
 RMT Working Group Brian Whetten, Consultant
 Internet Engineering Task Force Dah Ming Chiu, CUHK
 Category: Informational Miriam Kadansky, Sun Microsystems
 December 2003 Seok Joo Koh, ETRI
 Expires June 2004 Gursel Taskale, Tibco

 Tree-Based ACK (TRACK) Building Block
 for Reliable Multicast Transport

 <draft-chiu-rmt-bb-track-03.txt>

 Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC 2026.

 Internet-Drafts are valid for a maximum of six months and may be
 updated, replaced, or obsoleted by other documents at any time. It
 is inappropriate to use Internet-Drafts as reference material or to
 cite them other than as a "work in progress".

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 Abstract

 This document defines the Tree-based ACK (TRACK) building block
 (BB) for reliable multicast transport (RMT) protocol instantiations.
 As an RMT building block, the TRACK BB is a coarse-grained modular
 component that may be common to multiple RMT protocols. The TRACK
 BB is designed to provide application-level confirmed delivery,
 local recovery, and enhanced flow and congestion control, and it
 assumes that the TREE BB (RFCyyyy) provides automatic tree
 configuration.

Whetten, Chiu, Kadansky, Koh, Taskale [Page 1]

https://datatracker.ietf.org/doc/html/draft-chiu-rmt-bb-track-03.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

 RMT BB: Tree-based ACK (TRACK) December 2003

 Table of Contents

1. Introduction..3
2. Terminology...4
3. BB Rationale..5
4. Functionality of TRACK BB.....................................5

4.1 Hierarchical Session Creation and Maintenance.............5
4.2 Data Sessions...6
4.3 TRACK Generation and Aggregation..........................7
4.4 Statistics Aggregation....................................7
4.5 Distributed RTT Calculations..............................7

5. Applicability Statement.......................................8
5.1 Application Types...9
5.2 Network Infrastructure....................................9
5.3 Manual vs. Automatic Controls.............................9
5.4 Heterogeneous Networks....................................9
5.5 Use of Network Infrastructure............................10
5.6 Deployment Constraints...................................10
5.7 Target Scalability.......................................10
5.8 Known Failure Modes......................................10

6. TRACK Architecture...11
6.1 TRACK Entities...11
6.2 Basic Operation of the Protocol..........................13

7. Details: TRACK Functionality.................................16
7.1 Session Creation and Maintenance.........................16
7.2 Data Sessions..22
7.3 Control Traffic Generation and Aggregation...............27
7.4 Application Level Confirmed Delivery.....................30
7.5 Distributed RTT Calculations.............................32
7.6 SNMP Support...33
7.7 Late Join Semantics......................................33

8. TRACK Message Types..34
9. Global Configuration Parameters..............................38

9.1 Configuration Variables..................................38
9.2 Constants..39
9.3 Reason Codes...39

10. Requirements from other Building Blocks.....................40
11. Security Considerations.....................................40
12. References..41
13. Acknowledgments...42
14. Author's Addresses..42

Whetten, Chiu, Kadansky, Koh, Taskale [Page 2]

 RMT BB: Tree-based ACK (TRACK) December 2003

1. Introduction

 The Reliable Multicast Transport (RMT) working group was chartered
 to standardize IP multicast transport services [RFC2887]. Rather
 than create a set of monolithic protocol specifications, the RMT WG
 has chosen to break the reliable multicast protocols into Building
 Blocks (BB) and Protocol Instantiations (PI). A Building Block is
 a specification of the algorithms of a single component, with an
 abstract interface to other BBs and PIs. A PI combines a set of
 BBs, adds in the additional required functionality not specified in
 any BB, and specifies the specific instantiation of the protocol.

 There are two primary reliability requirements for a transport
 protocol: ensuring goodput and confirming delivery. Other
 documents describe RMT building blocks to ensure goodput [RFC3450,

RFC3451, RFC3452, NORM-BB, NORM-PI], while this document describes
 the Tree-based ACK building block, or TRACK BB, which is concerned
 with confirming delivery. Specifically, the TRACK BB is designed to
 offer application-level confirmed delivery, aggregation of control
 traffic and sender statistics, local recovery, automatic tree
 building, and enhanced flow and congestion control.

 The TRACK BB assumes that there is a Tree auto-configuration
 building block (e.g., the TREE BB [RFCyyyy]), which provides the
 list of parents to which each node joins. If receivers may serve
 as Repair Heads, the TRACK BB assumes the TREE BB is also
 responsible for selecting the role of each receiver as either
 receiver or Repair Head.

 The TRACK BB is organized around a data channel and a control
 channel. The data channel is responsible for multicast data from
 the sender to all other nodes in a TRACK session. In order to
 integrate with goodput-ensuring transport protocols, these
 protocols are used as the data channel for a given data session.
 This data channel MAY also provide congestion control.

https://datatracker.ietf.org/doc/html/rfc2887
https://datatracker.ietf.org/doc/html/rfc3451
https://datatracker.ietf.org/doc/html/rfc3452

Whetten, Chiu, Kadansky, Koh, Taskale [Page 3]

 RMT BB: Tree-based ACK (TRACK) December 2003

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in
 this document are to be interpreted as described in RFC 2119.

 In addition, the following terms are applied in this document as
 well as the TREE BB document [RFCyyyy].

 Session

 A session is used to distribute data over a multicast address. A
 Session Tree is used to provide reliability and feedback
 services for a session.

 Session Identifier

 A fixed-size number, chosen either by the application that
 creates the session or by the transport. Senders and receivers
 use the session Identifier to distinguish sessions.

 Repair Head (RH)

 A node within the tree which receives and retransmits data, and
 aggregates and forwards control information toward the sender.
 The sender operates as the root repair head in any session tree.
 An RH that has accepted children for a session is called a
 parent.

 Session Tree (ST)

 The session tree is a tree spanning all receivers of a multicast
 session. It is rooted at the sender, consisting of zero of more
 repair heads as interior nodes, and zero or more receivers as
 leaf nodes.

 Parent

 A parent is an RH or receiver's predecessor in the ST on the
 path toward the sender. Every RH or receiver on the tree except
 the sender itself has a parent. Each parent communicates with
 its children using either an assigned multicast address or
 through unicast.

 Children

 The set of receivers and RHs for which an RH or the sender is
 providing repair and feedback services.

https://datatracker.ietf.org/doc/html/rfc2119

Whetten, Chiu, Kadansky, Koh, Taskale [Page 4]

 RMT BB: Tree-based ACK (TRACK) December 2003

3. BB Rationale

 TRACK BB is primarily designed to run in conjunction with another
 transport protocol that is responsible for ensuring goodput.

 The TRACK BB is responsible for specifying all of the TRACK-
 specific functionality. It interfaces with the TREE BB. The TRACK
 PI is then responsible for instantiating a complete protocol that
 includes all of the other components.

4. Functionality of TRACK BB

 This TRACK BB is designed based on the following recommendations,
 as described in Section 4.5 of RFC 3048:

 It has been shown that the scalability of RM protocols can be
 greatly enhanced by the insertion of some kind of retransmission
 or feedback aggregation agents between the source and receivers.
 These agents are then used to form a tree with the source at (or
 near) the root, the receivers at the leaves of the tree, and the
 aggregation/local repair nodes in the middle. The internal
 nodes can either be dedicated software for this task, or they
 may be receivers that are performing dual duty.

 The effectiveness of these agents to assist in the delivery of
 data is highly dependent upon how well the logical tree they use
 to communicate matches the underlying routing topology. The
 purpose of this building block would be to construct and manage
 the logical tree connecting the agents. Ideally, this building
 block would perform these functions in a manner that adapts to
 changes in session membership, routing topology, and network
 availability.

 The TRACK BB provides the following detailed functionality.

4.1 Hierarchical Session Creation and Maintenance

 This set of functionality is responsible for creating and
 maintaining a hierarchical tree of Repair Heads and receivers.

 o Bind. When a child knows the parent it wishes to join to for a
 given Data Session, it binds to that parent.

 o Unbind. When a child wishes to leave a data session, either
 because the session is over or because the application is
 finished with the session, it initiates an unbind operation
 with its parent.

https://datatracker.ietf.org/doc/html/rfc3048#section-4.5

Whetten, Chiu, Kadansky, Koh, Taskale [Page 5]

 RMT BB: Tree-based ACK (TRACK) December 2003

 o Eject. A parent can also force a child to unbind. This
 happens if the parent needs to leave the session, if the child
 is not behaving correctly, or if the parent wants to move the
 child to another parent as part of tree configuration
 maintenance.

 o Fault Detection. In order to verify liveness, parents and
 children send regular heartbeat messages between themselves.
 The sender also sends regular null data messages to the group,
 if it has no data to send.

 o Fault Recovery. When a child detects that its parent is no
 longer reachable, it may switch to another parent. When a
 parent detects that one of its children is no longer
 reachable, it removes that child from its membership list and
 reports this up the tree to the sender of the Data Session.

 o Distributed Membership. Each parent is responsible for
 maintaining a local list of the children attached to it.

4.2 Data Sessions

 This functionality is responsible for the reliable, ordered
 transmission of a set of data messages. These are initially
 transmitted using another transport protocol, the Data Channel
 Protocol, which has primary responsibility for ensuring goodput.

 o Data Transmission. The sender takes sequenced data messages
 from the application, and passes them to the data channel
 protocol for multicast transmission. It delays passing them
 to the data channel protocol if it is presently flow controlled.

 o Flow Control and Buffer Management. Senders and Repair
 Heads MAY maintain a set of buffers that are at least as large
 as the senders transmission window. The receivers pass their
 reception status up to the sender as part of their TRACK
 messages. This MAY be used to advance the buffer windows at
 each node and limit the senders window advancement to the
 speed of the slowest sender.

 o Retransmission Requests. While primary responsibility for
 goodput rests with the data channel protocol, receivers MAY
 request retransmission of lost messages from their parents.

 o Local Recovery. Repair Heads keep track of retransmission
 requests from their children, and provide repairs to them. If
 a Repair Head cannot fulfill a retransmission request, it
 forwards it up the tree.

