic on the network. Various techniques are available to
 minimize the impact of such stale data, outlined in the five
 subsections below:

10.1. Goodbye Packets

 In the case where a host knows that certain resource record data is
 about to become invalid (for example when the host is undergoing a
 clean shutdown) the host SHOULD send an unsolicited mDNS response
 packet, giving the same resource record name, rrtype, rrclass and
 rdata, but an RR TTL of zero. This has the effect of updating the TTL
 stored in neighboring hosts' cache entries to zero, causing that
 cache entry to be promptly deleted.

 Queriers receiving a Multicast DNS Response with a TTL of zero SHOULD
 NOT immediately delete the record from the cache, but instead record
 a TTL of 1 and then delete the record one second later. In the case
 of multiple Multicast DNS Responders on the network described in

Section 6.6 above, if one of the Responders shuts down and
 incorrectly sends goodbye packets for its records, it gives the other
 cooperating Responders one second to send out their own response to
 "rescue" the records before they expire and are deleted.

Cheshire & Krochmal Expires July 16, 2011 [Page 33]

Internet-Draft Multicast DNS Jan 2011

10.2. Announcements to Flush Outdated Cache Entries

 Whenever a host has a resource record with new data, or with what
 might potentially be new data (e.g. after rebooting, waking from
 sleep, connecting to a new network link, changing IP address, etc.),
 the host needs to inform peers of that new data. In cases where the
 host has not been continuously connected and participating on the
 network link, it MUST first Probe to re-verify uniqueness of its
 unique records, as described above in Section 8.1 "Probing".

 Having completed the Probing step if necessary, the host MUST then
 send a series of unsolicited announcements to update cache entries in
 its neighbor hosts. In these unsolicited announcements, if the record
 is one that has been verified unique, the host sets the most
 significant bit of the rrclass field of the resource record. This
 bit, the "cache-flush" bit, tells neighboring hosts that this is not
 a shared record type. Instead of merging this new record additively
 into the cache in addition to any previous records with the same
 name, rrtype and rrclass, all old records with that name, type and
 class that were received more than one second ago are declared
 invalid, and marked to expire from the cache in one second.

 The semantics of the cache-flush bit are as follows: Normally when a
 resource record appears in a Resource Record Section of the DNS
 Response, it means, "This is an assertion that this information is
 true." When a resource record appears in a Resource Record Section of
 the DNS Response with the "cache-flush" bit set, it means, "This is
 an assertion that this information is the truth and the whole truth,
 and anything you may have heard more than a second ago regarding
 records of this name/rrtype/rrclass is no longer true".

 To accommodate the case where the set of records from one host
 constituting a single unique RRSet is too large to fit in a single
 packet, only cache records that are more than one second old are
 flushed. This allows the announcing host to generate a quick burst of
 packets back-to-back on the wire containing all the members of the
 RRSet. When receiving records with the "cache-flush" bit set, all
 records older than one second are marked to be deleted one second in
 the future. One second after the end of the little packet burst, any
 records not represented within that packet burst will then be expired
 from all peer caches.

 Any time a host sends a response packet containing some members of a
 unique RRSet, it MUST send the entire RRSet, preferably in a single
 packet, or if the entire RRSet will not fit in a single packet, in a
 quick burst of packets sent as close together as possible. The host
 MUST set the cache-flush bit on all members of the unique RRSet.

Cheshire & Krochmal Expires July 16, 2011 [Page 34]

Internet-Draft Multicast DNS Jan 2011

 Another reason for waiting one second before deleting stale records
 from the cache is to accommodate bridged networks. For example, a
 host's address record announcement on a wireless interface may be
 bridged onto a wired Ethernet, and cause that same host's Ethernet
 address records to be flushed from peer caches. The one-second delay
 gives the host the chance to see its own announcement arrive on the
 wired Ethernet, and immediately re-announce its Ethernet interface's
 address records so that both sets remain valid and live in peer
 caches.

 These rules, about when to set the cache-flush bit and about sending
 the entire rrset, apply regardless of *why* the response packet is
 being generated. They apply to startup announcements as described in

Section 8.3 "Announcing", and to responses generated as a result of
 receiving query packets.

 The "cache-flush" bit is only set in records in the Resource Record
 Sections of Multicast DNS responses sent to UDP port 5353.

 The "cache-flush" bit MUST NOT be set in any resource records in a
 response packet sent in legacy unicast responses to UDP ports other
 than 5353.

 The "cache-flush" bit MUST NOT be set in any resource records in the
 Known-Answer list of any query packet.

 The "cache-flush" bit MUST NOT ever be set in any shared resource
 record. To do so would cause all the other shared versions of this
 resource record with different rdata from different Responders to be
 immediately deleted from all the caches on the network.

 The "cache-flush" bit does *not* apply to questions listed in the
 Question Section of a Multicast DNS packet. The top bit of the
 rrclass field in questions is used for an entirely different purpose
 (see Section 5.4, "Questions Requesting Unicast Responses").

 Note that the "cache-flush" bit is NOT part of the resource record
 class. The "cache-flush" bit is the most significant bit of the
 second 16-bit word of a resource record in a Resource Record Section
 of an mDNS packet (the field conventionally referred to as the
 rrclass field), and the actual resource record class is the least-
 significant fifteen bits of this field. There is no mDNS resource
 record class 0x8001. The value 0x8001 in the rrclass field of a
 resource record in an mDNS response packet indicates a resource
 record with class 1, with the "cache-flush" bit set. When receiving a
 resource record with the "cache-flush" bit set, implementations
 should take care to mask off that bit before storing the resource
 record in memory, or otherwise ensure that it is given the correct

Cheshire & Krochmal Expires July 16, 2011 [Page 35]

Internet-Draft Multicast DNS Jan 2011

 semantic interpretation.

 The re-use of the top bit of the rrclass field only applies to
 conventional Resource Record types that are subject to caching, not
 to pseudo-RRs like OPT [RFC2671], TSIG [RFC2845], TKEY [RFC2930],
 SIG0 [RFC2931], etc., that pertain only to a particular transport
 level message and not to any actual DNS data. Since pseudo-RRs should
 never go into the mDNS cache, the concept of a "cache-flush" bit for
 these types is not applicable. In particular the rrclass field of an
 OPT records encodes the sender's UDP payload size, and should be
 interpreted as a 16-bit length value in the range 0-65535, not a one-
 bit flag and a 15-bit length.

10.3. Cache Flush on Topology change

 If the hardware on a given host is able to indicate physical changes
 of connectivity, then when the hardware indicates such a change, the
 host should take this information into account in its mDNS cache
 management strategy. For example, a host may choose to immediately
 flush all cache records received on a particular interface when that
 cable is disconnected. Alternatively, a host may choose to adjust the
 remaining TTL on all those records to a few seconds so that if the
 cable is not reconnected quickly, those records will expire from the
 cache.

 Likewise, when a host reboots, or wakes from sleep, or undergoes some
 other similar discontinuous state change, the cache management
 strategy should take that information into account.

10.4. Cache Flush on Failure Indication

 Sometimes a cache record can be determined to be stale when a client
 attempts to use the rdata it contains, and finds that rdata to be
 incorrect.

 For example, the rdata in an address record can be determined to be
 incorrect if attempts to contact that host fail, either because (for
 an IPv4 address on a local subnet) ARP requests for that address go
 unanswered, because (for an IPv6 address with an on-link prefix) ND
 requests for that address go unanswered, or because (for an address
 on a remote network) a router returns an ICMP "Host Unreachable"
 error.

 The rdata in an SRV record can be determined to be incorrect if
 attempts to communicate with the indicated service at the host and
 port number indicated are not successful.

 The rdata in a DNS-SD PTR record can be determined to be incorrect if

https://datatracker.ietf.org/doc/html/rfc2671
https://datatracker.ietf.org/doc/html/rfc2845
https://datatracker.ietf.org/doc/html/rfc2930
https://datatracker.ietf.org/doc/html/rfc2931

Cheshire & Krochmal Expires July 16, 2011 [Page 36]

Internet-Draft Multicast DNS Jan 2011

 attempts to look up the SRV record it references are not successful.

 In any such case, the software implementing the mDNS resource record
 cache should provide a mechanism so that clients detecting stale
 rdata can inform the cache.

 When the cache receives this hint that it should reconfirm some
 record, it MUST issue two or more queries for the resource record in
 question. If no response is received within ten seconds, then, even
 though its TTL may indicate that it is not yet due to expire, that
 record SHOULD be promptly flushed from the cache.

 The end result of this is that if a printer suffers a sudden power
 failure or other abrupt disconnection from the network, its name may
 continue to appear in DNS-SD browser lists displayed on users'
 screens. Eventually that entry will expire from the cache naturally,
 but if a user tries to access the printer before that happens, the
 failure to successfully contact the printer will trigger the more
 hasty demise of its cache entries. This is a sensible trade-off
 between good user-experience and good network efficiency. If we were
 to insist that printers should disappear from the printer list within
 30 seconds of becoming unavailable, for all failure modes, the only
 way to achieve this would be for the client to poll the printer at
 least every 30 seconds, or for the printer to announce its presence
 at least every 30 seconds, both of which would be an unreasonable
 burden on most networks.

10.5. Passive Observation of Failures (POOF)

 A host observes the multicast queries issued by the other hosts on
 the network. One of the major benefits of also sending responses
 using multicast is that it allows all hosts to see the responses (or
 lack thereof) to those queries.

 If a host sees queries, for which a record in its cache would be
 expected to be given as an answer in a multicast response, but no
 such answer is seen, then the host may take this as an indication
 that the record may no longer be valid.

 After seeing two or more of these queries, and seeing no multicast
 response containing the expected answer within ten seconds, then even
 though its TTL may indicate that it is not yet due to expire, that
 record SHOULD be flushed from the cache. The host SHOULD NOT perform
 its own queries to re-confirm that the record is truly gone. If every
 host on a large network were to do this, it would cause a lot of
 unnecessary multicast traffic. If host A sends multicast queries that
 remain unanswered, then there is no reason to suppose that host B or
 any other host is likely to be any more successful.

