
Network Working Group S. Cheshire
Internet-Draft J. Graessley
Intended status: Standards Track R. McGuire
Expires: January 1, 2014 Apple
 June 30, 2013

Encapsulation of TCP and other Transport Protocols over UDP
draft-cheshire-tcp-over-udp-00

Abstract

 Encapsulation of TCP and other transport protocols over UDP enables
 use of UDP-based NAT traversal techniques with other transport
 protocols.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 1, 2014.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Cheshire, et al. Expires January 1, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft TCP-over-UDP June 2013

1. Conventions and Terminology Used in this Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 "Key words for use in RFCs to Indicate Requirement Levels" [RFC2119].

2. Introduction

 To establish direct communication between two devices that are both
 behind NAT gateways, Interactive Connectivity Establishment (ICE)
 [RFC5245] is used to create the necessary mappings in both NAT
 gateways. While, in principle, ICE should work for both TCP and UDP,
 recent work has shown that in practice success rates are higher using
 UDP (about 80% for UDP, compared to 60% for TCP) [RFC5128].

 However, many applications want flow control, congestion control,
 reliability, and other properties provided by TCP. Hence it would be
 desirable to encapsulate TCP over UDP, to provide the transport
 protocol capabilities provided by TCP, combined with the NAT-
 traversal capability available with UDP.

 Using ICE [RFC5245] entails sending and receiving STUN [RFC5389]
 packets. Therefore it is necessary for the encapsulation format to
 support STUN packets and encapsulated TCP packets sharing the same
 UDP port.

 This document defines a suitable encapsulation of TCP (and other
 transport protocols) over UDP.

 We anticipate in-kernel implementations of TCP-over-UDP, making use
 of the kernel's existing mature TCP code, but user-level
 implementations of TCP-over-UDP are also possible, using a high-
 quality user-space TCP implementation that provides the necessary
 congestion control and other desirable aspects of TCP. This allows
 applications to use TCP-over-UDP on operating systems that don't
 provide TCP-over-UDP.

 The performance and congestion control properties of TCP-over-UDP are
 exactly the same as traditional TCP. TCP-over-UDP is traditional TCP
 using UDP/IP as the datagram transport, instead of just raw IP as the
 datagram transport. Existing TCP facilities such as window scaling,
 timestamps, selective ack, and TCP header options are supported, as
 they are with native TCP. In fact, TCP options are expected to work
 more reliably with TCP-over-UDP, because middleboxes will be less
 able to easily interfere with such options, modifying them, stripping
 them, or dropping packets containing TCP options, as they often do

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5245
https://datatracker.ietf.org/doc/html/rfc5128
https://datatracker.ietf.org/doc/html/rfc5245
https://datatracker.ietf.org/doc/html/rfc5389

Cheshire, et al. Expires January 1, 2014 [Page 2]

Internet-Draft TCP-over-UDP June 2013

 today with native TCP packets. In particular, Multipath TCP-over-UDP
 is expected to work more reliably than native Multipath TCP
 [RFC6824], because middleboxes that interfere with use of those TCP
 options will be less able to do that when the packets are
 encapsulated inside UDP.

 Any protocol than can be run over native TCP, including TLS, can be
 run over TCP-over-UDP.

 NAT gateways typically use shorter timeouts for UDP port mappings
 than they do for TCP port mappings. This means that long-lived TCP-
 over-UDP connections will need to send more frequent keepalive
 packets than native TCP connections. For this reason, native TCP
 connections are still preferable for long-lived mostly-idle
 connections. For these connections, TCP-over-UDP should be used only
 when native TCP fails.

3. Conceptual API

 While the protocol specified in this document could be implemented in
 a variety of ways, it is helpful to describe one possible API model
 to illustrate the intended functionality. In this illustrative API,
 the client application first creates an "attachable" UDP socket, and
 then creates an "attached" TCP socket which shares its UDP port. All
 TCP packets sent and received by the "attached" TCP socket are
 encapsulated inside UDP packets.

 Note that the TCP socket conceptually has no associated source port
 of its own. The UDP port numbers provide all the necessary traffic
 demultiplexing, and fully identify the software endpoint to which a
 given UDP packet is directed. No further demultiplexing at the TCP
 level is required. Equivalently, the TCP source port could be
 thought of as being "UDP port X". Note that TCP using "UDP port X"
 as its source port is not that same as a native TCP connection using
 "TCP port X" as its source port. For example, a host with a TCP-
 over-UDP socket listening for TCP-over-UDP connections to UDP port 80
 will often also have a native TCP socket listening for native TCP
 connections to TCP port 80.

https://datatracker.ietf.org/doc/html/rfc6824

Cheshire, et al. Expires January 1, 2014 [Page 3]

Internet-Draft TCP-over-UDP June 2013

4. Packet Format

 The most-significant four bits of the first octet of the UDP payload
 determine whether the payload is:

 o 0x0-0x3: A raw UDP payload (typically a STUN packet)
 o 0x5-0xF: An encapsulated TCP packet
 o 0x4: Some other transport protocol (e.g., SCTP, DCCP, or even UDP)

 These three packet varieties are described in more detail below.