Whetten, Chiu, Kadansky, Koh, Taskale [Page 6]

 RMT BB: Tree-based ACK (TRACK) December 2003

 o End of Stream. When a data session is completed, this is
 signaled as an End of Stream condition.

4.3 TRACK Generation and Aggregation

 This set of functionality is responsible for periodically
 generating TRACK messages from all receivers and aggregating them
 at Repair Heads. These messages provide updated flow control
 window information, roundtrip time measurements, and congestion
 control statistics. They OPTIONALLY acknowledge receipt of data,
 OPTIONALLY report missing messages, and OPTIONALLY provide group
 statistics.

 The algorithms include:

 o TRACK Timing. In order to avoid ACK implosion, the senders
 and Repair Heads use timing algorithms to control the speed at
 which TRACK messages are sent.

 o TRACK Aggregation. In order to provide the highest levels of
 scalability and reliability, interior tree nodes provide
 aggregation of control traffic flowing up the tree. The
 aggregated feedback information includes that used for end-to-
 end confirmed delivery, flow control, congestion control, and
 group membership monitoring and management.

 o Statistics Request. A sender may prompt senders to generate
 and report a set of statistics back to the sender.

4.4 Statistics Aggregation

 In addition to the predefined aggregation types, aggregation of
 self-describing data may also be performed on sender statistics
 flowing up the tree.

4.5 Distributed RTT Calculations

 One of the primary challenges of congestion control is efficient
 RTT calculation. TRACK provides two methods to perform these
 calculations.

 o sender Per-Message RTT Calculations. On demand, a sender
 stamps outgoing messages with a timestamp. As each TRACK is
 passed up the tree, the amount of dally time spent waiting at
 each node is accumulated. The lowest measurements are passed
 up the tree, and the dally time is subtracted from the
 original measurement.

Whetten, Chiu, Kadansky, Koh, Taskale [Page 7]

 RMT BB: Tree-based ACK (TRACK) December 2003

 o Local Per-Level RTT Calculations. Each parent measures the
 local RTT to each of its children as part of the keep-alive
 messages used for failure detection.

5. Applicability Statement

 The primary objective of TRACK is to provide additional
 functionality in conjunction with a receiver reliable protocol.
 These functions MAY include application layer reliability, enhanced
 congestion control, flow control, statistics reporting, local
 recovery, and automatic tree building. It is designed to do this
 while still offering scalability in the range of 10,000s of
 receivers per data session. The primary corresponding design
 tradeoffs are additional complexity, and lower isolation of nodes
 in the face of network and host failures.

 There is a fundamental tradeoff between reliability and real-time
 performance in the face of failures. There are two primary types of
 single layer reliability that have been proposed to deal with this:
 sender reliable and receiver reliable delivery.

 Sender reliable delivery is similar to TCP, where the sender knows
 the identity of the senders in a Data Session, and is notified when
 any of them fails to receive all the data messages. Sender reliable
 delivery limits knowledge of group membership and failures to only
 the actual senders. Senders do not have any knowledge of the
 membership of a group, and do not require senders to explicitly
 join or leave a Data Session. Sender reliable protocols scale
 better in the face of networks that have frequent failures, and
 have very high isolation of failures between senders. This TRACK
 BB provides sender reliable delivery, typically in conjunction with
 a sender reliable system.

 This BB is specified according to the guidelines in RFC 3269, along
 with RFC 2357 and RFC 2887. It specifies all communication
 between entities in terms of messages, rather than packets. A
 message is an abstract communication unit, which may be part of, or
 all of, a given packet. It does not have a specific format,
 although it does contain a list of fields, some of which may be
 optional, and some of which may have fixed lengths associated
 with them. It is up to each protocol instantiation to combine
 the set of messages in this BB, with those in other components,
 and create the actual set of packet formats that will be used.

 As mentioned in the introduction, this BB assumes the existence of
 a separate TREE BB [RFCyyyy].

https://datatracker.ietf.org/doc/html/rfc3269
https://datatracker.ietf.org/doc/html/rfc2357
https://datatracker.ietf.org/doc/html/rfc2887

Whetten, Chiu, Kadansky, Koh, Taskale [Page 8]

 RMT BB: Tree-based ACK (TRACK) December 2003

5.1 Application Types

 TRACK is designed to support a wide range of applications that
 require one to many bulk data transfer and application layer
 confirmed delivery. Examples of applications that fit into the
 one-to-many data dissemination model are: real time financial news
 and market data distribution, electronic software distribution,
 audio video streaming, distance learning, software updates and
 server replication.

 Historically, financial applications have had the most stringent
 reliability requirements, while audio video streaming have had the
 least stringent. For applications that do not require this level of
 reliability, or that demand the lowest levels of latency and the
 highest levels of failure isolation, TRACK may be less applicable.

5.2 Network Infrastructure

 TRACK is designed to work over almost all multicast and broadcast
 capable network infrastructures. It is specifically designed to be
 able to support both asymmetrical and single source multicast
 environments.

 Asymmetric networks with very low upbound bandwidth and a very low
 loss Data Channel may be better served solely through NACK based
 protocols, particularly if high reliability is not required. A good
 example is some satellite networks.

5.3 Manual vs. Automatic Controls

 Some networks can take advantage of manual or centralized tools for
 configuring and controlling the usage of a reliable multicast group.
 In public Internet the tools have to span multiple administrative
 domains where policies may be inconsistent. Hence, it is
 preferable to design tools that are fully distributed and automatic.
 To address these requirements, TRACK provides automatic
 configuration, but can also support manual configuration options.

5.4 Heterogeneous Networks

 While the majority of controlled networks are symmetrical and
 support many-to-many multicast, in designing a protocol for the
 Internet, we must deal with virtually most network types. These
 include asymmetrical networks, satellite networks, networks where
 only a single node may send to a multicast group, and wireless
 networks. TRACK takes this into account by not requiring any many-
 to-many multicast services.

Whetten, Chiu, Kadansky, Koh, Taskale [Page 9]

 RMT BB: Tree-based ACK (TRACK) December 2003

5.5 Use of Network Infrastructure

 TRACK is designed to run in either single level or hierarchical
 configurations. In a single level, there is no need for specialized
 network infrastructure. In hierarchical configurations, special
 nodes called Repair Heads are defined, which may run either as part
 of a distributed application, or as part of dedicated server
 software. TRACK does not specifically support or require Generic
 Router Assist or other router level assist.

5.6 Deployment Constraints

 The two primary tradeoffs TRACK has, for the functionality it
 provides, are additional complexity, and decreased failure
 isolation. Hence, if target applications are to be deployed in
 networks with high rates of persistent failures, and isolation of
 failed senders from affecting other senders is of high importance,
 TRACK may not be appropriate. Similarly, if simplicity is
 paramount, TRACK may not be appropriate.

5.7 Target Scalability

 The target scalability of TRACK is tens of thousands of
 simultaneous senders per Data Session. Dedicated Repair Heads are
 targeted to be able to support thousands of simultaneous Data
 Sessions.

5.8 Known Failure Modes

 If a hierarchical control tree is mis-configured, so that loop-free,
 contiguous connection is not provided, failure will occur. This
 failure is designed to occur gracefully, at the initialization of a
 Data Session.

 If the configuration parameters on control traffic are poorly
 chosen on an asymmetrical network, where there is much less control
 channel bandwidth available than data channel bandwidth, there may
 be a very high rate of control traffic. This control traffic is
 not dynamically congestion controlled like the data traffic, and so
 could potentially cause congestion collapse. This potential control
 channel overload could be exacerbated by an application that makes
 overly heavy use of the application level confirmation or
 statistics gathering functions.

Whetten, Chiu, Kadansky, Koh, Taskale [Page 10]

 RMT BB: Tree-based ACK (TRACK) December 2003

6. TRACK Architecture

6.1 TRACK Entities

6.1.1 Node Types

 TRACK divides the operation of the protocol into three major
 entities: sender, sender, and Repair Head.

 It is assumed that senders and senders typically run as part of an
 application on an end host client. Repair Heads MAY be components
 in the network infrastructure, managed by different network
 managers as part of different administrative domains, or MAY run on
 an end host client, in which case they function as both senders and
 Repair Heads. Absent of any automatic tree configuration, it is
 assumed that the Infrastructure Repair Heads have relatively static
 configurations, which consist of a list of nearby possible Repair
 Heads. Senders and receivers, on the other hand, are transient
 entities, which typically only exist for the duration of a single
 data session. In addition to these core components, applications
 that use TRACK are expected to interface with other services that
 reside in other network entities, such as multicast address
 allocation, session advertisement, network management consoles,
 DHCP, DNS, overlay networking, application level multicast, and
 multicast key management.

6.1.2 Multicast Group Address

 A multicast group address is a logical address that is used to
 address a set of TRACK nodes. It is RECOMMENDED to consist of a
 pair consisting of an IP multicast address and a UDP port number.
 In this case, it may optionally have a Time To Live (TTL) value,
 although this value MUST only be used for providing a global scope
 to a data session, and not for scoping of local retransmissions.
 Data multicast addresses are multicast group addresses.

 TRACK MAY be used with an overlay multicast or application layer
 multicast system. In this case, a Multicast Group Address MAY have
 a different format. The TRACK PI is responsible for specifying the
 format of a multicast group address.

6.1.3 Data Session

 A data session is the unit of reliable delivery of TRACK. It
 consists of a sequence of sequentially numbered data messages,
 which are sent by a single sender over a single data multicast
 address.

Whetten, Chiu, Kadansky, Koh, Taskale [Page 11]

 RMT BB: Tree-based ACK (TRACK) December 2003

 They are delivered reliably, with acknowledgements and
 retransmissions occurring over the control tree. A data Session ID
 uniquely identifies it. A given Data Session is received by a set
 of zero or more senders, and a set of zero or more Repair Heads.
 One or more data sessions MAY share the same data multicast address
 (although this is NOT RECOMMENDED). Each TRACK node can
 simultaneously participate in multiple data sessions. A receiver
 MUST join all the data multicast addresses and control trees
 corresponding to the data sessions it wishes to receive.