Cheshire & Krochmal Expires July 16, 2011 [Page 37]

Internet-Draft Multicast DNS Jan 2011

 The previous section, "Cache Flush on Failure Indication", describes
 a situation where a user trying to print discovers that the printer
 is no longer available. By implementing the passive observation
 described here, when one user fails to contact the printer, all hosts
 on the network observe that failure and update their caches
 accordingly.

11. Source Address Check

 All Multicast DNS responses (including responses sent via unicast)
 SHOULD be sent with IP TTL set to 255. This is recommended to provide
 backwards-compatibility with older Multicast DNS Queriers
 (implementing draft-cheshire-dnsext-multicastdns-04.txt, published
 February 2004) that check the IP TTL on reception to determine
 whether the packet originated on the local link. These older Queriers
 discard all packets with TTLs other than 255.

 A host sending Multicast DNS queries to a link-local destination
 address (including the 224.0.0.251 and FF02::FB link-local multicast
 addresses) MUST only accept responses to that query that originate
 from the local link, and silently discard any other response packets.
 Without this check, it could be possible for remote rogue hosts to
 send spoof answer packets (perhaps unicast to the victim host) which
 the receiving machine could misinterpret as having originated on the
 local link.

 The test for whether a response originated on the local link is done
 in two ways:

 * All responses received with a destination address in the IP header
 which is the link-local multicast address 224.0.0.251 or FF02::FB
 are necessarily deemed to have originated on the local link,
 regardless of source IP address. This is essential to allow devices
 to work correctly and reliably in unusual configurations, such as
 multiple logical IP subnets overlayed on a single link, or in cases
 of severe misconfiguration, where devices are physically connected
 to the same link, but are currently misconfigured with completely
 unrelated IP addresses and subnet masks.

 * For responses received with a unicast destination address in the IP
 header, the source IP address in the packet is checked to see if it
 is an address on a local subnet. An IPv4 source address is
 determined to be on a local subnet if, for (one of) the address(es)
 configured on the interface receiving the packet, (I & M) == (P &
 M), where I and M are the interface address and subnet mask
 respectively, P is the source IP address from the packet, '&'
 represents the bitwise logical 'and' operation, and '==' represents

https://datatracker.ietf.org/doc/html/draft-cheshire-dnsext-multicastdns-04.txt

Cheshire & Krochmal Expires July 16, 2011 [Page 38]

Internet-Draft Multicast DNS Jan 2011

 a bitwise equality test. An IPv6 source address is determined to be
 on the local link if, for any of the on-link IPv6 prefixes on the
 interface receiving the packet (learned via IPv6 router
 advertisements or otherwise configured on the host), the first 'n'
 bits of the IPv6 source address match the first 'n' bits of the
 prefix address, where 'n' is the length of the prefix being
 considered.

 Since queriers will ignore responses apparently originating outside
 the local subnet, a Responder SHOULD avoid generating responses that
 it can reasonably predict will be ignored. This applies particularly
 in the case of overlayed subnets. If a Responder receives a query
 addressed to the link-local multicast address 224.0.0.251, from a
 source address not apparently on the same subnet as the Responder
 (or, in the case of IPv6, from a source IPv6 address for which the
 Responder does not have any address with the same prefix on that
 interface) then even if the query indicates that a unicast response
 is preferred (see Section 5.4, "Questions Requesting Unicast
 Responses"), the Responder SHOULD elect to respond by multicast
 anyway, since it can reasonably predict that a unicast response with
 an apparently non-local source address will probably be ignored.

12. Special Characteristics of Multicast DNS Domains

 Unlike conventional DNS names, names that end in ".local." have only
 local significance. The same is true of names within the IPv4 Link-
 Local reverse mapping domain "254.169.in-addr.arpa." and the IPv6
 Link-Local reverse mapping domains "8.e.f.ip6.arpa.",
 "9.e.f.ip6.arpa.", "a.e.f.ip6.arpa.", and "b.e.f.ip6.arpa."

 These names function primarily as protocol identifiers, rather than
 as user-visible identifiers. Even though they may occasionally be
 visible to end users, that is not their primary purpose. As such
 these names should be treated as opaque identifiers. In particular,
 the string "local" should not be translated or localized into
 different languages, much as the name "localhost" is not translated
 or localized into different languages.

 Conventional Unicast DNS seeks to provide a single unified namespace,
 where a given DNS query yields the same answer no matter where on the
 planet it is performed or to which recursive DNS server the query is
 sent. In contrast, each IP link has its own private ".local.",
 "254.169.in-addr.arpa." and IPv6 Link-Local reverse mapping
 namespaces, and the answer to any query for a name within those
 domains depends on where that query is asked. (This characteristic is
 not unique to Multicast DNS. Although the original concept of DNS was
 a single global namespace, in recent years split views, firewalls,

Cheshire & Krochmal Expires July 16, 2011 [Page 39]

Internet-Draft Multicast DNS Jan 2011

 intranets, and the like have increasingly meant that the answer to a
 given DNS query has become dependent on the location of the querier.)

 The IPv4 name server address for a Multicast DNS Domain is
 224.0.0.251. The IPv6 name server address for a Multicast DNS Domain
 is FF02::FB. These are multicast addresses; therefore they identify
 not a single host but a collection of hosts, working in cooperation
 to maintain some reasonable facsimile of a competently managed DNS
 zone. Conceptually a Multicast DNS Domain is a single DNS zone,
 however its server is implemented as a distributed process running on
 a cluster of loosely cooperating CPUs rather than as a single process
 running on a single CPU.

 Multicast DNS Domains are not delegated from their parent domain via
 use of NS (Name Server) records, and there is also no concept of
 delegation of subdomains within a Multicast DNS Domain. Just because
 a particular host on the network may answer queries for a particular
 record type with the name "example.local." does not imply anything
 about whether that host will answer for the name
 "child.example.local.", or indeed for other record types with the
 name "example.local."

 There are no NS records anywhere in Multicast DNS Domains. Instead,
 the Multicast DNS Domains are reserved by IANA and there is
 effectively an implicit delegation of all Multicast DNS Domains to
 the 224.0.0.251:5353 and [FF02::FB]:5353 multicast groups, by virtue
 of client software implementing the protocol rules specified in this
 document.

 Multicast DNS Zones have no SOA (Start of Authority) record. A
 conventional DNS zone's SOA record contains information such as the
 email address of the zone administrator and the monotonically
 increasing serial number of the last zone modification. There is no
 single human administrator for any given Multicast DNS Zone, so there
 is no email address. Because the hosts managing any given Multicast
 DNS Zone are only loosely coordinated, there is no readily available
 monotonically increasing serial number to determine whether or not
 the zone contents have changed. A host holding part of the shared
 zone could crash or be disconnected from the network at any time
 without informing the other hosts. There is no reliable way to
 provide a zone serial number that would, whenever such a crash or
 disconnection occurred, immediately change to indicate that the
 contents of the shared zone had changed.

 Zone transfers are not possible for any Multicast DNS Zone.

Cheshire & Krochmal Expires July 16, 2011 [Page 40]

Internet-Draft Multicast DNS Jan 2011

13. Enabling and Disabling Multicast DNS

 The option to fail-over to Multicast DNS for names not ending in
 ".local." SHOULD be a user-configured option, and SHOULD be disabled
 by default because of the possible security issues related to
 unintended local resolution of apparently global names. Enabling
 Multicast DNS for names not ending in ".local." may be appropriate on
 a secure isolated network, or on some future network were machines
 exclusively use DNSSEC for all DNS queries, and have Multicast DNS
 responders capable of generating the appropriate cryptographic DNSSEC
 signatures, thereby guarding against spoofing.

 The option to lookup unqualified (relative) names by appending
 ".local." (or not) is controlled by whether ".local." appears (or
 not) in the client's DNS search list.

 No special control is needed for enabling and disabling Multicast DNS
 for names explicitly ending with ".local." as entered by the user.
 The user doesn't need a way to disable Multicast DNS for names ending
 with ".local.", because if the user doesn't want to use Multicast
 DNS, they can achieve this by simply not using those names. If a user
 does enter a name ending in ".local.", then we can safely assume
 the user's intention was probably that it should work. Having user
 configuration options that can be (intentionally or unintentionally)
 set so that local names don't work is just one more way of
 frustrating the user's ability to perform the tasks they want,
 perpetuating the view that, "IP networking is too complicated to
 configure and too hard to use."

14. Considerations for Multiple Interfaces

 A host SHOULD defend its dot-local host name on all active interfaces
 on which it is answering Multicast DNS queries.

 In the event of a name conflict on *any* interface, a host should
 configure a new host name, if it wishes to maintain uniqueness of its
 host name.

 A host may choose to use the same name for all of its address records
 on all interfaces, or it may choose to manage its Multicast DNS host
 name(s) independently on each interface, potentially answering to
 different names on different interfaces.

 When answering a Multicast DNS query, a multi-homed host with a link-
 local address (or addresses) SHOULD take care to ensure that any
 address going out in a Multicast DNS response is valid for use on the
 interface on which the response is going out.

Cheshire & Krochmal Expires July 16, 2011 [Page 41]

Internet-Draft Multicast DNS Jan 2011

 Just as the same link-local IP address may validly be in use
 simultaneously on different links by different hosts, the same link-
 local host name may validly be in use simultaneously on different
 links, and this is not an error. A multi-homed host with connections
 to two different links may be able to communicate with two different
 hosts that are validly using the same name. While this kind of name
 duplication should be rare, it means that a host that wants to fully
 support this case needs network programming APIs that allow
 applications to specify on what interface to perform a link-local
 Multicast DNS query, and to discover on what interface a Multicast
 DNS response was received.