4.1. Raw UDP

 When the client makes an API call to transmit a UDP payload on an
 "attachable" UDP socket, where the most-significant four bits of the
 first octet of the payload are in the range 0x0-0x3 (as is the case
 for a STUN [RFC5389] packet, where the most-significant two bits are
 always zero) the entire UDP payload is sent-as is, with no
 modification.

 Upon reception of a UDP packet where the most-significant four bits
 of the first octet are in the range 0x0-0x3, the entire payload is
 delivered to the application's UDP socket without modification.

 This allows a client application to exchange STUN packets with an
 unmodified STUN server that knows nothing about this new
 encapsulation.

https://datatracker.ietf.org/doc/html/rfc5389

Cheshire, et al. Expires January 1, 2014 [Page 4]

Internet-Draft TCP-over-UDP June 2013

4.2. Encapsulated TCP

 When the client makes an API call to transmit TCP data on an
 "attached" TCP socket, encapsulated TCP packets are generated and
 sent.

 For clarity of explanation, this section describes the process of
 generating these packets in terms of (i) first generating a standard
 TCP packet in the conventional way, and then (ii) performing a
 rewriting step to transform it into a TCP-over-UDP packet just prior
 to transmission. Upon reception, the inverse rewrite is performed to
 transform it back into a conventional TCP packet, which is then
 handed to the TCP stack for the usual TCP processing. In this model
 the only required change to an existing in-kernal TCP implementation
 is that its per-connection data structures need to include an
 additional one-bit flag signifying whether this is a native TCP
 connection or a TCP-over-UDP connection. This is necessary to allow
 TCP port X and TCP-over-UDP port X to coexist simultaneously.

 It is likely that, for better efficiency, implementers may choose to
 modify their TCP code to generate TCP-over-UDP packets directly,
 rather than first generating a standard TCP header and then rewriting
 it. Nonetheless, for clarity, the description which follows assumes
 that a standard TCP packet has been generated, and describes how such
 a packet would be transformed into a TCP-over-UDP packet.

 In the IP header, the IP protocol field is changed from 0x06 (TCP) to
 0x11 (UDP).

Cheshire, et al. Expires January 1, 2014 [Page 5]

Internet-Draft TCP-over-UDP June 2013

 The TCP header [RFC0793] is then rewritten as described below to
 transform it into a legal UDP header [RFC0768]. A 20-octet (or more)
 TCP header is formatted as shown below:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Source Port | Destination Port |
 +-+
 | Sequence Number |
 +-+
 | Acknowledgment Number |
 +-+
 | Data | |U|A|P|R|S|F| |
 | Offset| Reserved |R|C|S|S|Y|I| Window |
 | | |G|K|H|T|N|N| |
 +-+
 | Checksum | Urgent Pointer |
 +-+
 | (Optional) Options |
 +-+

 Figure 1: TCP Header Format

 This header is rewritten into the encapsulated TCP-over-UDP format
 shown below:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Source Port | Destination Port |
 +-+
 | Length | Checksum |
 +-+
 | Data | | |A|P|R|S|F| |
 | Offset| Reserved |0|C|S|S|Y|I| Window |
 | | | |K|H|T|N|N| |
 +-+
 | Sequence Number |
 +-+
 | Acknowledgment Number |
 +-+
 | (Optional) Options |
 +-+

 Figure 2: Encapsulated TCP-over-UDP Header Format

https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc0768

Cheshire, et al. Expires January 1, 2014 [Page 6]

Internet-Draft TCP-over-UDP June 2013

 The specified TCP source port is replaced by the UDP socket's source
 port. If the implementation generates the TCP header using the UDP
 port number, then this is a no-op.

 The specified destination port is preserved. Note that for the
 packet to be interpreted correctly upon reception, the receiving peer
 must (obviously) implement TCP-over-UDP and have it enabled for the
 receiving UDP socket.

 The length is the customary UDP length field, indicating the number
 of octets from the start of this header to the end of the payload.
 It can be computed from the Total Length and Internet Header Length
 fields in the IP header.

 The Checksum is the customary UDP Checksum. Note that the checksum
 does not have to be recomputed by brute-force; it can be derived
 using a simple calculation involving the original TCP Checksum and
 the fields modified in the course of this header rewrite.

 The header up to this point is now a standard UDP header.

 The remainder of the TCP header is re-ordered so that the "Data
 Offset" line comes next. Since the minimum legal value for Data
 Offset is 5, this yields a UDP payload where the most-significant
 four bits of the first octet are necessarily in the range 0x5-0xF.