6.1.4 Data Channel

 A data Session is multicast over a data channel. The data channel
 is responsible for efficiently delivering the data messages to the
 members of a data Session, and providing statistical reliability
 guarantees on this delivery.

 TRACK is then responsible for providing application level, sender
 based reliability, by confirming delivery to all senders, and
 optionally retransmitting lost messages that did not get correctly
 delivered by the data channel.

6.1.5 Data Multicast Address

 This is the multicast group address used by the data channel
 protocol, to efficiently deliver data messages to all receivers and
 Repair Heads. All data multicast addresses used by TRACK are
 assumed to be unidirectional and only support a single sender.

6.1.6 Control Tree or Session Tree

 A control tree is a hierarchical communication path used to send
 control information from a set of receivers, through zero or more
 Repair Heads (RHs), to a sender. Information from lower nodes is
 aggregated as the information is relayed to higher nodes closer to
 the sender. Each data session uses a control tree. It is
 acceptable to have a degenerate control tree with no Repair Heads,
 which connects all of the receivers directly to the sender.

 Each RH in the control tree uses a separate local control channel
 for communicating with its children. It is RECOMMENDED that each
 local control channel correspond to a separate multicast group
 address.

6.1.7 Local Control Channel

 A local control channel is a unidirectional multicast path from a
 Repair Head or sender to its children. It uses a multicast group
 address for this communication.

Whetten, Chiu, Kadansky, Koh, Taskale [Page 12]

 RMT BB: Tree-based ACK (TRACK) December 2003

6.1.8 Host ID

 With the widespread deployment of network address translators,
 creating a short globally unique ID for a host is a challenge. By
 default, TRACK uses a 48 bit long Host ID field, filled with the
 low-order 48 bits of the MD5 signature of the DNS name of the
 source. A TRACK PI, to match up with the goodput-ensuring protocol
 that TRACK PI uses as its Data Channel Protocol, MAY redefine the
 length and contents of this identifier.

6.1.9 Data Session ID

 A data Session ID is a globally unique identifier for a data
 session. It may either be selected by the data channel protocol
 (i.e. NORM) or by TRACK. By default, it is the combination of the
 Host ID for the sender, combined with the 16-bit port number used
 for the data session at the sender. This identifier is included in
 every TRACK message.

6.1.10 Child ID

 All members in a TRACK Data Session, besides the sender, are
 identified by the combination of their Host ID, and the port number
 with which they send IP packets to their parent.

6.1.11 Message Sequence Numbers

 A Message Sequence Number is a 32 bit number in the range from 1
 through 2^32 - 1, which is used to specify the sequential order of
 a data message in a data stream. A sender node assigns consecutive
 Sequence Numbers to the data messages provided by the sender
 application. By default, zero is reserved to indicate that the
 data session has not yet started. A TRACK PI MAY redefine this.
 Message Sequence Numbers may wrap around, and so Sequence Number
 arithmetic MUST be used to compare any two Sequence Numbers.

6.2 Basic Operation of the Protocol

 For each data session, TRACK provides sequenced, reliable delivery
 of data from a single sender to up to tens of thousands of senders.
 A TRACK data session consists of a network that has exactly one
 sender node, zero or more receiver nodes and zero or more Repair
 Heads.

 The figure below illustrates a TRACK Data Session with multiple
 Repair Heads.

Whetten, Chiu, Kadansky, Koh, Taskale [Page 13]

 RMT BB: Tree-based ACK (TRACK) December 2003

 -------> SD (sender node)----->|
 ^^^ |
 / | \ Control |
 TRACKs / | \ Tree |
 / | \ |
 / | \ (Repair |
 / | \ Head |
 / | \ nodes) v
 RH RH RH <------------|
 ^^ ^^^ ^^ | Data
 / | / | \ | \ | Channel
 / | / | \ | \ |
 / | / | \ | \ v
 R R R R R R R <---------
 (receiver nodes)

 Figure 1. TRACK Session

 Before a data session starts, a session advertisement MUST be
 received by all members of the Data Session, notifying them to join
 the group, and the appropriate configuration information for the
 data session. This MAY be provided directly by the application, by
 an external service, or by the TRACK PI.

 A sender joins the control tree and a data channel protocol. It
 multicasts data messages on the data multicast address, using the
 data channel protocol. All of the nodes in the session subscribe
 to the data multicast address and join the data channel protocol.

 There is no assumption of congruence between the topology of the
 data multicast address and the topology of the control tree.

 A receiver joins the appropriate data channel, and the data
 multicast address used by that protocol, in order to receive data.
 A receiver periodically informs its parent about the messages that
 it has received by unicasting a TRACK message to the parent. It
 MAY also request retransmission of lost messages in this TRACK.
 Each parent node aggregates the TRACKs from its child nodes and (if
 it is not the sender) unicasts a single aggregated TRACK to its
 parent.

 The sender and each Repair Head have a multicast local control
 channel to their children. This is used for transmitting Heartbeat
 messages that inform their child nodes that the parent node is
 still functioning. This channel is also used to perform local
 retransmission of lost Data messages to just these children. TRACK

Whetten, Chiu, Kadansky, Koh, Taskale [Page 14]

 RMT BB: Tree-based ACK (TRACK) December 2003

 MUST still provide correct operation even if multicast addresses
 are reused across multiple Data Sessions or multiple local control
 channels. It is NOT RECOMMENDED to use the same multicast address
 for multiple local control channels serving any given Data Session.

 The communication path forms a loop from the sender to the
 receivers, through the Repair Heads back to the sender. Original
 data (ODATA), Retransmission (RDATA) and NullData messages
 regularly exercise the downward data direction. Heartbeat messages
 exercise the downward control direction. TRACK messages regularly
 exercise the Control Tree in the upward direction. This
 combination constantly checks that all of the nodes in the tree are
 still functioning correctly, and initiates fault recovery when
 required.

 This hierarchical infrastructure allows TRACK to provide a number
 of functions in a scalable way. Application level confirmation of
 delivery and statistics aggregation both operate in a request-reply
 mode. A sender issues a request for application level confirmation
 or statistics reporting, and the receivers report back the
 appropriate information in their TRACK messages. This information
 is aggregated by the Repair Heads, and passed back up to the sender.
 Since TRACK messages are not delivered with the reliability of data
 messages, receivers and Repair Heads transmit this information
 redundantly.

 TRACK also gathers control information that is useful for improving
 the performance of flow and congestion control algorithms,
 including scalable round trip time measurements.

Whetten, Chiu, Kadansky, Koh, Taskale [Page 15]

 RMT BB: Tree-based ACK (TRACK) December 2003

7. Details: TRACK Functionality

7.1 Session Creation and Maintenance

7.1.1 Tree Configuration

 Before a data session starts reliably delivering data, the tree for
 the data session needs to be created. This process binds each
 receiver to either a Repair Head or the sender, and binds the
 participating Repair Heads into a loop-free tree structure with the
 sender as the root of the tree. This process requires tree
 configuration knowledge, which can be provided with some
 combination of manual and/or automatic configuration. The
 algorithms for automatic tree configuration are part of the TREE BB
 [RFCyyyy]. They return to each node the address of the parent it
 should bind to, as well as zero or more backup parents to use if
 the primary parent fails.

7.1.2 Bind

 In order to join a data session and bind to the tree, the following
 nodes need the following parameters.

 A Repair Head requires the following parameters.

 - Session: the unique identifier for the Data Session to join,
 received from the session advertisement algorithm specified in
 the PI.

 - ParentAddress: the address and port of the parent node to which
 the node should connect, received from the TREE BB.

 - UDPListenPort: the number of the port on which the node will
 listen for its childrens control messages. This parameter is
 configured by the application.

 - RepairAddr: the multicast address, UDP port, and TTL on which
 this node sends control messages to its children. This
 parameter is configured by the application.

 A sender requires the above parameters, except for the
 parentAddress. A sender requires the above parameters, except for
 the UDPListenPort and RepairAddr.

 A Bind operation happens when a child wishes to join a parent in
 the distribution tree for a given Data Session. The receivers
 initiate the first Bind protocols to their parents, which then
 cause recursive binding by each parent, up to the sender. Each
 receiver sends a separate BindRequest message for each of the

Whetten, Chiu, Kadansky, Koh, Taskale [Page 16]

 RMT BB: Tree-based ACK (TRACK) December 2003

 streams that it would like to join. At the discretion of the PI,
 multiple BindRequest messages may be bundled together in a single
 message.

 A node sends a BindRequest message to its automatically selected or
 manually configured parent node. The parent node sends either a
 BindConfirm message or a BindReject message. Reception of a
 BindConfirm message terminates the algorithm successfully, while
 receipt of a BindReject message causes the node to either retry the
 same parent or restart the Bind algorithm with its next parent
 candidate (depending on the BindReject reason code), or if it has
 none, to declare a REJECTED_BY_PARENT error. Once the node is
 accepted by a Repair Head, it informs the Tree BB using the setSN
 interface.

 Reliability is achieved through the use of a standard request-
 response protocol. At the beginning of the algorithm, the child
 initializes TimeMaxBindResponse to the constant
 TIMEOUT_PARENT_RESPONSE and initializes NumBindResponseFailures to
 0. Every time it sends a BindRequest message, it waits
 TimeMaxBindResponse for a response from the parent node. If no
 response is received, the node doubles its value for
 TimeMaxBindResponse, but limits TimeMaxBindResponse to be no larger
 than MAX_TIMEOUT_PARENT_RESPONSE. It also increments
 NumBindResponseFailures, and retransmits the BindRequest message.
 If NumBindResponseFailures reaches NUM_MAX_PARENT_ATTEMPTS, it
 reports a PARENT_UNREACHABLE error.