 There is one other special precaution that multi-homed hosts need to
 take. It's common with today's laptop computers to have an Ethernet
 connection and an 802.11 [IEEE.802.11] wireless connection active at
 the same time. What the software on the laptop computer can't easily
 tell is whether the wireless connection is in fact bridged onto the
 same network segment as its Ethernet connection. If the two networks
 are bridged together, then packets the host sends on one interface
 will arrive on the other interface a few milliseconds later, and care
 must be taken to ensure that this bridging does not cause problems:

 When the host announces its host name (i.e. its address records) on
 its wireless interface, those announcement records are sent with the
 cache-flush bit set, so when they arrive on the Ethernet segment,
 they will cause all the peers on the Ethernet to flush the host's
 Ethernet address records from their caches. The mDNS protocol has a
 safeguard to protect against this situation: when records are
 received with the cache-flush bit set, other records are not deleted
 from peer caches immediately, but are marked for deletion in one
 second. When the host sees its own wireless address records arrive on
 its Ethernet interface, with the cache-flush bit set, this one-second
 grace period gives the host time to respond and re-announce its
 Ethernet address records, to reinstate those records in peer caches
 before they are deleted.

 As described, this solves one problem, but creates another, because
 when those Ethernet announcement records arrive back on the wireless
 interface, the host would again respond defensively to reinstate its
 wireless records, and this process would continue forever,
 continuously flooding the network with traffic. The mDNS protocol has
 a second safeguard, to solve this problem: the cache-flush bit does
 not apply to records received very recently, within the last second.
 This means that when the host sees its own Ethernet address records
 arrive on its wireless interface, with the cache-flush bit set, it
 knows there's no need to re-announce its wireless address records
 again because it already sent them less than a second ago, and this
 makes them immune from deletion from peer caches. (See Section 10.2.)

Cheshire & Krochmal Expires July 16, 2011 [Page 42]

Internet-Draft Multicast DNS Jan 2011

15. Considerations for Multiple Responders on the Same Machine

 It is possible to have more than one Multicast DNS Responder and/or
 Querier implementation coexist on the same machine, but there are
 some known issues.

15.1. Receiving Unicast Responses

 In most operating systems, incoming *multicast* packets can be
 delivered to *all* open sockets bound to the right port number,
 provided that the clients take the appropriate steps to allow this.
 For this reason, all Multicast DNS implementations SHOULD use the
 SO_REUSEPORT and/or SO_REUSEADDR options (or equivalent as
 appropriate for the operating system in question) so they will all be
 able to bind to UDP port 5353 and receive incoming multicast packets
 addressed to that port. However, unlike multicast packets, incoming
 unicast UDP packets are typically delivered only to the first socket
 to bind to that port. This means that "QU" responses and other
 packets sent via unicast will be received only by the first Multicast
 DNS Responder and/or Querier on a system. This limitation can be
 partially mitigated if Multicast DNS implementations detect when they
 are not the first to bind to port 5353, and in that case they do not
 request "QU" responses. One way to detect if there is another
 Multicast DNS implementation already running is to attempt binding to
 port 5353 without using SO_REUSEPORT and/or SO_REUSEADDR, and if that
 fails it indicates that some other socket is already bound to this
 port.

15.2. Multi-Packet Known-Answer lists

 When a Multicast DNS Querier issues a query with too many Known
 Answers to fit into a single packet, it divides the Known-Answer list
 into two or more packets. Multicast DNS Responders associate the
 initial truncated query with its continuation packets by examining
 the source IP address in each packet. Since two independent Multicast
 DNS Queriers running on the same machine will be sending packets with
 the same source IP address, from an outside perspective they appear
 to be a single entity. If both Queriers happened to send the same
 multi-packet query at the same time, with different Known-Answer
 lists, then they could each end up suppressing answers that the other
 needs.

15.3. Efficiency

 If different clients on a machine were each to have their own
 separate independent Multicast DNS implementation, they would lose
 certain efficiency benefits. Apart from the unnecessary code
 duplication, memory usage, and CPU load, the clients wouldn't get the

Cheshire & Krochmal Expires July 16, 2011 [Page 43]

Internet-Draft Multicast DNS Jan 2011

 benefit of a shared system-wide cache, and they would not be able to
 aggregate separate queries into single packets to reduce network
 traffic.

15.4. Recommendation

 Because of these issues, this document encourages implementers to
 design systems with a single Multicast DNS implementation that
 provides Multicast DNS services shared by all clients on that
 machine, much as most operating systems today have a single TCP
 implementation, which is shared between all clients on that machine.
 Due to engineering constraints, there may be situations where
 embedding a "user level" Multicast DNS implementation in the client
 application software is the most expedient solution, and while this
 will usually work in practice, implementers should be aware of the
 issues outlined in this section.

16. Multicast DNS Character Set

 Historically, unicast DNS has been plagued by the lack of any support
 for non-US characters. Indeed, conventional DNS is usually limited to
 just letters, digits and hyphens, not even allowing spaces or other
 punctuation. Attempts to remedy this for unicast DNS have been badly
 constrained by the perceived need to accommodate old buggy legacy DNS
 implementations. In reality, the DNS specification itself actually
 imposes no limits on what characters may be used in names, and good
 DNS implementations handle any arbitrary eight-bit data without
 trouble. "Clarifications to the DNS Specification" [RFC2181] directly
 discusses the subject of allowable character set in Section 11 ("Name
 syntax"), and explicitly states that DNS names may contain arbitrary
 eight-bit data. However, the old rules for ARPANET host names back in
 the 1980s required host names to be just letters, digits, and hyphens
 [RFC1034], and since the predominant use of DNS is to store host
 address records, many have assumed that the DNS protocol itself
 suffers from the same limitation. It might be accurate to say that
 there could be hypothetical bad implementations that do not handle
 eight-bit data correctly, but it would not be accurate to say that
 the protocol doesn't allow names containing eight-bit data.

 Multicast DNS is a new protocol and doesn't (yet) have old buggy
 legacy implementations to constrain the design choices. Accordingly,
 it adopts the simple obvious elegant solution: all names in Multicast
 DNS MUST be encoded as precomposed UTF-8 [RFC3629] "Net-Unicode"
 [RFC5198] text.

 Some users of 16-bit Unicode have taken to stuffing a "zero-width
 non-breaking space" character (U+FEFF) at the start of each UTF-16

https://datatracker.ietf.org/doc/html/rfc2181
https://datatracker.ietf.org/doc/html/rfc1034
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc5198

Cheshire & Krochmal Expires July 16, 2011 [Page 44]

Internet-Draft Multicast DNS Jan 2011

 file, as a hint to identify whether the data is big-endian or little-
 endian, and calling it a "Byte Order Mark" (BOM). Since there is only
 one possible byte order for UTF-8 data, a BOM is neither necessary
 nor permitted. Multicast DNS names MUST NOT contain a "Byte Order
 Mark". Any occurrence of the Unicode character U+FEFF at the start or
 anywhere else in a Multicast DNS name MUST be interpreted as being an
 actual intended part of the name, representing (just as for any other
 legal unicode value) an actual literal instance of that character (in
 this case a zero-width non-breaking space character).

 For names that are restricted to US-ASCII letters, digits and
 hyphens, the UTF-8 encoding is identical to the US-ASCII encoding, so
 this is entirely compatible with existing host names. For characters
 outside the US-ASCII range, UTF-8 encoding is used.

 Multicast DNS implementations MUST NOT use any other encodings apart
 from precomposed UTF-8 (US-ASCII being considered a compatible subset
 of UTF-8). The reasons for selecting UTF-8 instead of Punycode
 [RFC3492] are discussed further in Appendix F.

 The simple rules for case-insensitivity in Unicast DNS [RFC1034]
 [RFC1035] also apply in Multicast DNS; that is to say, in name
 comparisons, the lower-case letters "a" to "z" (0x61 to 0x7A) match
 their upper-case equivalents "A" to "Z" (0x41 to 0x5A). Hence, if a
 Querier issues a query for an address record with the name
 "myprinter.local.", then a Responder having an address record with
 the name "MyPrinter.local." should issue a response. No other
 automatic equivalences should be assumed. In particular all UTF-8
 multi-byte characters (codes 0x80 and higher) are compared by simple
 binary comparison of the raw byte values. Accented characters are
 not defined to be automatically equivalent to their unaccented
 counterparts. Where automatic equivalences are desired, this may be
 achieved through the use of programmatically-generated CNAME records.
 For example, if a Responder has an address record for an accented
 name Y, and a Querier issues a query for a name X, where X is the
 same as Y with all the accents removed, then the Responder may issue
 a response containing two resource records: A CNAME record "X CNAME
 Y", asserting that the requested name X (unaccented) is an alias for
 the true (accented) name Y, followed by the address record for Y.

https://datatracker.ietf.org/doc/html/rfc3492
https://datatracker.ietf.org/doc/html/rfc1034
https://datatracker.ietf.org/doc/html/rfc1035

Cheshire & Krochmal Expires July 16, 2011 [Page 45]

Internet-Draft Multicast DNS Jan 2011

17. Multicast DNS Message Size

 The 1987 DNS specification [RFC1035] restricts DNS Messages carried
 by UDP to no more than 512 bytes (not counting the IP or UDP
 headers). For UDP packets carried over the wide-area Internet in
 1987, this was appropriate. For link-local multicast packets on
 today's networks, there is no reason to retain this restriction.
 Given that the packets are by definition link-local, there are no
 Path MTU issues to consider.

 Multicast DNS Messages carried by UDP may be up to the IP MTU of the
 physical interface, less the space required for the IP header (20
 bytes for IPv4; 40 bytes for IPv6) and the UDP header (8 bytes).