 The Sequence Number and Acknowledgment Number appear next.

 The TCP Checksum is omitted, since it is redundant. The UDP header
 has its own checksum.

 The TCP Urgent Pointer field is omitted. TCP-over-UDP does not
 support urgent data. The TCP URG flag MUST NOT be set.

 This in-place rewrite converts the 20-octet (or more) TCP header into
 a 20-octet (or more) TCP-over-UDP header. Since the header size is
 the same, the TCP MSS is unchanged.

 Upon reception of a UDP packet where the most-significant four bits
 of the first octet are in the range 0x5-0xF, on a UDP port with TCP-
 over-UDP enabled, the code performs the inverse of the transformation
 described above, and then hands the resulting TCP packet to the
 existing TCP implementation for further processing.

Cheshire, et al. Expires January 1, 2014 [Page 7]

Internet-Draft TCP-over-UDP June 2013

4.3. Encapsulated UDP and Other Transport Protocols

 When the client makes an API call to transmit a UDP payload where the
 most-significant four bits of the first octet are not in the range
 0x0-0x3, an explicit UDP-in-UDP encapsulation is used. A four-octet
 header is inserted before the UDP payload:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 0x40 | proto = 0x11 | 0x00 | 0x00 |
 +-+

 Figure 3: Encapsulated UDP-over-UDP Header Format

 Upon reception of a UDP packet where the most-significant four bits
 of the first octet have the value 0x4, on a UDP port with TCP-over-
 UDP enabled, this signifies an encapsulated transport protocol (other
 than TCP). The value in the second octet indicates the encapsulated
 protocol.

 The details of how a given transport protocol is encapsulated over
 UDP are defined on a per-protocol basis. In particular, the complete
 transport protocol SHOULD NOT be included in its entirety, since some
 of the fields are redundant or unnecessary (as illustrated above for
 TCP). For protocols that use 16-bit port numbers, these port number
 fields SHOULD be omitted from the encapsulated header, since the
 necessary demultiplexing function is performed by the UDP header's
 port number fields.

 In the case of UDP, none of the UDP header fields are replicated in
 the encapsulated content, since the outer UDP header contains all the
 necessary information to infer the effective inner UDP header
 contents (i.e. the source and destination ports are the same, the
 length field of the effective inner UDP header is four octets less
 than the outer UDP header's length field, and the checksum is
 recomputed). Upon reception of such a packet, the four-octet
 encapsulation header is stripped off, and the remaining payload
 delivered to the application. For UDP packets where the most-
 significant four bits of the first octet are not in the range 0x0-
 0x3, this results in an effective MTU reduction of four octets. This
 is not expected to cause any significant problems. The primary use
 of TCP-over-UDP is expected to be for STUN and TCP sharing a UDP
 port.

Cheshire, et al. Expires January 1, 2014 [Page 8]

Internet-Draft TCP-over-UDP June 2013

5. IANA Considerations

 No IANA actions are required by this document.

6. Security Considerations

 No new security risks occur as a result of using this protocol.

7. References

7.1. Normative References

 [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 August 1980.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, September 1981.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

7.2. Informative References

 [RFC5128] Srisuresh, P., Ford, B., and D. Kegel, "State of Peer-to-
 Peer (P2P) Communication across Network Address
 Translators (NATs)", RFC 5128, March 2008.

 [RFC5245] Rosenberg, J., "Interactive Connectivity Establishment
 (ICE): A Protocol for Network Address Translator (NAT)
 Traversal for Offer/Answer Protocols", RFC 5245,
 April 2010.

 [RFC5389] Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,
 "Session Traversal Utilities for NAT (STUN)", RFC 5389,
 October 2008.

 [RFC6824] Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
 "TCP Extensions for Multipath Operation with Multiple
 Addresses", RFC 6824, January 2013.

https://datatracker.ietf.org/doc/html/rfc768
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5128
https://datatracker.ietf.org/doc/html/rfc5245
https://datatracker.ietf.org/doc/html/rfc5389
https://datatracker.ietf.org/doc/html/rfc6824

Cheshire, et al. Expires January 1, 2014 [Page 9]

Internet-Draft TCP-over-UDP June 2013

Authors' Addresses

 Stuart Cheshire
 Apple Inc.
 1 Infinite Loop
 Cupertino, California 95014
 USA

 Phone: +1 408 974 3207
 Email: cheshire@apple.com

 Josh Graessley
 Apple Inc.
 1 Infinite Loop
 Cupertino, California 95014
 USA

 Phone: +1 408 974 5710
 Email: jgraessley@apple.com

 Rory McGuire
 Apple Inc.
 1 Infinite Loop
 Cupertino, California 95014
 USA

 Phone: +1 408 862 3633
 Email: rlpm@apple.com

Cheshire, et al. Expires January 1, 2014 [Page 10]