 When a parent receives a BindRequest message, it first consults the
 TREE BB for approval (using the acceptchild Tree BB interface), for
 instance to ensure that accepting the BindRequest will not cause a
 loop in the tree. Then the parent checks to be sure that it does
 not have more than Maxchildren children already bound to it for
 this session. If it can accept the child, it sends back a
 BindConfirm message. Otherwise, it sends the node a BindReject
 message. Then the parent checks to see if it is already a member of
 this Data Session. If it is not yet a member of this session, it
 attempts to join the tree itself.

 The BindConfirm message contains the lowest Sequence Number that
 the Repair Head has available. If this number is 0, then the Repair
 Head has all of the data available from the start of the session.
 Otherwise, the requesting node is attempting a late join, and can
 only use this Repair Head if late join was allowed by the PI. If
 late join is not allowed, the node may try another Repair Head, or
 give up.

Whetten, Chiu, Kadansky, Koh, Taskale [Page 17]

 RMT BB: Tree-based ACK (TRACK) December 2003

 Similarly, if a failure recovery occurs, when a node tries to bind
 to a new Repair Head, it must follow the same rules as for a late
 join. See Fault Recovery, below.

7.1.3 Unbind

 A child may decide to leave a Data Session for the following
 reasons. 1) It detects that the Data Session is finished. 2) The
 application requests to leave the Data Session. 3) It is not able
 to keep up with the data rate of the Data Session. When any of
 these conditions occurs, it initiates an Unbind process.

 An Unbind is, like the Bind function, a simple request-reply
 protocol. Unlike the Bind function, it only has a single response,
 UnbindConfirm. With this exception, the Unbind operation uses the
 same state variables and reliability algorithms as the Bind
 function.

 When a child receives an UnbindConfirm message from its parent, it
 reports a LEFT_DATA_SESSION_GRACEFULLY event. If it does not
 receive this message after NUM_MAX_PARENT_ATTEMPTS, then it reports
 a LEFT_DATA_SESSION_ABNORMALLY event. Unbinds are reported to the
 Tree BB using the lostSN interface.

7.1.4 Eject

 A parent may decide to remove one or more of its children from a
 data stream for the following reasons. 1) The parent needs to
 leave the group due to application reasons. 2) The Repair Head
 detects an unrecoverable failure with either its parent or the
 sender. 3) The parent detects that the child is not able to keep
 up with the speed of the data stream. 4) The parent is not able to
 handle the load of its children and needs some of them to move to
 another parent. In the first two cases, the parent needs to
 multicast the advertisement of the termination of one or more Data
 Sessions to all of its children. In the second two cases, it needs
 to send one or more unicast notifications to one or more of its
 children.

 Consequently, an Eject can be done either with a repeated multicast
 advertisement message to all children, or a set of unicast request-
 reply messages to the subset of children that it needs to go to.

 For the multicast version of Eject, the parent sends a multicast
 UnbindRequest message to all of its children for a given Data
 Session, on its Local Multicast Channel. It is only necessary to
 provide statistical reliability on this message, since children
 will detect the parents failure even if the message is not received.

Whetten, Chiu, Kadansky, Koh, Taskale [Page 18]

 RMT BB: Tree-based ACK (TRACK) December 2003

 Therefore, the UnbindRequest message is sent
 FAILURE_DETECTION_REDUNDANCY times.

 For the unicast version of Eject, the parent sends a unicast
 UnbindRequest message to all of its children. Each of them
 responds with an EjectConfirm. Reliability is ensured through the
 same request-reply mechanism as the Bind operation.

 Ejections are reported to the Tree BB using the removechild
 interface.

7.1.5 Fault Detection

 There are three cases where fault detection is needed. 1)
 Detection (by a child) that a parent has failed. 2) Detection (by
 a parent) that a child has failed. 3) Detection (by either a
 Repair Head or sender) that a sender has failed.

 In order to be scalable and efficient, fault detection is primarily
 accomplished by periodic keep-alive messages, combined with the
 existing TRACK messages. nodes expect to see keep-alive messages
 every set period of time. If more than a fixed number of periods
 go by, and no keep-alive messages of a given type are received, the
 node declares a preliminary failure. The detecting node may then
 ping the potentially failed node before declaring it failed, or it
 can just declare it failed.

 Failures are detected through three keep-alive messages: Heartbeat,
 TRACK, and NullData. The Heartbeat message is multicast
 periodically from a parent to its children on its Local Control
 Channel. NullData messages are multicast by a sender on the Data
 Control Channel when it has no data to send. TRACK messages are
 generated periodically, even if no data is being sent to a Data
 Session.

 Heartbeat messages are multicast every HeartbeatPeriod seconds,
 from a parent to its children. Every time that a parent sends a
 Retransmission message or a Heartbeat message (as well as at
 initialization time), it resets a timer for HeartbeatPeriod seconds.
 If the timer goes off, a Heartbeat is sent. The HeatbeatPeriod is
 dynamically computed as follows:

 interval = AckWindow / MessageRate

 HeartbeatPeriod = 2 * interval

 Global configuration parameters ConstantHeartbeatPeriod and
 MinimumHeartbeatPeriod can be used to either set HeartbeatPeriod to
 a constant, or give HeartbeatPeriod a lower bound, globally.

Whetten, Chiu, Kadansky, Koh, Taskale [Page 19]

 RMT BB: Tree-based ACK (TRACK) December 2003

 Similarly, a NullData message is multicast by the sender to all
 data session members, every NULL_DATA_PERIOD. The NullData timer
 is set to NULL_DATA_PERIOD, and is reset every time that a Data or
 NullData message is sent by the sender.

 The key parameter for failure detection is the global tree
 parameter FAILURE_DETECTION_REDUNDANCY. The higher the value for
 this parameter, the more keep-alive messages that must be missed
 before a failure is declared.

 A major goal of failure detection is for children to detect parent
 failures fast enough that there is a high probability they can
 rejoin the stream at another parent, before flow control has
 advanced the buffer window to a point where the child can not
 recover all lost messages in the stream. In order to attempt to do
 this, children detect a failure of a parent if
 FAILURE_DETECTION_REDUNDANCY * HeartbeatPeriod time goes by without
 any heartbeats. As part of buffer window advancement, all parents
 MAY choose to buffer all messages for a minimum of
 FAILURE_DETECTION_REDUNDANCY * 2 * HeartbeatPeriod seconds, which
 gives children a period of time to find a new parent before the
 buffers are freed. Children report parent failures to the Tree BB
 using the lostSN interface.

 A parent detects a preliminary failure of one of its children if it
 does not receive any TRACK messages from that child in
 FAILURE_DETECTION_REDUNDANCY * TrackTimeout seconds (see discussion
 of how TrackTimeout is computed below). Because a failed child can
 slow down the groups progress, it is very important that a parent
 resolve the childs status quickly. Once a parent declares a
 preliminary failure of a child, it issues a set of up to
 FAILURE_DETECTION_REDUNDANCY Heartbeat messages that are unicast
 (or multicast) to the failed sender(s). These messages are spaced
 apart by 2*LocalRTT, where LocalRTT is the round trip time that has
 been measured to the child in question (see below for description
 of how LocalRTT is measured). These Heartbeat messages contain a
 childrenList field that contains the children who are requested to
 send a TRACK immediately.

 Whenever a child receives a Heartbeat message where the child is
 identified in the childrenList field, it immediately sends a TRACK
 to its parent. If a parent does not receive a TRACK message from a
 child after waiting a period of 2*LocalRTT after the last Heartbeat
 message to that child, it declares the child failed, and removes it
 from the parents child membership list. It informs the Tree BB
 using the removechild interface.

Whetten, Chiu, Kadansky, Koh, Taskale [Page 20]

 RMT BB: Tree-based ACK (TRACK) December 2003

 A child or a Repair Head detects the failure of a sender if it does
 not receive a Data or NullData message from a sender in
 FAILURE_DETECTION_REDUNDANCY * NULL_DATA_PERIOD.

 Note that the more senders there are in a tree, and the higher the
 loss rate, the larger FAILURE_DETECTION_REDUNDANCY must be, in
 order to give the same probability that erroneous failures wont be
 declared.

7.1.6 Fault Notification

 When a parent detects the failure of a child, it adds a failure
 notification field to the next TRANSMISSION_REDUNDANCY TRACK
 messages that it sends up the tree. It sends this notification
 multiple times because TRACKs are not delivered reliably. A
 failure notification field includes the failure code, as well as a
 list of one or more failed nodes. Failure notifications are
 aggregated up the tree and delivered to the sender. A failure
 notification is not a definitive report of a node failure, as the
 child may have detected a communication failure with its parent and
 moved to a different Repair Head.

7.1.7 Fault Recovery

 The Fault Recovery algorithms require a list of one or more
 addresses of alternate parents that can be bound to, and that still
 provide loop free operation.

 If a child detects the failure of its parent, it then re-runs the
 Bind operation to a new parent candidate, in order to rejoin the
 tree. A node may perform a late join, i.e. binding with a Repair
 Head which cannot provide all the necessary repair data, only if
 allowed by the PI.

7.1.8 Distributed Membership.

 Each Repair Head is responsible for maintaining a set of state
 variables on the status of its children. Unlike the Generic Router
 Assist, this is hard state, that only is removed when a child
 leaves that Repair Head gracefully, or after the Repair Head
 detects that a child has failed. These variables MUST include, but
 are not necessarily limited to, the following:

 - childID. This is the two-byte identifier assigned to the child by
 the Repair Head. This uniquely identifies this child to this
 Repair Head, but has no meaning outside that scope.
 - GlobalchildIdentifier. This is the globally unique identifier for
 this child.
 - childRTT. This is the weighted average of the local RTT to child.

Whetten, Chiu, Kadansky, Koh, Taskale [Page 21]

 RMT BB: Tree-based ACK (TRACK) December 2003

 - LastTRACK. This is the contents of the last TRACK message sent
 from this child, if any, not including options.
 - LastApplicationLevelConfirmation. This is the content of the last
 Application Level Confirmation sent from this child, if any.
 - Last Statistics. This is the contents of the last Statistics
 message sent from this child, if any.
 - ChildLiveness. This is a set of variables that keep track of the
 liveness of each child. This includes the last time a TRACK
 message was received from this child, as well as the number of
 Heartbeat messages that have been directed at it, and the time at
 which the last Heartbeat message was sent to the child. Please see
 Fault Detection, above, for more details.