 In the case of a single mDNS Resource Record which is too large to
 fit in a single MTU-sized multicast response packet, a Multicast DNS
 Responder SHOULD send the Resource Record alone, in a single IP
 datagram, using multiple IP fragments. Resource Records this large
 SHOULD be avoided, except in the very rare cases where they really
 are the appropriate solution to the problem at hand. Implementers
 should be aware that many simple devices do not re-assemble
 fragmented IP datagrams, so large Resource Records SHOULD NOT be used
 except in specialized cases where the implementer knows that all
 receivers implement reassembly, or where the large Resource Record
 contains optional data which is not essential for correct operation
 of the client.

 A Multicast DNS packet larger than the interface MTU, which is sent
 using fragments, MUST NOT contain more than one Resource Record.

 Even when fragmentation is used, a Multicast DNS packet, including IP
 and UDP headers, MUST NOT exceed 9000 bytes.

 Note that 9000 bytes is also the maximum payload size of an Ethernet
 "Jumbo" packet [Jumbo]. However, in practice Ethernet "Jumbo" packets
 are not widely used, so it is advantageous to keep packets under 1500
 bytes whenever possible. Even on hosts that normally handle Ethernet
 "Jumbo" packets and IP fragment reassembly, it is becoming more
 common for these hosts to implement power-saving modes where the main
 CPU goes to sleep and hands off packet reception tasks to a more
 limited processor in the network interface hardware, which may not
 support Ethernet "Jumbo" packets or IP fragment reassembly.

https://datatracker.ietf.org/doc/html/rfc1035

Cheshire & Krochmal Expires July 16, 2011 [Page 46]

Internet-Draft Multicast DNS Jan 2011

18. Multicast DNS Message Format

 This section describes specific rules pertaining to the allowable
 values for the header fields of a Multicast DNS message, and other
 message format considerations.

18.1. ID (Query Identifier)

 Multicast DNS implementations SHOULD listen for unsolicited responses
 issued by hosts booting up (or waking up from sleep or otherwise
 joining the network). Since these unsolicited responses may contain a
 useful answer to a question for which the Querier is currently
 awaiting an answer, Multicast DNS implementations SHOULD examine all
 received Multicast DNS response messages for useful answers, without
 regard to the contents of the ID field or the Question Section. In
 Multicast DNS, knowing which particular query message (if any) is
 responsible for eliciting a particular response message is less
 interesting than knowing whether the response message contains useful
 information.

 Multicast DNS implementations MAY cache any or all Multicast DNS
 response messages they receive, for possible future use, provided of
 course that normal TTL aging is performed on these cached resource
 records.

 In multicast query messages, the Query ID SHOULD be set to zero on
 transmission.

 In multicast responses, including unsolicited multicast responses,
 the Query ID MUST be set to zero on transmission, and MUST be ignored
 on reception.

 In legacy unicast response messages generated specifically in
 response to a particular (unicast or multicast) query, the Query ID
 MUST match the ID from the query message.

18.2. QR (Query/Response) Bit

 In query messages the QR bit MUST be zero.
 In response messages the QR bit MUST be one.

18.3. OPCODE

 In both multicast query and multicast response messages, MUST be zero
 (only standard queries are currently supported over multicast).

Cheshire & Krochmal Expires July 16, 2011 [Page 47]

Internet-Draft Multicast DNS Jan 2011

18.4. AA (Authoritative Answer) Bit

 In query messages, the Authoritative Answer bit MUST be zero on
 transmission, and MUST be ignored on reception.

 In response messages for Multicast Domains, the Authoritative Answer
 bit MUST be set to one (not setting this bit would imply there's some
 other place where "better" information may be found) and MUST be
 ignored on reception.

18.5. TC (Truncated) Bit

 In query messages, if the TC bit is set, it means that additional
 Known-Answer records may be following shortly. A Responder SHOULD
 record this fact, and wait for those additional Known-Answer records,
 before deciding whether to respond. If the TC bit is clear, it means
 that the querying host has no additional Known Answers.

 In multicast response messages, the TC bit MUST be zero on
 transmission, and MUST be ignored on reception.

 In legacy unicast response messages, the TC bit has the same meaning
 as in conventional unicast DNS: it means that the response was too
 large to fit in a single packet, so the Querier SHOULD re-issue its
 query using TCP in order to receive the larger response.

18.6. RD (Recursion Desired) Bit

 In both multicast query and multicast response messages, the
 Recursion Desired bit SHOULD be zero on transmission, and MUST be
 ignored on reception.

18.7. RA (Recursion Available) Bit

 In both multicast query and multicast response messages, the
 Recursion Available bit MUST be zero on transmission, and MUST be
 ignored on reception.

18.8. Z (Zero) Bit

 In both query and response messages, the Zero bit MUST be zero on
 transmission, and MUST be ignored on reception.

18.9. AD (Authentic Data) Bit

 In both multicast query and multicast response messages the Authentic
 Data bit [RFC2535] MUST be zero on transmission, and MUST be ignored
 on reception.

https://datatracker.ietf.org/doc/html/rfc2535

Cheshire & Krochmal Expires July 16, 2011 [Page 48]

Internet-Draft Multicast DNS Jan 2011

18.10. CD (Checking Disabled) Bit

 In both multicast query and multicast response messages, the Checking
 Disabled bit [RFC2535] MUST be zero on transmission, and MUST be
 ignored on reception.

18.11. RCODE (Response Code)

 In both multicast query and multicast response messages, the Response
 Code MUST be zero on transmission. Multicast DNS messages received
 with non-zero Response Codes MUST be silently ignored.

18.12. Repurposing of top bit of qclass in Question Section

 In the Question Section of a Multicast DNS Query, the top bit of the
 qclass field is used to indicate that unicast responses are preferred
 for this particular question. (See Section 5.4.)

18.13. Repurposing of top bit of rrclass in Resource Record Sections

 In the Resource Record Sections of a Multicast DNS Response, the top
 bit of the rrclass field is used to indicate that the record is a
 member of a unique RRSet, and the entire RRSet has been sent together
 (in the same packet, or in consecutive packets if there are too many
 records to fit in a single packet). (See Section 10.2.)

18.14. Name Compression

 When generating Multicast DNS packets, implementations SHOULD use
 name compression wherever possible to compress the names of resource
 records, by replacing some or all of the resource record name with a
 compact two-byte reference to an appearance of that data somewhere
 earlier in the packet [RFC1035].

 This applies not only to Multicast DNS Responses, but also to
 Queries. When a Query contains more than one question, successive
 questions in the same message often contain similar names, and
 consequently name compression SHOULD be used, to save bytes. In
 addition, Queries may also contain Known Answers in the Answer
 Section, or probe tie-breaking data in the Authority Section, and
 these names SHOULD similarly be compressed for network efficiency.

 In addition to compressing the *names* of resource records, names
 that appear within the *rdata* of the following rrtypes SHOULD also
 be compressed in all Multicast DNS packets:

https://datatracker.ietf.org/doc/html/rfc2535
https://datatracker.ietf.org/doc/html/rfc1035

Cheshire & Krochmal Expires July 16, 2011 [Page 49]

Internet-Draft Multicast DNS Jan 2011

 NS, CNAME, PTR, DNAME, SOA, MX, AFSDB, RT, KX, RP, PX, SRV, NSEC

 Until future IETF Standards Action specifying that names in the rdata
 of other types should be compressed, names that appear within the
 rdata of any type not listed above MUST NOT be compressed.

 Implementations receiving Multicast DNS packets MUST correctly decode
 compressed names appearing in the Question Section, and compressed
 names of resource records appearing in other sections.

 In addition, implementations MUST correctly decode compressed names
 appearing within the *rdata* of the rrtypes listed above. Where
 possible, implementations SHOULD also correctly decode compressed
 names appearing within the *rdata* of other rrtypes known to the
 implementers at the time of implementation, because such forward-
 thinking planning helps facilitate the deployment of future
 implementations that may have reason to compress those rrtypes. It is
 possible that no future IETF Standards Action will be created which
 mandates or permits the compression of rdata in new types, but having
 implementations designed such that they are capable of decompressing
 all known types known helps keep future options open.

 One specific difference between Unicast DNS and Multicast DNS is that
 Unicast DNS does not allow name compression for the target host in an
 SRV record, because Unicast DNS implementations before the first SRV
 specification in 1996 [RFC2052] may not decode these compressed
 records properly. Since all Multicast DNS implementations were
 created after 1996, all Multicast DNS implementations are REQUIRED to
 decode compressed SRV records correctly.

 In legacy unicast responses generated to answer legacy queries, name
 compression MUST NOT be performed on SRV records.

https://datatracker.ietf.org/doc/html/rfc2052

Cheshire & Krochmal Expires July 16, 2011 [Page 50]

Internet-Draft Multicast DNS Jan 2011

19. Summary of Differences Between Multicast DNS and Unicast DNS

 Multicast DNS shares, as much as possible, the familiar APIs, naming
 syntax, resource record types, etc., of Unicast DNS. There are of
 course necessary differences by virtue of it using multicast, and by
 virtue of it operating in a community of cooperating peers, rather
 than a precisely defined hierarchy controlled by a strict chain of
 formal delegations from the root. These differences are summarized
 below:

 Multicast DNS...
 * uses multicast
 * uses UDP port 5353 instead of port 53
 * operates in well-defined parts of the DNS namespace
 * uses UTF-8, and only UTF-8, to encode resource record names
 * allows names up to 255 bytes plus a terminating zero byte
 * allows name compression in rdata for SRV and other record types
 * allows larger UDP packets
 * allows more than one question in a query packet
 * defines consistent results for qtype "ANY" and qclass "ANY" queries
 * uses the Answer Section of a query to list Known Answers
 * uses the TC bit in a query to indicate additional Known Answers
 * uses the Authority Section of a query for probe tie-breaking
 * ignores the Query ID field (except for generating legacy responses)
 * doesn't require the question to be repeated in the response packet
 * uses unsolicited responses to announce new records
 * uses NSEC records to signal non-existence of records
 * defines a "unicast response" bit in the rrclass of query questions
 * defines a "cache-flush" bit in the rrclass of response answers
 * uses DNS RR TTL 0 to indicate that a record has been deleted
 * recommends AAAA records in the additional section when responding
 to rrtype "A" queries, and vice versa
 * monitors queries to perform Duplicate Question Suppression
 * monitors responses to perform Duplicate Answer Suppression...
 * ... and Ongoing Conflict Detection
 * ... and Opportunistic Caching

Cheshire & Krochmal Expires July 16, 2011 [Page 51]

Internet-Draft Multicast DNS Jan 2011

20. IPv6 Considerations

 An IPv4-only host and an IPv6-only host behave as "ships that pass in
 the night". Even if they are on the same Ethernet, neither is aware
 of the other's traffic. For this reason, each physical link may have
 two unrelated ".local." zones, one for IPv4 and one for IPv6. Since
 for practical purposes, a group of IPv4-only hosts and a group of
 IPv6-only hosts on the same Ethernet act as if they were on two
 entirely separate Ethernet segments, it is unsurprising that their
 use of the ".local." zone should occur exactly as it would if they
 really were on two entirely separate Ethernet segments.