7.2 Data Sessions

7.2.1 Data Transmission and Retransmission

 Data is multicast by a sender on the Data Multicast Address via the
 Data Channel Protocol. The Data Channel Protocol is responsible
 for taking care of as many retransmissions as possible, and for
 ensuring the goodput of the Data Session. TRACK is then
 responsible for providing OPTIONAL flow control and application
 level reliability. The mechanics of an application level
 confirmation of delivery are handled by TRACK, including keeping
 track of the distributed membership list of receivers and
 aggregating acknowledgements up the control tree. Please see below
 for more details on flow control and application level confirmation.

 A common scenario for handling recovery of lost messages is to
 allow the data channel protocol to provide statistical reliability,
 and then allow TRACK to provide retransmissions for more persistent
 failure cases, such as if a sender is not able to receive any data
 messages for a few minutes.

 Retransmissions of data messages may be multicast by the sender on
 the data multicast address or be multicast on a local control
 channel by a Repair Head.

 A Repair Head joins all of the Data Multicast Addresses that any of
 its descendants have joined. A Repair Head is responsible for
 receiving and buffering all data messages using the reliability
 semantics configured for a stream. As a simple to implement option,
 a Repair Head MAY also function as a sender, and pass these data
 messages to an attached application.

 For additional fault tolerance, a sender MAY subscribe to the
 multicast address associated with the Local Control Channel of one
 or more Repair Heads in addition to the multicast address of its

Whetten, Chiu, Kadansky, Koh, Taskale [Page 22]

 RMT BB: Tree-based ACK (TRACK) December 2003

 parent. In this case it does not bind to this Repair Head or sender,
 but will process Retransmission messages sent to this address. If
 the receivers Repair Head fails and it transfers to another Repair
 Head, this minimizes the number of data messages it needs to
 recover after binding to the new Repair Head.

7.2.2 Local Retransmission

 If a Repair Head or sender determines from its child nodes TRACK
 messages that a Data message was missed, the Repair Head
 retransmits the Data message. The Repair Head or sender multicasts
 the Retransmission message on its multicast Local Control Channel.
 In the event that a Repair Head receives a retransmission and knows
 that its children need this repair, it re-multicasts the
 retransmission to its children.

 The scope of retransmission (the multicast TTL) is considered part
 of the Control Channels multicast address, and is derived during
 tree configuration.

 A Repair Head maintains the following state for each of its
 children, for the purpose of providing repair service to the local
 group:

 - HighestConsecutivelyReceived. A Sequence Number indicating all
 Data messages up to this number (inclusive) that have been
 received by a given child.

 - MissingMessages. A data structure to keep track of the reception
 status of the Data messages with Sequence Number higher than
 HighestConsecutivelyReceived.

 The minimum HighestConsecutivelyReceived value of all its children
 is kept as the variable LocalStable.

 A Repair Head also maintains a retransmission buffer. The size of
 the retransmission buffer MUST be greater than the maximum value of
 a sender transmission window. The retransmission buffer MUST keep
 all the data messages received by the Repair Head with Sequence
 Number higher than LocalStable, optionally some messages with
 Sequence Number lower than LocalStable if there is room (beyond the
 maximum value of senders transmission window). The latter messages
 are kept in the retransmission buffer in case a sender from another
 group losses its parent and needs to join this group.

 As TRACK messages are received, the Repair Head updates the above
 state variables.

Whetten, Chiu, Kadansky, Koh, Taskale [Page 23]

 RMT BB: Tree-based ACK (TRACK) December 2003

 To perform local repair, a Repair Head implements a retransmission
 queue with memory. Each lost message is entered into the
 retransmission queue in increasing order according to its Sequence
 Number. If the same data message has already been retransmitted
 recently (recognized due to the queues memory) it is delayed by the
 local group RTT (see roundtrip time measurement) before
 retransmission.

 Retransmissions MAY NOT be sent at a faster rate than the current
 TransmissionRate advertised by the sender.

7.2.3 Flow and Rate Control

 TRACK offers the ability to limit the rate of Data traffic, through
 both flow control and rate limits.

 When a sender sends a TRACK to its parent, the HighestAllowed field
 provides information on the status of the senders flow control
 window. The value of HighestAllowed is computed as follows:

 HighestAllowed = seqnum + senderWindow

 Where seqnum is the highest Sequence Number of consecutively
 received data messages at the sender. The size of the senderWindow
 may either be based on a parameter local to the sender or be a
 global parameter.

 If flow control is enabled for a given Data Session, then a sender
 MUST NOT send any Data messages to the Data Channel Protocol that
 are higher than the current value for HighestAllowed that it has.
 On startup, HighestAllowed is initialized to senderWindow.

 In addition, the sender application MAY provide minimum and maximum
 rate limits. Unless overridden by the Data Channel Protocol, a
 sender will not offer Data messages to the Data Channel Protocol at
 lower than MinimumDataRate (except possibly during short periods of
 time when certain slow senders are being ejected), or higher than
 MaximumDataRate. If a sender is not able to keep up with the
 minimum rate for a period of time, it SHOULD leave the group
 promptly. senders that leave the group MAY attempt to rejoin the
 group at a later time, but SHOULD NOT attempt an immediate
 reconnection.

7.2.4 Reliability Window

 The sender and each Repair Head maintain a window of messages for
 possible retransmission. As messages are acknowledged by all of
 its children, they are released from the parents retransmission
 buffer, as described in 4.2.2. In addition, there are two global

Whetten, Chiu, Kadansky, Koh, Taskale [Page 24]

 RMT BB: Tree-based ACK (TRACK) December 2003

 parameters that can affect when a parent releases a data message
 from the retransmission buffer -- MinHoldTime, and MaxHoldTime.

 MinHoldTime specifies a minimum length of time a message must be
 held for retransmission from when it was received. This parameter
 is useful to handle scenarios where one or more children have been
 disconnected from their parent, and have to reconnect to another.
 If, for example, MinHoldTime is set to FAILURE_DETECTION_REDUNDANCY
 * 2 * ConstantHeartbeatPeriod, then there is a high likelihood that
 any child will be able to recover any lost messages after
 reconnecting to another parent.

 The sender continually advertises to the members of the Data
 Session both edges of its retransmission window. The higher value
 is the SeqNum field in each Data or NullData message, which
 specifies the highest Sequence Number of any data message sent.
 The trailing edge of the window is advertised in the
 HighestReleased field. This specifies the largest Sequence Number
 of any message sent that has subsequently been released from the
 sender retransmission window. If both values are the same then the
 window is presently empty. Zero is not a legitimate value for a
 data Sequence Number, so if either field has a value of zero, then
 no messages have yet reached that state. All Sequence Number
 fields use Sequence Number arithmetic so that a Data Session can
 continue after exhausting the Sequence Number space.

 When a member of a Data Session receives an advertisement of a new
 HighestReleased value, it stores this, and is no longer allowed to
 ask for retransmission for any messages up to and including the
 HighestReleased value. If it has any outstanding missing messages
 that are less than or equal to HighestReleased, it MAY move forward
 and continue delivering the next data messages in the stream. It
 also SHOULD report an error for the messages that are no longer
 recoverable.

 MaxHoldTime specifies the maximum length of time a message may be
 held for retransmission. This parameter is set at the sender which
 uses it to set the HighestReleased field in data message headers.
 This is particularly useful for real-time, semi-reliable streams
 such as live video, where retransmissions are only useful for up to
 a few seconds. When combined with Unordered delivery semantics,
 and application-level jitter control at the senders, this provides
 Time Bounded Reliability. MaxHoldTime MUST always be larger than
 MinHoldTime.

Whetten, Chiu, Kadansky, Koh, Taskale [Page 25]

 RMT BB: Tree-based ACK (TRACK) December 2003

7.2.5 Ordering Semantics

 TRACK offers two flavors of ordering semantics: Ordered or
 Unordered. One of these is selected on a per session basis as part
 of the Session Configuration Parameters.

 Unordered service provides a reliable stream of messages, without
 duplicates, and delivers them to the application in the order
 received.This allows the lowest latency delivery for time sensitive
 applications. It may also be used by applications that wish to
 provide its own jitter control.

 Ordered service provides TCP semantics on delivery. All messages
 are delivered in the order sent, without duplicates.

7.2.6 Retransmission Requests.

 A sender detects that it has missed one or more Data messages by
 gaps in the sequence numbers of received messages. Each sender
 keeps track of HighestSequenceNumber, the highest sequence number
 known of for a Data Session, as observed from Data, RData, and
 NullData messages. Any sequence numbers between HighestReleased
 and HighestSequenceNumber that have not been received are assumed
 to be missing.

 When a sender detects missing messages it MAY send off a request
 for retransmission, if local retransmission is enabled. It does
 this by sending a Retransmission Request message. The timing of
 this request is described below.

7.2.7 End Of Stream.

 When an application signals that a Data Session is complete, the
 sender advertises this to its children by setting the End of
 Session option on the last Data Message in the Data Session, as
 well as all subsequent retransmissions of that Data Message, and
 all subsequent Null Data messages.

 The sender SHOULD NOT leave the Data Session until it has a report
 from the TRACK reports that all group members have left the Data
 Session, or it has waited a period of at least
 FAILURE_DETECTION_REDUNDANCY * TrackTimeout seconds.

Whetten, Chiu, Kadansky, Koh, Taskale [Page 26]

 RMT BB: Tree-based ACK (TRACK) December 2003

7.3 Control Traffic Generation and Aggregation.

 One of the largest challenges for scalable reliable multicast
 protocols has been that of controlling the potential explosion of
 control traffic. There is a fundamental tradeoff between the
 latency with which losses can be detected and repaired, and the
 amount of control traffic generated by the protocol.