 A dual-stack (v4/v6) host can participate in both ".local." zones,
 and should register its name(s) and perform its lookups both using
 IPv4 and IPv6. This enables it to reach, and be reached by, both
 IPv4-only and IPv6-only hosts. In effect this acts like a multi-homed
 host, with one connection to the logical "IPv4 Ethernet segment", and
 a connection to the logical "IPv6 Ethernet segment". When such a host
 generates NSEC records, if it is using the same host name for its
 IPv4 addresses and its IPv6 addresses on that network interface, its
 NSEC records should indicate that the host name has both 'A' and AAAA
 records.

21. Security Considerations

 The algorithm for detecting and resolving name conflicts is, by its
 very nature, an algorithm that assumes cooperating participants. Its
 purpose is to allow a group of hosts to arrive at a mutually disjoint
 set of host names and other DNS resource record names, in the absence
 of any central authority to coordinate this or mediate disputes. In
 the absence of any higher authority to resolve disputes, the only
 alternative is that the participants must work together cooperatively
 to arrive at a resolution.

 In an environment where the participants are mutually antagonistic
 and unwilling to cooperate, other mechanisms are appropriate, like
 manually configured DNS.

 In an environment where there is a group of cooperating participants,
 but clients cannot be sure that there are no antagonistic hosts on
 the same physical link, the cooperating participants need to use
 IPSEC signatures and/or DNSSEC [RFC4033] signatures so that they can
 distinguish mDNS messages from trusted participants (which they
 process as usual) from mDNS messages from untrusted participants
 (which they silently discard).

 If DNS queries for *global* DNS names are sent to the mDNS multicast

https://datatracker.ietf.org/doc/html/rfc4033

Cheshire & Krochmal Expires July 16, 2011 [Page 52]

Internet-Draft Multicast DNS Jan 2011

 address (during network outages which disrupt communication with the
 greater Internet) it is *especially* important to use DNSSEC, because
 the user may have the impression that he or she is communicating with
 some authentic host, when in fact he or she is really communicating
 with some local host that is merely masquerading as that name. This
 is less critical for names ending with ".local.", because the user
 should be aware that those names have only local significance and no
 global authority is implied.

 Most computer users neglect to type the trailing dot at the end of a
 fully-qualified domain name, making it a relative domain name (e.g.
 "www.example.com"). In the event of network outage, attempts to
 positively resolve the name as entered will fail, resulting in
 application of the search list, including ".local.", if present. A
 malicious host could masquerade as "www.example.com." by answering
 the resulting Multicast DNS query for "www.example.com.local." To
 avoid this, a host MUST NOT append the search suffix ".local.", if
 present, to any relative (partially qualified) host name containing
 two or more labels. Appending ".local." to single-label relative host
 names is acceptable, since the user should have no expectation that a
 single-label host name will resolve as-is. However, users who have
 both "example.com" and "local" in their search lists should be aware
 that if they type "www" into their web browser, it may not be
 immediately clear to them whether the page that appears is
 "www.example.com" or "www.local".

 Multicast DNS uses UDP port 5353. On operating systems where only
 privileged processes are allowed to use ports below 1024, no such
 privilege is required to use port 5353.

Cheshire & Krochmal Expires July 16, 2011 [Page 53]

Internet-Draft Multicast DNS Jan 2011

22. IANA Considerations

 IANA has allocated the IPv4 link-local multicast address 224.0.0.251
 for the use described in this document [mcast4].

 IANA has allocated the IPv6 multicast address set FF0X::FB for the
 use described in this document [mcast6]. Only address FF02::FB (Link-
 Local Scope) is currently in use by deployed software, but it is
 possible that in future implementers may experiment with Multicast
 DNS using larger-scoped addresses, such as FF05::FB (Site-Local
 Scope) [RFC4291].

 The re-use of the top bit of the rrclass field in the Question and
 Resource Record Sections means that Multicast DNS can only carry DNS
 records with classes in the range 0-32767. Classes in the range 32768
 to 65535 are incompatible with Multicast DNS. IANA is requested to
 take note of this fact, and if IANA receives a request to allocate a
 DNS class value above 32767, IANA should make sure the requester is
 aware of this implication before proceeding. This does not mean that
 allocations of DNS class values above 32767 should not be allowed,
 only that they should not be allowed until the requester has
 indicated that they are aware of how this allocation will interact
 with Multicast DNS. However, to-date only three DNS classes have been
 assigned by IANA (1, 3 and 4), and only one (1, "Internet") is
 actually in widespread use, so this issue is likely to remain a
 purely theoretical one.

 When this document is published, IANA should designate a list of
 domains which are deemed to have only link-local significance, as
 described in Section 12 of this document ("Special Characteristics of
 Multicast DNS Domains") [SUDN].

 Specifically, the designated link-local domains are:

 local.
 254.169.in-addr.arpa.
 8.e.f.ip6.arpa.
 9.e.f.ip6.arpa.
 a.e.f.ip6.arpa.
 b.e.f.ip6.arpa.

https://datatracker.ietf.org/doc/html/rfc4291

Cheshire & Krochmal Expires July 16, 2011 [Page 54]

Internet-Draft Multicast DNS Jan 2011

23. Domain Name Reservation Considerations

 The six domains listed above, and any names falling within those
 domains (e.g. "MyPrinter.local.", "34.12.254.169.in-addr.arpa.",
 "Ink-Jet._pdl-datastream._tcp.local.") are special [SUDN] in the
 following ways:

 1. Users may use these names as they would other DNS names, entering
 them anywhere that they would otherwise enter a conventional DNS
 name, or a dotted decimal IPv4 address, or a literal IPv6 address.

 Since there is no central authority responsible for assigning dot-
 local names, and all devices on the local network are equally
 entitled to claim any dot-local name, users SHOULD be aware of
 this and SHOULD exercise appropriate caution. In an untrusted or
 unfamiliar network environment, users SHOULD be aware that using a
 name like "www.local" may not actually connect them to the web
 site they expected, and could easily connect them to a different
 web page, or even a fake or spoof of their intended web site,
 designed to trick them into revealing confidential information. As
 always with networking, end-to-end cryptographic security can be a
 useful tool. For example, when connecting with ssh, the ssh host
 key verification process will inform the user if it detects that
 the identity of the entity they are communicating with has changed
 since the last time they connected to that name.

 2. Application software may use these names as they would other
 similar DNS names, and is not required to recognize the names and
 treat them specially. Due to the relative ease of spoofing dot-
 local names, end-to-end cryptographic security remains important
 when communicating across a local network, just as it is when
 communicating across the global Internet.

 3. Name resolution APIs and libraries SHOULD recognize these names as
 special and SHOULD NOT send queries for these names to their
 configured (unicast) caching DNS server(s). This is to avoid
 unnecessary load on the root name servers and other name servers,
 caused by queries for which those name servers do not have useful
 non-negative answers to give, and will not ever have useful non-
 negative answers to give.

 4. Caching DNS servers SHOULD recognize these names as special and
 SHOULD NOT attempt to look up NS records for them, or otherwise
 query authoritative DNS servers in an attempt to resolve these
 names. Instead, caching DNS servers SHOULD generate immediate
 NXDOMAIN responses for all such queries they may receive (from
 misbehaving name resolver libraries). This is to avoid unnecessary
 load on the root name servers and other name servers.

Cheshire & Krochmal Expires July 16, 2011 [Page 55]

Internet-Draft Multicast DNS Jan 2011

 5. Authoritative DNS servers SHOULD NOT by default be configurable to
 answer queries for these names, and, like caching DNS servers,
 SHOULD generate immediate NXDOMAIN responses for all such queries
 they may receive. DNS server software MAY provide a configuration
 option to override this default, for testing purposes or other
 specialized uses.

 6. DNS server operators SHOULD NOT attempt to configure authoritative
 DNS servers to act as authoritative for any of these names.
 Configuring an authoritative DNS server to act as authoritative
 for any of these names may not, in many cases, yield the expected
 result, since name resolver libraries and caching DNS servers
 SHOULD NOT send queries for those names (see 3 and 4 above), so
 such queries SHOULD be suppressed before they even reach the
 authoritative DNS server in question, and consequently it will not
 even get an opportunity to answer them.

 7. DNS Registrars MUST NOT allow any of these names to be registered
 in the normal way to any person or entity. These names are
 reserved protocol identifiers with special meaning and fall
 outside the set of names available for allocation by registrars.
 Attempting to allocate one of these names as if it were a normal
 DNS domain name will probably not work as desired, for reasons 3,
 4 and 6 above.

24. Acknowledgments

 The concepts described in this document have been explored, developed
 and implemented with help from Ran Atkinson, Richard Brown, Freek
 Dijkstra, Ralph Droms, Erik Guttman, Pasi Sarolahti, Pekka Savola,
 Mark Townsley, Paul Vixie, Bill Woodcock, and others. Special thanks
 go to Bob Bradley, Josh Graessley, Scott Herscher, Rory McGuire,
 Roger Pantos and Kiren Sekar for their significant contributions.

Cheshire & Krochmal Expires July 16, 2011 [Page 56]

Internet-Draft Multicast DNS Jan 2011

25. References

25.1. Normative References

 [mcast4] "IPv4 Multicast Address Space Registry",
 <http://www.iana.org/assignments/multicast-addresses/>.

 [mcast6] "IPv6 Multicast Address Space Registry", <http://
www.iana.org/assignments/ipv6-multicast-addresses/>.

 [RFC1034] Mockapetris, P., "Domain Names - Concepts and Facilities",
 STD 13, RFC 1034, November 1987.

 [RFC1035] Mockapetris, P., "Domain Names - Implementation and
 Specification", STD 13, RFC 1035, November 1987.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

 [RFC4034] Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "Resource Records for the DNS Security Extensions",

RFC 4034, March 2005.

 [RFC5198] Klensin, J. and M. Padlipsky, "Unicode Format for Network
 Interchange", RFC 5198, March 2008.

 [SUDN] Cheshire, S. and M. Krochmal, "Special-Use Domain Names",
draft-cheshire-dnsext-special-names-01 (work in progress),

 January 2011.

25.2. Informative References

 [B4W] "Bonjour for Windows",
 <http://en.wikipedia.org/wiki/Bonjour_(software)>.

 [DNS-SD] Cheshire, S. and M. Krochmal, "DNS-Based Service
 Discovery", draft-cheshire-dnsext-dns-sd-08 (work in
 progress), January 2011.

 [IEEE.802.3]
 "Information technology - Telecommunications and
 information exchange between systems - Local and
 metropolitan area networks - Specific requirements - Part
 3: Carrier Sense Multiple Access with Collision Detection
 (CMSA/CD) Access Method and Physical Layer

http://www.iana.org/assignments/multicast-addresses/
http://www.iana.org/assignments/ipv6-multicast-addresses/
http://www.iana.org/assignments/ipv6-multicast-addresses/
https://datatracker.ietf.org/doc/html/rfc1034
https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc4034
https://datatracker.ietf.org/doc/html/rfc5198
https://datatracker.ietf.org/doc/html/draft-cheshire-dnsext-special-names-01
http://en.wikipedia
https://datatracker.ietf.org/doc/html/draft-cheshire-dnsext-dns-sd-08

Cheshire & Krochmal Expires July 16, 2011 [Page 57]

Internet-Draft Multicast DNS Jan 2011

 Specifications", IEEE Std 802.3-2008, December 2008,
 <http://standards.ieee.org/getieee802/802.3.html>.

 [IEEE.802.11]
 "Information technology - Telecommunications and
 information exchange between systems - Local and
 metropolitan area networks - Specific requirements - Part
 11: Wireless LAN Medium Access Control (MAC) and Physical
 Layer (PHY) Specifications", IEEE Std 802.11-2007,
 June 2007,
 <http://standards.ieee.org/getieee802/802.11.html>.

 [Jumbo] "Ethernet Jumbo Frames", November 2009, <http://
 www.ethernetalliance.org/files/static_page_files/
 EA-Ethernet Jumbo Frames v0 1.pdf>.

 [NBP] Cheshire, S. and M. Krochmal, "Requirements for a Protocol
 to Replace AppleTalk NBP", draft-cheshire-dnsext-nbp-10
 (work in progress), January 2011.

 [RFC2052] Gulbrandsen, A. and P. Vixie, "A DNS RR for specifying the
 location of services (DNS SRV)", RFC 2052, October 1996.

 [RFC2132] Alexander, S. and R. Droms, "DHCP Options and BOOTP Vendor
 Extensions", RFC 2132, March 1997.

 [RFC2136] Vixie, P., Thomson, S., Rekhter, Y., and J. Bound,
 "Dynamic Updates in the Domain Name System (DNS UPDATE)",

RFC 2136, April 1997.

 [RFC2181] Elz, R. and R. Bush, "Clarifications to the DNS
 Specification", RFC 2181, July 1997.

 [RFC2535] Eastlake, D., "Domain Name System Security Extensions",
RFC 2535, March 1999.

 [RFC2671] Vixie, P., "Extension Mechanisms for DNS (EDNS0)",
RFC 2671, August 1999.

 [RFC2845] Vixie, P., Gudmundsson, O., Eastlake, D., and B.
 Wellington, "Secret Key Transaction Authentication for DNS
 (TSIG)", RFC 2845, May 2000.

 [RFC2930] Eastlake, D., "Secret Key Establishment for DNS (TKEY
 RR)", RFC 2930, September 2000.

 [RFC2931] Eastlake, D., "DNS Request and Transaction Signatures (
 SIG(0)s)", RFC 2931, September 2000.

http://standards.ieee.org/getieee802/802.3.html
http://standards.ieee.org/getieee802/802.11.html
https://datatracker.ietf.org/doc/html/draft-cheshire-dnsext-nbp-10
https://datatracker.ietf.org/doc/html/rfc2052
https://datatracker.ietf.org/doc/html/rfc2132
https://datatracker.ietf.org/doc/html/rfc2136
https://datatracker.ietf.org/doc/html/rfc2181
https://datatracker.ietf.org/doc/html/rfc2535
https://datatracker.ietf.org/doc/html/rfc2671
https://datatracker.ietf.org/doc/html/rfc2845
https://datatracker.ietf.org/doc/html/rfc2930
https://datatracker.ietf.org/doc/html/rfc2931

Cheshire & Krochmal Expires July 16, 2011 [Page 58]

Internet-Draft Multicast DNS Jan 2011

 [RFC3492] Costello, A., "Punycode: A Bootstring encoding of Unicode
 for Internationalized Domain Names in Applications
 (IDNA)", RFC 3492, March 2003.

 [RFC3927] Cheshire, S., Aboba, B., and E. Guttman, "Dynamic
 Configuration of IPv4 Link-Local Addresses", RFC 3927,
 May 2005.

 [RFC4033] Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "DNS Security Introduction and Requirements",

RFC 4033, March 2005.

 [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 4291, February 2006.

 [RFC4795] Aboba, B., Thaler, D., and L. Esibov, "Link-local
 Multicast Name Resolution (LLMNR)", RFC 4795,
 January 2007.

 [RFC4861] Narten, T., Nordmark, E., Simpson, W., and H. Soliman,
 "Neighbor Discovery for IP version 6 (IPv6)", RFC 4861,
 September 2007.

 [RFC4862] Thomson, S., Narten, T., and T. Jinmei, "IPv6 Stateless
 Address Autoconfiguration", RFC 4862, September 2007.

 [RFC5890] Klensin, J., "Internationalized Domain Names for
 Applications (IDNA): Definitions and Document Framework",

RFC 5890, August 2010.

 [Zeroconf]
 Cheshire, S. and D. Steinberg, "Zero Configuration
 Networking: The Definitive Guide", O'Reilly Media, Inc. ,
 ISBN 0-596-10100-7, December 2005.

https://datatracker.ietf.org/doc/html/rfc3492
https://datatracker.ietf.org/doc/html/rfc3927
https://datatracker.ietf.org/doc/html/rfc4033
https://datatracker.ietf.org/doc/html/rfc4291
https://datatracker.ietf.org/doc/html/rfc4795
https://datatracker.ietf.org/doc/html/rfc4861
https://datatracker.ietf.org/doc/html/rfc4862
https://datatracker.ietf.org/doc/html/rfc5890

Cheshire & Krochmal Expires July 16, 2011 [Page 59]

Internet-Draft Multicast DNS Jan 2011

Appendix A. Design Rationale for Choice of UDP Port Number

 Arguments were made for and against using Multicast on UDP port 53,
 the standard unicast DNS port. Some of the arguments are given below.
 The arguments for using a different port were greater in number and
 more compelling so that was the option that was ultimately selected.
 The UDP port "5353" was selected for its mnemonic similarity to "53".

 Arguments for using UDP port 53:

 * This is "just DNS", so it should be the same port.

 * There is less work to be done updating old resolver libraries to do
 simple mDNS queries. Only the destination address need be changed.
 In some cases, this can be achieved without any code changes, just
 by adding the address 224.0.0.251 to a configuration file.

 Arguments for using a different port (UDP port 5353):

 * This is not "just DNS". This is a DNS-like protocol, but different.

 * Changing resolver library code to use a different port number is
 not hard. In some cases, this can be achieved without any code
 changes, just by adding the address 224.0.0.251:5353 to a
 configuration file.

 * Using the same port number makes it hard to run an mDNS Responder
 and a conventional unicast DNS server on the same machine. If a
 conventional unicast DNS server wishes to implement mDNS as well,
 it can still do that, by opening two sockets. Having two different
 port numbers allows this flexibility.

 * Some VPN software hijacks all outgoing traffic to port 53 and
 redirects it to a special DNS server set up to serve those VPN
 clients while they are connected to the corporate network. It is
 questionable whether this is the right thing to do, but it is
 common, and redirecting link-local multicast DNS packets to a
 remote server rarely produces any useful results. It does mean, for
 example, that a user of such VPN software becomes unable to access
 their local network printer sitting on their desk right next to
 their computer. Using a different UDP port helps avoid this
 particular problem.

 * On many operating systems, unprivileged software may not send or
 receive packets on low-numbered ports. This means that any software
 sending or receiving mDNS packets on port 53 would have to run as
 "root", which is an undesirable security risk. Using a higher-
 numbered UDP port avoids this restriction.