 TRACK messages are the primary form of control traffic in this BB.
 They are sent from senders and Repair Heads to their parents.
 TRACK messages may be sent for the following purposes:
 - to request retransmission of messages
 - to advance the senders transmission window for flow control
 purposes
 - to deliver application level confirmation of data reception
 - to propagate other relevant feedback information up through the
 session (such as RTT and loss reports, for congestion control)

7.3.1 TRACK Generation with the Rotating TRACK Algorithm

 Each receiver sends a TRACK message to its parent once per
 AckWindow of data messages received. A sender uses an offset from
 the boundary of each AckWindow to send its TRACK, in order to
 reduce burstiness of control traffic at the parents. Each parent
 has a maximum number of children, Maxchildren. When a child binds
 to the parent, the parent assigns a locally unique childID to that
 child, between 0 and Maxchildren-1.

 Each child in a tree generates a TRACK message at least once every
 AckWindow of data messages, when the most recent data messages
 Sequence Number, modulo AckWindow, is equal to MemberID. If the
 message that would have triggered a given TRACK for a given node is
 missed, the node will generate the TRACK as soon as it learns that
 it has missed the message, typically through receipt of a higher
 numbered data message.

 Together, AckWindow and Maxchildren determine the maximum ratio of
 control messages to data messages seen by each parent, given a
 constant load of data messages. In each data message, the sender
 advertises the current MessageRate (measured in messages per
 second) it is sending data at. This rate is generated by the
 congestion control algorithms in use at the sender.

 At the time a node sends a regular TRACK, it also computes a
 TRACKTimeout value:

 interval = AckWindow / MessageRate

 TRACKTimeout = 2 * interval

Whetten, Chiu, Kadansky, Koh, Taskale [Page 27]

 RMT BB: Tree-based ACK (TRACK) December 2003

 If no TRACKs are sent within TRACKTimeout interval, a TRACK is
 generated, and TRACKTimeout is increased by a factor of 2, up to a
 value of MAX_TRACK_TIMEOUT.

 This timer mechanism is used by a sender to ensure timely repair of
 lost messages and regular feedback propagation up the tree even
 when the sender is not sending data continuously. This mechanism
 complements the AckWindow-based regular TRACK generation mechanism.

7.3.2 TRACK Aggregation

 There are many reasons for providing feedback from all the
 receivers to the sender in an aggregated form. The major ones are
 listed below:

 1) End-to-end delivery confirmation. This confirmation tells the
 sender that all the senders (in the entire tree) have received
 data messages up to a certain Sequence Number. This is carried in
 an Application Level Confirmation message.

 2) Flow control. The aggregated information is carried in the field
 HighestAllowed. It tells the sender the highest Sequence Number
 that all the senders (in the entire tree) are prepared to receive.

 3) Congestion control feedback. Information about the state of the
 tree can be passed up to help control the congestion control
 algorithms for the group.

 4) Counting current membership in the group. This information is
 carried in the field SubTreeCount. This lets the sender know the
 number of senders currently connected to the repair tree.

 5) Measuring the round-trip time from the sender to the "worst"
 sender.

 A Repair Head maintains state for each child. Each time a TRACK
 (from a child) is received, the corresponding states for that child
 are updated based on the information in the TRACK message. When a
 Repair Head sends a TRACK message to its parent, the following
 fields of its TRACK message are derived from the aggregation of the
 corresponding states for its children. The following rules
 describe how the aggregation is performed:

 - WorstLossRate. Take the maximum value of the WorstLossRate from
 all children.
 - SubTreeCount. Take the sum of the SubTreeCount from all children.
 - HighestAllowed. Take the minimum of the HighestAllowed value
 from all children.

Whetten, Chiu, Kadansky, Koh, Taskale [Page 28]

 RMT BB: Tree-based ACK (TRACK) December 2003

 - WorstEdgeThroughput. Take the minimum value of the
 WorstEdgeThroughput field from all children.
 - UnicastCost. Take the sum of the UnicastCost from all children.
 - MulticastCost. Take the sum of MulticastCost from all children.
 - senderDallyTime: take the minimum value, for all of the children,
 of (childs reported senderDallyTime + childs local dally time).
 - FailureCount: take the sum of the FailureCount for all children.
 - FailureList: concatenate the FailureList fields for all children,
 up to a maximum list size of MaxFailureListSize.

 Note, the senderTimeStamp, parentTimestamp, and parentDallyTime
 fields are not aggregated. The sender will derive the roundtrip
 time to the worst sender by doing its local aggregation for
 senderDallyTime.

 Application level confirmations (ALCs) are handled as follows. For
 a set of ALC requests from receivers, the ones with the highest
 value for HighConfirmationSequenceNumber are considered, and all
 others are discarded.

 For the ConfirmationStatus field, the following rules apply. Note
 that ConfirmationStatus of SomesendersAcknowledge can correspond to
 a ConfirmationCount of zero.

 If all children report AllsendersAcknowledge Then
 ConfirmationStatus = AllsendersAcknowlege
 Else If at least one child reports (ListOfFailures OR
 FailuresExceedMaximumListSize) Then
 If the count of all reported failures >
 MaximumFailureListSize Then
 ConfimationStatus = FailuresExceedMaximumListSize
 Else
 ConfirmationStatus = ListOfFailures
 Else
 ConfirmationStatus = SomesendersAcknowledge

 The ConfirmationCount field is equal to the sum of the
 ConfimationCount for the aggregated ALC reports of all children.
 The PendingCount field is equal to the sum of the PendingCount
 fields of all children. The FailureList field is the concatenation
 of the FailureList fields of all aggregated ALC reports of all
 children, up to a maximum length of MaximumFailureListSize.

 In addition to these fields with fixed aggregation rules, TRACK
 supports a set of user defined aggregation statistics. These
 statistics are self-describing in terms of their data type and
 aggregation method. Statistics reports are numbered, and only the
 most recent statistics report request is aggregated to the sender.
 Statistics are aggregated over the set of child statistics reports

Whetten, Chiu, Kadansky, Koh, Taskale [Page 29]

 RMT BB: Tree-based ACK (TRACK) December 2003

 that have been received with that number. Aggregation methods
 include minimum, maximum, sum, product, and concatenation.

7.3.3 Statistics Reporting.

 A sender can request a list of aggregated statistics from all
 senders in the group. There are a set of predefined statistics,
 such as loss rate and average throughput. There is also the
 capacity to request a set of other TRACK statistics, as well as
 application-defined statistics.

 The format of each statistic is self-describing, both in terms of
 data type, size, and aggregation method. A sender reliably sends
 out a statistics request by attaching it as an option to a Data
 message. When a sender gets a request for a statistic, it fills in
 the data fields and forwards it up the tree in the next TRACK
 message. Since TRACKs are not reliable, multiple copies are sent
 in a total of NumReplies consecutive TRACK messages from each
 sender. Each statistics report is aggregated according to the
 method described in the statistic and the result is delivered to
 the sender.

 Most aggregation options have fixed length no matter how many
 senders there are. The one exception is concatenation, which
 creates a list of values from some or all senders, up to a length
 of MaximumStatisticsListSize entries. It is NOT RECOMMENDED to use
 this to create group-wide lists, unless the group size is carefully
 controlled.

7.4 Application Level Confirmed Delivery.

 Flow control and the reliability window are concerned with goodput,
 of delivering data with a high probability that it is delivered at
 all senders. However, neither mechanism provides explicit
 confirmation to the sender as to the list of recipients for each
 message. Application level confirmed delivery allows applications
 to determine the set of applications that have received a set of
 data messages.

 There are three primary factors that determine the reliability
 semantics of a message: the senders knowledge of the sender list,
 the application level actions that must be performed in order to
 consider a message delivered, and the response to persistent
 failure conditions at senders. For example, an extremely strong
 distributed guarantee would consist of the following. First, the
 full sender membership list is known at the sender, and verified to
 make sure no receivers have left the group. Second, the
 application at each receiver must write the data to persistent

Whetten, Chiu, Kadansky, Koh, Taskale [Page 30]

 RMT BB: Tree-based ACK (TRACK) December 2003

 store before it can be acknowledged. Third, receivers are given a
 very long period of time to recover all lost data messages, before
 they are ejected from the data session. In the meantime,
 transmission of data messages is flow controlled by the slowest
 receivers.

 A weaker form of reliability would include the following. First,
 that the sender gets a count of receivers, and otherwise depends on
 the distributed group membership algorithms to maintain the
 membership list. Second, that data messages are considered reliably
 delivered as soon as the application receives the data from TRACK.
 Third, that retransmissions are limited to only 30 seconds, and
 receivers must choose to leave the Data Session or continue with
 missing data messages, if a failure takes longer than this period
 to recover from.

 TRACK provides the functionality to easily implement a wide range
 of application level confirmation semantics, based on how these
 three items are configured. It is the applications responsibility
 to then select the configurations it desires for a given data
 session.

 The primary mechanism for application level confirmation (ALC) of
 delivery is the ALC report. To check for ALC of delivery, a sender
 issues an Application Level Confirmation Request, by attaching this
 message as an option to a Data message, and reliably transmitting
 it to all senders. Each ALC Request includes a specified level of
 reliability, a reply redundancy factor, and the range of Data
 message sequence numbers that the ALC Confirmation covers.

 When a sender gets an ALC Request, it checks to see if the
 application has delivered the specified range of Data Messages,
 including both the Low Confirmation Sequence Number and the High
 Confirmation Sequence Number. When it sends the next TRACK out, it
 sets the ConfirmationStatus field to either SomesendersAcknowledge
 if it is still pending confirmation, AllsendersAcknowledge if it
 has application level confirmation, ListOfFailures if it has a
 failure and MaximumFailureListSize > 0, or
 FailuresExceedsMaximumListSize otherwise. It also sets the
 ConfirmCount to 1 if it has a confirmation, and PendingCount to 1
 if it is still pending. If the Immediate ACK bit is set in the ALC
 Request, the sender generates an ACK immediately.

 One example of how an application can implicitly signal
 confirmation of delivery is through the freeing of buffers passed
 to it by the transport. The API could specify that whenever an
 application has freed up a buffer containing one or more data
 messages, then these messages are considered acknowledged by the

Whetten, Chiu, Kadansky, Koh, Taskale [Page 31]

 RMT BB: Tree-based ACK (TRACK) December 2003

 application. Alternatively, the application could be required to
 explicitly acknowledge each message.

7.5 Distributed RTT Calculations.

 This TRACK BB provides two algorithms for distributed RTT
 calculations: LocalRTT measurements and senderRTT measurements.
 LocalRTT measurements are only between a parent and its children.
 senderRTT measurements are end-to-end RTT measurements, measuring
 the RTT to the worst sender as selected by the congestion control
 algorithms.

 The senderRTT is useful for congestion control. It can be used to
 set the data rate based on the TCP response function, which is
 being proposed for the congestion control building blocks.

 The LocalRTT can be used to (a) quickly detect faulty children (as
 described under fault detection) or (b) avoid sending unnecessary
 retransmissions (as described in the local repair algorithm).

 In the case of LocalRTT measurements, a parent initiates
 measurement by including a parentTimestamp field in a Heartbeat
 message sent to its children. When a child receives a Heartbeat
 message with this field set, it notes the time of receipt using its
 local system clock, and stores this with the message as
 HeartbeatReceiveTime. When the child next generates a TRACK, just
 before sending it, it measures its system clock again as
 TRACKSendTime, and calculates the LocalDallyTime.

 LocalDallyTime = TRACKSendTime - HeartbeatReceiveTime.

 The child includes this value, along with the parentTimestamp field,
 as fields in the next TRACK message sent. Every heartbeat message
 that is multicast to all children SHOULD include a parentTimestamp
 field.

 The senderRTT algorithm is similar. A sender initiates the process
 by including a senderTimestamp field in a data message. When a
 sender gets a message with this field set, it keeps track of the
 DataReceiveTime for that message, and when it generates the next
 TRACK message, includes the senderTimestamp and senderDallyTime
 value. These values are aggregated by Repair Heads.

 Each node only keeps track of the most recent value for
 {senderTimestamp, DataReceiveTime} and {parentTimestamp,
 HeartbeatReceiveTime}, replacing any older values any time that a
 new message is received with these values set. As long as it has
 non-zero values to report, each node sends up both a

Whetten, Chiu, Kadansky, Koh, Taskale [Page 32]

 RMT BB: Tree-based ACK (TRACK) December 2003

 {senderTimestamp, senderDallyTime} and a {parentTimestamp,
 LocalDallyTime} set of fields in each TRACK message generated.

 Unless redefined by the TRACK PI, these RTT measurements are
 averaged using an exponentially weighted moving average, where the
 first RTT measurement, RTT_measurement, initializes the average
 RTT_average, and then each successive measurement is averaged in
 according to the following formula. The RECOMMENDED value for
 alpha is 1/8.

 RTT_average = RTT_measurement * alpha + RTT_average (1-alpha)

7.6 SNMP Support

 The Repair Heads and the sender are designed to interact with SNMP
 management tools. This allows network managers to easily monitor
 and control the sessions being transmitted. All TRACK nodes MAY
 have SNMP MIBs defined in a separate document. SNMP support is
 OPTIONAL for sender nodes, but is RECOMMENDED for all other nodes.

7.7 Late Join Semantics

 TRACK offers three flavors of late join support:

 a) No Recovery
 A sender binds to a Repair Head after the session has started
 and agrees to the reliability service starting from the
 Sequence Number in the current data message received from the
 sender.

 b) Continuation
 This semantic is used when a sender has lost its Repair Head
 and needs to re-affiliate. In this case, the sender must
 indicate the oldest Sequence Number it needs to repair in order
 to continue the reliability service it had from the previous
 Repair Head. The binding occurs if this is possible.

 c) No Late Join
 For some applications, it is important that a sender receives
 either all data or no data (e.g. software distribution). In this
 case option (c) is used.

 These are specified by the LateJoinSemantics session parameter, and
 enforced by a parent when a child attempts to bind to it.

Whetten, Chiu, Kadansky, Koh, Taskale [Page 33]

 RMT BB: Tree-based ACK (TRACK) December 2003

8. TRACK Message Types

 The following table summarizes the messages and their fields used
 by the TRACK BB. All messages contain the session identifier.

 Table 1. TRACK Messages

 +---+
 Message From To Mcast? Fields
 +---+
 BindRequest child parent no Scope, Level, Role,Rejoin
 BindSequenceNumber,SubTreeCount
 +---+
 BindConfirm parent child no RepairAddr,BindSequenceNumber
 LowestAvailableRepair Level, childIndex, Role
 +---+
 BindReject parent child no Reason, BindSequenceNumber
 +---+
 UnbindRequest child parent no Reason, childIndex
 +---+
 UnbindConfirm parent child no
 +---+
 EjectRequest parent child either Reason, Alternateparent
 +---+
 EjectConfirm child parent no
 +---+
 Heartbeat parent child either Level, parentTimestamp
 childrenList,
 SeqNum HighestReleased
 +---+
 NullData, sender all yes senderTimeStamp, DataLength
 OData HighestReleased, SeqNum
 EndOfStream, TransmissionRate
 +---+
 Rdata parent child yes senderTimeStamp, DataLength
 HighestReleased, SeqNum
 EndOfStream, TransmissionRate
 +---+
 Track child parent no BitMask, SubTreeCount
 Slowest, HighestAllowed
 parentThere, parentTimeStamp
 parentDallyTime, senderTimeStamp
 senderDallyTime, CongestionControl, FailureList
 +---+
 StatsRequest sender sender yes Immediate, StatsSeqNum
 NumReplies, StatsList
 +---+
 StatsReply child parent yes StatsSeqNum, StatsList
 +---+

Whetten, Chiu, Kadansky, Koh, Taskale [Page 34]

 RMT BB: Tree-based ACK (TRACK) December 2003

 The various fields of the messages are described as follows:

 - BindSequenceNumber: This is a monotonically increasing sequence
 number for each bind request from a given sender for a given Data
 Session.

 - Scope: an integer to indicate how far a repair message travels.
 This is optional.

 - Rejoin: a flag as to whether this sender was previously a member
 of this Data Session.

 - Level: an integer that indicates the level in the repair tree.
 This value is used to keep loops in the tree from forming, in
 addition to indicating the distance from the sender. Any changes
 in a nodes level are passed down to the Tree BB using the
 treeLevelUpdate interface.

 - Role: This indicates if the bind requestor is a sender or Repair
 Head.

 - SubTreeCount: This is an integer indicating the current number of
 senders below the node.

 - RepairAddr: This field in the BindConfirm message is used to tell
 the sender which multicast address the Repair Head will be sending
 retransmissions on. If this field is null, then the sender should
 expect retransmissions to be sent on the senders data multicast
 address.

 - Alternateparent: This is an optional field that specifies another
 parent a child may attempt to bind to.

 - SeqNum: an integer indicating the Sequence Number of a data
 message within a given Data Session. For a Heartbeat, it is the
 highest sequence number the parent knows about.

 - ChildIndex: This is an integer the Repair Head assigns to a
 particular child. The child sender uses this value to implement
 the rotating TRACK Generation algorithm.

 - LowestRepairAvailable: This is the lowest sequence number that a
 Repair Head will provide repairs for.

 - Reason: a code indicating the reason for the BindReject,
 UnbindRequest, or EjectRequest message.

 - ParentTimestamp: This field is included in Heartbeat messages to

Whetten, Chiu, Kadansky, Koh, Taskale [Page 35]

 RMT BB: Tree-based ACK (TRACK) December 2003

 signal the need to do a local RTT measurement from a parent. It
 is the time when the parent sent the message.

 - childrenList: This field contains the identifiers for a list of
 children. As part of the keepalive message, this field together
 with the SeqNum field is used to urge those listed senders to send
 a TRACK (for the provided SeqNum). The Repair Head sending this
 must have been missing the regular TRACKs from these children for
 an extended period of time.

 - senderTimestamp: This field is included in Data messages to signal
 the need to do a roundtrip time measurement from the sender,
 through the tree, and back to the sender. It is the time
 (measured by the senders local clock) when it sent the message.

 - ApplicationSynch: a Sequence Number signaling a request for
 confirmed delivery by the application.

 - EndOfStream: indicates that this message is the end of the data
 for this session.

 - TransmissionRate: This field is used by the sender to tell the
 senders its sending rate, in messages per second. It is part of
 the data or nulldata messages.

 - HighestReleased: This field contains a Sequence Number,
 corresponding to the trailing edge of the senders retransmission
 window. It is used (as part of the data, nulldata or
 retransmission headers) to inform the senders that they should no
 longer attempt to recover those messages with a smaller (or same)
 Sequence Number.

 - HighestAllowed: a Sequence Number, used for flow control from the
 senders. It signals the highest
 Sequence Number the sender is allowed to send that will not
 overrun the senders buffer pools.

 - BitMask: an array of 1s and 0s. Together with a Sequence Number
 it is used to indicate lost data messages. If the ith element is
 a 1, it indicates the message SeqNum+i is lost.

 - Slowest: This field contains a field that characterizes the
 slowest sender in the subtree beneath (and including) the node
 sending the TRACK. This is used to provide information for the
 congestion control BB.

 - SenderDallyTime: This field is associated with a senderTimestamp
 field. It contains the sum of the waiting time that should be
 subtracted from the RTT measurement at the sender.

Whetten, Chiu, Kadansky, Koh, Taskale [Page 36]

 RMT BB: Tree-based ACK (TRACK) December 2003

 - ParentDallyTime: This is the same as the senderDallyTime, but is
 associated with a parentTimestamp instead of a senderTimestamp.

 - DataLength: This is the length of the Data payload.

 - CongestionControl: This includes any additional congestion
 control variables for aggregation, such as WorstLossRate,
 WorstEdgeThroughput, UnicastCost, and MulticastCost.