Cheshire & Krochmal Expires July 16, 2011 [Page 60]

Internet-Draft Multicast DNS Jan 2011

Appendix B. Design Rationale for Not Using Hashed Multicast Addresses

 Some discovery protocols use a range of multicast addresses, and
 determine the address to be used by a hash function of the name being
 sought. Queries are sent via multicast to the address as indicated by
 the hash function, and responses are returned to the querier via
 unicast. Particularly in IPv6, where multicast addresses are
 extremely plentiful, this approach is frequently advocated. For
 example, IPv6 Neighbor Discovery [RFC4861] sends Neighbor
 Solicitation messages to the "solicited-node multicast address",
 which is computed as a function of the solicited IPv6 address.

 There are some disadvantages to using hashed multicast addresses like
 this in a service discovery protocol:

 * When a host has a large number of records with different names, the
 host may have to join a large number of multicast groups. Each time
 a host joins or leaves a multicast group, this results in IGMP or
 MLD traffic on the network announcing this fact. Joining a large
 number of multicast groups can place undue burden on the Ethernet
 hardware, which typically supports a limited number of multicast
 addresses efficiently. When this number is exceeded, the Ethernet
 hardware may have to resort to receiving all multicasts and passing
 them up to the host networking code for filtering in software,
 thereby defeating much of the point of using a multicast address
 range in the first place. Finally, many IPv6 stacks have a fixed
 limit IPV6_MAX_MEMBERSHIPS, and the code simply fails with an error
 if a client attempts to exceed this limit. Common values for
 IPV6_MAX_MEMBERSHIPS are 20 or 31.

 * Multiple questions cannot be placed in one packet if they don't all
 hash to the same multicast address.

 * Duplicate Question Suppression doesn't work if queriers are not
 seeing each other's queries.

 * Duplicate Answer Suppression doesn't work if Responders are not
 seeing each other's responses.

 * Opportunistic Caching doesn't work.

 * Ongoing Conflict Detection doesn't work.

https://datatracker.ietf.org/doc/html/rfc4861

Cheshire & Krochmal Expires July 16, 2011 [Page 61]

Internet-Draft Multicast DNS Jan 2011

Appendix C. Design Rationale for Maximum Multicast DNS Name Length

 Multicast DNS domain names may be up to 255 bytes long, not counting
 the terminating zero byte at the end.

 "Domain Names - Implementation and Specification" [RFC1035] says:

 Various objects and parameters in the DNS have size limits.
 They are listed below. Some could be easily changed, others
 are more fundamental.

 labels 63 octets or less

 names 255 octets or less

 ...

 the total length of a domain name (i.e., label octets and
 label length octets) is restricted to 255 octets or less.

 This text does not state whether this 255-byte limit includes the
 terminating zero at the end of every name.

 Several factors lead us to conclude that the 255-byte limit does
 not include the terminating zero:

 o It is common in software engineering to have size limits that are a
 power of two, or a multiple of a power of two, for efficiency. For
 example, an integer on a modern processor is typically 2, 4, or 8
 bytes, not 3 or 5 bytes. The number 255 is not a power of two, nor
 is it to most people a particularly noteworthy number. It is
 noteworthy to computer scientists for only one reason -- because it
 is exactly one *less* than a power of two. When a size limit is
 exactly one less than a power of two, that suggests strongly that
 the one extra byte is being reserved for some specific reason -- in
 this case reserved perhaps to leave room for a terminating zero at
 the end.

 o In the case of DNS label lengths, the stated limit is 63 bytes. As
 with the total name length, this limit is exactly one less than a
 power of two. This label length limit also excludes the label
 length byte at the start of every label. Including that extra byte,
 a 63-byte label takes 64 bytes of space in memory or in a DNS
 packet.

 o It is common in software engineering for the semantic "length" of
 an object to be one less than the number of bytes it takes to store
 that object. For example, in C, strlen("foo") is 3, but

https://datatracker.ietf.org/doc/html/rfc1035

Cheshire & Krochmal Expires July 16, 2011 [Page 62]

Internet-Draft Multicast DNS Jan 2011

 sizeof("foo") (which includes the terminating zero byte at the end)
 is 4.

 o The text describing the total length of a domain name mentions
 explicitly that label length and data octets are included, but does
 not mention the terminating zero at the end. The zero byte at the
 end of a domain name is not a label length. Indeed, the value zero
 is chosen as the terminating marker precisely because it is not a
 legal length byte value -- DNS prohibits empty labels. For example,
 a name like "bad..name." is not a valid domain name because it
 contains a zero-length label in the middle, which cannot be
 expressed in a DNS packet, because software parsing the packet
 would misinterpret a zero label-length byte as being a zero "end of
 name" marker instead.

 Finally, "Clarifications to the DNS Specification" [RFC2181] offers
 additional confirmation that in the context of DNS specifications the
 stated "length" of a domain name does not include the terminating
 zero byte at the end. That document refers to the root name, which is
 typically written as "." and is represented in a DNS packet by a
 single lone zero byte (i.e. zero bytes of data plus a terminating
 zero), as the "zero length full name":

 The zero length full name is defined as representing the root of
 the DNS tree, and is typically written and displayed as ".".

 This wording supports the interpretation that, in a DNS context, when
 talking about lengths of names, the terminating zero byte at the end
 is not counted. If the root name (".") is considered to be zero
 length, then to be consistent, the length (for example) of "org" has
 to be 4 and the length of "ietf.org" has to be 9, as shown below:

 | 0x00 | length = 0

 ------------------ ------
 | 0x03 | o | r | g | | 0x00 | length = 4
 ------------------ ------

 --- ------
 | 0x04 | i | e | t | f | 0x03 | o | r | g | | 0x00 | length = 9
 --- ------

 This means that the maximum length of a domain name, as represented
 in a Multicast DNS packet, up to but not including the final
 terminating zero, must not exceed 255 bytes.

https://datatracker.ietf.org/doc/html/rfc2181

Cheshire & Krochmal Expires July 16, 2011 [Page 63]

Internet-Draft Multicast DNS Jan 2011

 However, many unicast DNS implementers have read these RFCs
 differently, and argue that the 255-byte limit does include the
 terminating zero, and that the "Clarifications to the DNS
 Specification" [RFC2181] statement that "." is the "zero length full
 name" was simply a mistake.

 Hence, implementers should be aware that other unicast DNS
 implementations may limit the maximum domain name to 254 bytes plus a
 terminating zero, depending on how that implementer interpreted the
 DNS specifications.

 Compliant Multicast DNS implementations MUST support names up to 255
 bytes plus a terminating zero, i.e. 256 bytes total.

https://datatracker.ietf.org/doc/html/rfc2181

Cheshire & Krochmal Expires July 16, 2011 [Page 64]

Internet-Draft Multicast DNS Jan 2011

Appendix D. Benefits of Multicast Responses

 Some people have argued that sending responses via multicast is
 inefficient on the network. In fact using multicast responses can
 result in a net lowering of overall multicast traffic for a variety
 of reasons, and provides other benefits too:

 * Opportunistic Caching. One multicast response can update the caches
 on all machines on the network. If another machine later wants to
 issue the same query, it already has the answer in its cache, so it
 may not need to even transmit that multicast query on the network
 at all.

 * Duplicate Query Suppression. When more than one machine has the
 same ongoing long-lived query running, every machine does not have
 to transmit its own independent query. When one machine transmits a
 query, all the other hosts see the answers, so they can suppress
 their own queries.

 * Passive Observation Of Failures (POOF). When a host sees a
 multicast query, but does not see the corresponding multicast
 response, it can use this information to promptly delete stale data
 from its cache. To achieve the same level of user-interface quality
 and responsiveness without multicast responses would require lower
 cache lifetimes and more frequent network polling, resulting in a
 higher packet rate.

 * Passive Conflict Detection. Just because a name has been previously
 verified unique does not guarantee it will continue to be so
 indefinitely. By allowing all Multicast DNS Responders to
 constantly monitor their peers' responses, conflicts arising out of
 network topology changes can be promptly detected and resolved. If
 responses were not sent via multicast, some other conflict
 detection mechanism would be needed, imposing its own additional
 burden on the network.

 * Use on devices with constrained memory resources: When using
 delayed responses to reduce network collisions, Responders need to
 maintain a list recording to whom each answer should be sent. The
 option of multicast responses allows Responders with limited
 storage, which cannot store an arbitrarily long list of response
 addresses, to choose to fail-over to a single multicast response in
 place of multiple unicast responses, when appropriate.

 * Overlayed Subnets. In the case of overlayed subnets, multicast
 responses allow a receiver to know with certainty that a response
 originated on the local link, even when its source address may
 apparently suggest otherwise.

Cheshire & Krochmal Expires July 16, 2011 [Page 65]

Internet-Draft Multicast DNS Jan 2011

 * Robustness in the face of misconfiguration: Link-local multicast
 transcends virtually every conceivable network misconfiguration.
 Even if you have a collection of devices where every device's IP
 address, subnet mask, default gateway, and DNS server address are
 all wrong, packets sent by any of those devices addressed to a
 link-local multicast destination address will still be delivered to
 all peers on the local link. This can be extremely helpful when
 diagnosing and rectifying network problems, since it facilitates a
 direct communication channel between client and server that works
 without reliance on ARP, IP routing tables, etc. Being able to
 discover what IP address a device has (or thinks it has) is
 frequently a very valuable first step in diagnosing why it is
 unable to communicate on the local network.

Cheshire & Krochmal Expires July 16, 2011 [Page 66]

Internet-Draft Multicast DNS Jan 2011

Appendix E. Design Rationale for Encoding Negative Responses

 Alternative methods of asserting nonexistence were considered, such
 as using an NXDOMAIN response, or emitting a resource record with
 zero-length rdata.

 Using an NXDOMAIN response does not work well with Multicast DNS. A
 Unicast DNS NXDOMAIN response applies to the entire packet, but for
 efficiency Multicast DNS allows (and encourages) multiple responses
 in a single packet. If the error code in the header were NXDOMAIN, it
 would not be clear to which name(s) that error code applied.