 - ApplicationConfirms: This is the SeqNum value for which delivery
 has been confirmed by all children at or below this parent.

 - Failedchildren: This is a list of all children that have recently
 been dropped from the repair tree.

 - Immediate: If set to 1, a sender should immediately send a TRACK
 on receipt of this packet.

 - Reliability: The level of reliability required in order to
 consider the set of data packets reliably delivered.

 - NumReplies: The number of consecutive TRACK messages that should
 be sent with this message attached

 - SeqNumRange: The set of data messages that the ALC request applies
 to.

 - ConfirmStatus: The acknowledgement status of the senders in the
 subtree up to the node that sends this message.

 - ConfirmCount: The number of senders in the subtree up to the node
 that sends this message, that have acknowledged the ALC request.

 - PendingCount: The number of senders in this subtree that are
 still pending in their decision as to acknowledging this ALC
 request.

 - StatsSeqNum: The number of this request for statistics.

 - StatsList: The list of statistics to be filled in by senders, and
 aggregated by the control tree.

Whetten, Chiu, Kadansky, Koh, Taskale [Page 37]

 RMT BB: Tree-based ACK (TRACK) December 2003

9. Global Configuration Parameters

9.1 Configuration Variables

 These are variables that control the session and are advertised to
 all participants. Some of them MAY be configured as constants.

 - TimeMaxBindResponse: the time, in seconds, to wait for a response
 to a BindRequest. Initial value is TIMEOUT_PARENT_RESPONSE
 (recommended value is 3). Maximum value is
 MAX_TIMEOUT_PARENT_RESPONSE.

 - Maxchildren: The maximum number of children a Repair Head is
 allowed to handle. Recommended value: 32.

 - ConstantHeartbeatPeriod: Instead of dynamically calculating the
 HeartbeatPeriod, a constant period may be used instead.
 Recommended value: 3 seconds.

 - MinimumHeartbeatPeriod: The minimum value for the dynamically
 calculated HeartbeatPeriod. Recommended value: 1 second.

 - MinHoldTime: The minimum amount of time a Repair Head holds on to
 data messages.

 - MaxHoldTime: The maximum amount of time a Repair Head holds on to
 data messages.

 - AckWindow: The number of messages seen before a sender issues an
 acknowledgement. Recommended value: 32.

 - LateJoinSemantics: The options available to a sender who wishes
 to join a Data Session that is already in progress.

 - MaximumFailureListSize: The maximum number of entries that can be
 in a failure list. This MUST be small enough that the FailureList
 does not ever cause a TRACK to exceed the size of a maximum UDP
 packet. Recommended value: 800.

 - MaximumStatisticsListSize: The maximum number of entries that can
 be in a statistics list. This MUST be small enough that the
 FailureList does not ever cause a TRACK to exceed the size of a
 maximum UDP packet. Recommended value: 100.

 - MaximumDataRate: The maximum admission rate for data messages from
 the application to the Data Channel Protocol.

 - MinimumDataRate: The minimum admission rate for data messages from
 the application to the Data Channel Protocol.

Whetten, Chiu, Kadansky, Koh, Taskale [Page 38]

 RMT BB: Tree-based ACK (TRACK) December 2003

9.2 Constants

 - NUM_MAX_PARENT_ATTEMPTS: The number of times to try to bind to a
 Repair Head before declaring a PARENT_UNREACHABLE error.
 Recommended value is 5.

 - TIMEOUT_PARENT_RESPONSE: The minimum value, in seconds, between
 attempts to contact a parent. Recommended value is 1 second.

 - MAX_TIMEOUT_PARENT_RESPONSE: The maximum value, in seconds,
 between attempts to contact a parent. Recommended value is 16.

 - NULL_DATA_PERIOD: The time between transmission of NullData
 Messages. Recommended value is 1.

 - FAILURE_DETECTION_REDUNDANCY: The number of times a message is
 sent without receiving a response before declaring an error.
 Recommended value is 3.

 - MAX_TRACK_TIMEOUT: The maximum value for TRACKTimeout.
 Recommended value is 5 seconds.

 - TRANSMISSION_REDUNDANCY: The number of times a failure
 notification is redundantly sent up the tree in a TRACK message.
 Recommended value is 3.

9.3 Reason Codes

 o BindReject reason codes
 - LOOP_DETECTED
 - MAX_CHILDREN_EXCEEDED

 o UnbindRequest reason codes
 - SESSION_DONE
 - APPLICATION_REQUEST
 - RECEIVER_TOO_SLOW

 o EjectRequest reason codes
 - PARENT_LEAVING
 - PARENT_FAILURE
 - CHILD_TOO_SLOW
 - PARENT_OVERLOADED

Whetten, Chiu, Kadansky, Koh, Taskale [Page 39]

 RMT BB: Tree-based ACK (TRACK) December 2003

10. Requirements from other Building Blocks

 This TRACK BB can be interfaced to any other BB or PI wishing to
 use a tree structure. To actually use this BB's features, the PI
 needs to include the messages described in this BB in its packets.

11. Security Considerations

 Basically, this document is for informational and security issues
 are not applied. The following considerations are given just for
 information:

 a. The primary security requirement for a TRACK protocol is
 protection of the transport infrastructure. This is
 accomplished through the use of lightweight group authentication
 of the control and, optionally, the data messages sent to the
 group. These algorithms use IPsec and shared symmetric keys.

 b. For TRACK, it is recommended that there be one shared key for
 the Data Session and one for each Local Control Channel. These
 keys are distributed through a separate key manager component,
 which may be either centralized or distributed. Each member of
 the group is responsible for contacting the key manager,
 establishing a pair-wise security association with the key
 manager, and obtaining the appropriate keys.

 c. The exact algorithms for this BB are presently the subject of
 research within standardization within the IETF Multicast
 Security (MSEC)working group.

Whetten, Chiu, Kadansky, Koh, Taskale [Page 40]

 RMT BB: Tree-based ACK (TRACK) December 2003

12. References

 Normative:

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels," BCP 14, RFC 2119, March 1997

 [RFC3048] Whetten, B., Vicisano, L., Kermode, R., Handley, M., Floyd,
 S. and M. Luby, "Reliable Multicast Transport Building
 Blocks for One-to-Many Bulk-Data Transfer," RFC 3048,
 January 2001.

 [RFCyyyy] Chiu, D., Koh, S., Kadansky, M., Whetten, B. and G. Taskale,
 "Tree Auto-Configuration (TREE) Building Block for Reliable
 Multicast Transport," RFC yyyy, 2004.

 Informative:

 [RFC3269] Kermode, R., Vicisano, L., "Author Guidelines for Reliable
 Multicast Transport (RMT) Building Blocks and Protocol
 Instantiation documents," RFC 3269, April 2002.

 [RFC2887] Handley, M., Whetten, B., Kermode, R., Floyd, S., Vicisano,
 L., and Luby, M., "The Reliable Multicast Design Space for
 Bulk Data Transfer," RFC 2887, August 2000.

 [RFC2357] Mankin, A., Romanow, A., Bradner, S. and V. Paxson, "IETF
 Criteria for Evaluating Reliable Multicast Transport and
 Application Protocols," RFC 2357, June 1998.

 [RFC3450] Luby, M., Gemmell, J., Vicisano, L., Rizzo, L. and J.
 Crowcroft, " Asynchronous Layered Coding (ALC) Protocol
 Instantiation," RFC 3450, December 2002.

 [RFC3451] Luby, M., Gemmell, J., Vicisano, L., Rizzo, L., Handley, M.
 and J. Crowcroft, "Layered Coding Transport (LCT) Building
 Block," RFC 3451, December 2002.

 [RFC3452] Luby, M., Vicisano, L., Gemmell, J., Rizzo, L., Handley, M.,
 and J. Crowcroft, "Forward Error Correction (FEC) Building
 Block," RFC 3452, December 2002.

 [NORM-BB] Adamson, B., Bormann, C., Handley M., Macker J. "NACK-
 Oriented Reliable Multicast (NORM) Building Blocks,"
 Internet Draft, December 2003.

 [NORM-PI] Adamson, B., Bormann, C., Handley M., Macker J. "NACK-
 Oriented Reliable Multicast Protocol (NORM)," Internet
 Draft, December 2003.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3048
https://datatracker.ietf.org/doc/html/rfc3269
https://datatracker.ietf.org/doc/html/rfc2887
https://datatracker.ietf.org/doc/html/rfc2357
https://datatracker.ietf.org/doc/html/rfc3450
https://datatracker.ietf.org/doc/html/rfc3451
https://datatracker.ietf.org/doc/html/rfc3452

Whetten, Chiu, Kadansky, Koh, Taskale [Page 41]

 RMT BB: Tree-based ACK (TRACK) December 2003

13. Acknowledgments

 The authors would like to give special thanks to Sanjoy Paul, Joe
 Wesley and Juyoung Park for their valuable comments.

14. Author's Addresses

 Brian Whetten
 brian@whetten.net
 2430 20th Street #D, Santa Monica, CA 90405

 Dah Ming Chiu
 dmchiu@ie.cuhk.edu.hk
 Information Engineering Department,
 The Chinese University of Hong Kong Shatin, N.T. Hong Kong

 Miriam Kadansky
 miriam.kadansky@sun.com
 Sun Microsystems Laboratories 1 Network Drive
 Burlington, MA 01803

 Seok Joo Koh
 sjkoh@etri.re.kr
 Protocol Engineering Center,
 ETRI, 161 Kajung-Dong Yusong-Gu, TAEJON, 305-350, KOREA

 Gursel Taskale
 gursel@tibco.com
 TIBCO
 3303 Hillview Ave. Palo Alto, CA. 94304-1213

Whetten, Chiu, Kadansky, Koh, Taskale [Page 42]

 RMT BB: Tree-based ACK (TRACK) December 2003

 Full Copyright Statement

 Copyright (C) The Internet Society (2003). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet languages other than English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."

 Whetten, Chiu, Kadansky, Koh, Taskale [Page 43]