 Asserting nonexistence by emitting a resource record with zero-length
 rdata would mean that there would be no way to differentiate between
 a record that doesn't exist, and a record that does exist, with zero-
 length rdata. By analogy, most file systems today allow empty files,
 so a file that exists with zero bytes of data is not considered
 equivalent to a filename that does not exist.

 A benefit of asserting nonexistence through NSEC records instead of
 through NXDOMAIN responses is that NSEC records can be added to the
 Additional Section of a DNS Response to offer additional information
 beyond what the Querier explicitly requested. For example, in a
 response to an SRV query, a Responder should include 'A' record(s)
 giving its IPv4 addresses in the Additional Section, and an NSEC
 record indicating which other types it does or does not have for this
 name. If the Responder is running on a host that does not support
 IPv6 (or does support IPv6 but currently has no IPv6 address on that
 interface) then this NSEC record in the Additional Section will
 indicate this absence of AAAA records. In effect, the Responder is
 saying, "Here's my SRV record, and here are my IPv4 addresses, and
 no, I don't have any IPv6 addresses, so don't waste your time
 asking." Without this information in the Additional Section it would
 take the Querier an additional round-trip to perform an additional
 Query to ascertain that the target host has no AAAA records.
 (Arguably Unicast DNS could also benefit from this ability to express
 nonexistence in the Additional Section, but that is outside the scope
 of this document.)

Cheshire & Krochmal Expires July 16, 2011 [Page 67]

Internet-Draft Multicast DNS Jan 2011

Appendix F. Use of UTF-8

 After many years of debate, as a result of the perceived need to
 accommodate certain DNS implementations that apparently couldn't
 handle any character that's not a letter, digit or hyphen (and
 apparently never would be updated to remedy this limitation) the
 unicast DNS community settled on an extremely baroque encoding called
 "Punycode" [RFC3492]. Punycode is a remarkably ingenious encoding
 solution, but it is complicated, hard to understand, and hard to
 implement, using sophisticated techniques including insertion unsort
 coding, generalized variable-length integers, and bias adaptation.
 The resulting encoding is remarkably compact given the constraints,
 but it's still not as good as simple straightforward UTF-8, and it's
 hard even to predict whether a given input string will encode to a
 Punycode string that fits within DNS's 63-byte limit, except by
 simply trying the encoding and seeing whether it fits. Indeed, the
 encoded size depends not only on the input characters, but on the
 order they appear, so the same set of characters may or may not
 encode to a legal Punycode string that fits within DNS's 63-byte
 limit, depending on the order the characters appear. This is
 extremely hard to present in a user interface that explains to users
 why one name is allowed, but another name containing the exact same
 characters is not. Neither Punycode nor any other of the "ASCII-
 Compatible Encodings" [RFC5890] proposed for Unicast DNS may be used
 in Multicast DNS packets. Any text being represented internally in
 some other representation must be converted to canonical precomposed
 UTF-8 before being placed in any Multicast DNS packet.

https://datatracker.ietf.org/doc/html/rfc3492
https://datatracker.ietf.org/doc/html/rfc5890

Cheshire & Krochmal Expires July 16, 2011 [Page 68]

Internet-Draft Multicast DNS Jan 2011

Appendix G. Private DNS Namespaces

 The special treatment of names ending in ".local." has been
 implemented in Macintosh computers since the days of Mac OS 9, and
 continues today in Mac OS X and iOS. There are also implementations
 for Microsoft Windows [B4W], Linux, and other platforms.

 Some network operators setting up private internal networks
 ("intranets") have used unregistered top-level domains, and some may
 have used the ".local" top-level domain. Using ".local" as a private
 top-level domain conflicts with Multicast DNS and may cause problems
 for users. Clients can be configured to send both Multicast and
 Unicast DNS queries in parallel for these names, and this does allow
 names to be looked up both ways, but this results in additional
 network traffic and additional delays in name resolution, as well as
 potentially creating user confusion when it is not clear whether any
 given result was received via link-local multicast from a peer on the
 same link, or from the configured unicast name server. Because of
 this, we recommend against using ".local" as a private unicast DNS
 top-level domain. We do not recommend use of unregistered top-level
 domains at all, but should network operators decide to do this, the
 following top-level domains have been used on private internal
 networks without the problems caused by trying to re-use ".local" for
 this purpose:

 .intranet
 .internal
 .private
 .corp
 .home
 .lan

Cheshire & Krochmal Expires July 16, 2011 [Page 69]

Internet-Draft Multicast DNS Jan 2011

Appendix H. Deployment History

 In July 1997, in an email to the net-thinkers@thumper.vmeng.com
 mailing list, Stuart Cheshire first proposed the idea of running
 AppleTalk Name Binding Protocol [NBP] over IP. As a result of this
 and related IETF discussions, the IETF Zeroconf Working Group was
 chartered September 1999. After various working group discussions and
 other informal IETF discussions, several Internet Drafts were
 written, which were loosely-related to the general themes of DNS and
 multicast, but did not address the service discovery aspect of NBP.

 In April 2000 Stuart Cheshire registered IPv4 multicast address
 224.0.0.251 with IANA [mcast4] and began writing code to test and
 develop the idea of performing NBP-like service discovery using
 Multicast DNS, which was documented in a group of three Internet
 Drafts:

 o "draft-cheshire-dnsext-nbp-00.txt", was an overview explaining
 AppleTalk Name Binding Protocol, because many in the IETF
 community had little first-hand experience using AppleTalk, and
 confusion in the IETF community about what AppleTalk NBP did was
 causing confusion about what would be required in an IP-based
 replacement.

 o "draft-cheshire-dnsext-nias-00.txt" ("Named Instances of Abstract
 Services") proposed a way to perform NBP-like service discovery
 using DNS-compatible names and record types.

 o "draft-cheshire-dnsext-multicastdns-00.txt" proposed a way to
 transport those DNS-compatible queries and responses using IP
 multicast, for Zero Configuration environments where no
 conventional unicast DNS server was available.

 In 2001 an update to Mac OS 9 added resolver library support for host
 name lookup using Multicast DNS. If the user typed a name such as
 "MyPrinter.local." into any piece of networking software that used
 the standard Mac OS 9 name lookup APIs, then those name lookup APIs
 would recognize the name as a dot-local name and query for it by
 sending simple one-shot Multicast DNS Queries to 224.0.0.251:5353.
 This enabled the user to, for example, enter the name
 "MyPrinter.local." into their web browser in order to view a
 printer's status and configuration web page, or enter the name
 "MyPrinter.local." into the printer setup utility to create a print
 queue for printing documents on that printer.

 Multicast DNS Responder software, with full service discovery, first
 began shipping to end users in volume with the launch of Mac OS X
 10.2 "Jaguar" in August 2002, and network printer makers (who had

https://datatracker.ietf.org/doc/html/draft-cheshire-dnsext-nbp-00.txt
https://datatracker.ietf.org/doc/html/draft-cheshire-dnsext-nias-00.txt
https://datatracker.ietf.org/doc/html/draft-cheshire-dnsext-multicastdns-00.txt

Cheshire & Krochmal Expires July 16, 2011 [Page 70]

Internet-Draft Multicast DNS Jan 2011

 historically supported AppleTalk in their network printers, and were
 receptive to IP-based technologies that could offer them similar
 ease-of-use) started adopting Multicast DNS shortly thereafter.

 In September 2002 Apple released the source code for the
 mDNSResponder daemon as Open Source under Apple's standard Apple
 Public Source License (APSL).

 Multicast DNS Responder software became available for Microsoft
 Windows users in June 2004 with the launch of Apple's "Rendezvous for
 Windows" (now "Bonjour for Windows"), both in executable form (a
 downloadable installer for end users) and as Open Source (one of the
 supported platforms within Apple's body of cross-platform code in the
 publicly-accessible mDNSResponder CVS source code repository) [B4W].

 In August 2006, Apple re-licensed the cross-platform mDNSResponder
 source code under the Apache License, Version 2.0.

 In January 2007, the IETF published "Link-Local Multicast Name
 Resolution", which is substantially similar to Multicast DNS, but
 incompatible in some small but important ways. In particular, the
 LLMNR design explicitly excluded support for service discovery
 [RFC4795], which made it an unsuitable candidate for a protocol to
 replace AppleTalk NBP [NBP].

 In addition to desktop and laptop computers running Mac OS X and
 Microsoft Windows, Multicast DNS is now implemented in a wide range
 of hardware devices, such as Apple's "AirPort" wireless base
 stations, iPhone and iPad, and in home gateways from other vendors,
 network printers, network cameras, TiVo DVRs, etc.

 The Open Source community has produced many independent
 implementations of Multicast DNS, some in C like Apple's
 mDNSResponder daemon, and others in a variety of different languages
 including Java, Python, Perl, and C#/Mono.

 While the original focus of Multicast DNS and DNS-based Service
 Discovery was for Zero Configuration environments without a
 conventional unicast DNS server, DNS-based Service Discovery also
 works using unicast DNS servers, using DNS Update [RFC2136] to create
 service discovery records and standard DNS queries to query for them.
 Apple's Back to My Mac service, launched with Mac OS X 10.5 "Leopard"
 in October 2007, uses DNS-based Service Discovery over unicast DNS.

https://datatracker.ietf.org/doc/html/rfc4795
https://datatracker.ietf.org/doc/html/rfc2136

Cheshire & Krochmal Expires July 16, 2011 [Page 71]

Internet-Draft Multicast DNS Jan 2011

Authors' Addresses

 Stuart Cheshire
 Apple Inc.
 1 Infinite Loop
 Cupertino, California 95014
 USA

 Phone: +1 408 974 3207
 Email: cheshire@apple.com

 Marc Krochmal
 Apple Inc.
 1 Infinite Loop
 Cupertino, California 95014
 USA

 Phone: +1 408 974 4368
 Email: marc@apple.com

Cheshire & Krochmal Expires July 16, 2011 [Page 72]

