
NETVC (Internet Video Codec) Y. Cho
Internet-Draft Mozilla Corporation
Intended status: Informational October 31, 2016
Expires: May 4, 2017

Applying PVQ Outside Daala
draft-cho-netvc-applypvq-00

Abstract

 This document describes the Perceptual Vector Quantization (PVQ)
 outside of the Daala video codec, where PVQ was originally developed.
 It discusses the issues arising while integrating PVQ into a
 traditional video codec, AV1.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 4, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Cho Expires May 4, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Applying PVQ Outside Daala October 2016

Table of Contents

1. Background . 2
2. Integration of PVQ into non-Daala codec, AV1 3
2.1. Signaling Skip for Paritition and Transform Block 4
2.2. Issues . 5

3. Performance of PVQ in AV1 5
3.1. Coding Gain . 5
3.2. Speed . 6

4. Future Work . 7
5. Development Repository 8
6. Acknowledgements . 8
7. IANA Considerations . 8
8. Informative References 8

 Author's Address . 9

1. Background

 Perceptual Vector Quantization (PVQ) [I-D.valin-netvc-pvq] has been
 proposed as a quantization and coefficient coding tool for an
 internet video codec. PVQ was originally developed for Daala video
 codec [1], which does a gain-shape coding of transform coefficients
 instead of more traditional scalar quantization. (The original
 abbreviation of PVQ, "Pyramid Vector Quantizer", as in
 [I-D.valin-netvc-pvq] is now commonly expanded as "Perceptual Vector
 Quantization".)

 The most distinguishing idea of PVQ is the way it referneces a
 predictor. With PVQ, we do not subtract the predictor from the input
 to produce a residual, which is then transformed and coded. Both the
 predictor and the input are transformed into the frequency domain.
 Then, PVQ applies a reflection to both the predictor and the input
 such that the prediction vector lies on one of the coordinate axes,
 and codes the angle between them. By not subtracting the predictor
 from the input, the gain of the predictor can be preserved and is
 explicitly coded, which is one of the benefits of PVQ. Since DC is
 not quantized by PVQ, the gain can be viewed as the amount of
 contrast in an image, which is an important perceptual parameter.

 Also, an input block of transform coefficients is split into
 frequency bands based on their spatial orientation and scale. Then,
 each band is quantized by PVQ separately. The 'gain' of a band
 indicates the amount of contrast in the corresponding orientation and
 scale. It is simply the L2 norm of the band. The gain is non-
 linearly companded and then scalar quantized and coded. The
 remaining information in the band, the 'shape', is then defined as a
 point on the surface of a unit hypersphere.

Cho Expires May 4, 2017 [Page 2]

Internet-Draft Applying PVQ Outside Daala October 2016

 Another benefit of PVQ is activity masking based on the gain, which
 automatically controls the quantization resolution based on the image
 contrast without any signaling. For example, for a smooth image area
 (i.e. low contrast thus low gain), the resolution of quantization
 will increase, thus fewer qunatization errors will be shown. Succint
 summary on the benefits of PVQ can be found in the Section 2.4 of
 [Terriberry_16].

 Since PVQ has only been used in the Daala video codec, which contains
 many non-traditional design elements, there has not been any chance
 to see the relative coding performance of PVQ compared to scalar
 quantization in a more traditional codec design. We have tried to
 apply PVQ in AV1 video codec, which is currently being developed by
 Alliance for Open Media (AOM) as an open source and royalty-free
 video codec. While most of benefits of using PVQ arise from the
 enhancement of subjective quality of video, compression results with
 activity masking enabled are not available yet in this draft because
 the required parameters, which were set for Daala, have not been
 adjusted to AV1 yet. These results were achieved optimizing solely
 for PSNR.

2. Integration of PVQ into non-Daala codec, AV1

 Adopting PVQ in AV1 requires replacing both the scalar quantization
 step and the coefficient coding of AV1 with those of PVQ. In terms
 of inputs to PVQ and the usage of trasnforms as shown in Figure 1 and
 Figure 2, the biggest conceptual change required in a traditional
 coding system, such as AV1, is

 o Introduction of a transformed predictor both in encoder and
 decoder. For this, we apply a forward transform to the
 predictors, both intra-predicted pixels and inter-predicted (i.e.,
 motion-compensated) pixels. This is because PVQ references the
 predictor in the transform domain, instead of using a pixel-domain
 residual as in traditional scalar quantization.

 o Absence of a difference signal (i.e. residue) defined as "input
 source - predictor". Hence AV1 with PVQ does not do any
 'subtraction' in order for an input to reference the predictor.
 Instead, PVQ takes a different approach to referencing the
 predictor which happens in the transform domain.

 input X --> +-------------+ +-------------+
 | Subtraction | --> residue --> | Transform T |
 predictor --> +-------------+ signal R +-------------+
 P |
 | v
 v T(R)

Cho Expires May 4, 2017 [Page 3]

Internet-Draft Applying PVQ Outside Daala October 2016

 [+]--> decoded X |
 ^ |
 | v
 | +-----------+ +-----------+ +-----------+
 decoded <-- | Inverse | <--| Inverse | <-- | Scalar |
 R | Transform | | Quantizer | | | Quantizer |
 +-----------+ +-----------+ | +-----------+
 v
 +-------------+
 bitstream <--| Coefficient |
 of coded T(R) | Coder |
 +-------------+

 Figure 1: Traditional architecture containing Quantization and
 Transforms

 +-------------+ +-----------+
 input X-->| Transform T |--> T(X)--> | PVQ |
 |_____________| | Quantizer | +-------------+
 +----> +-----------+ | PVQ |
 +-------------+ | |------> | Coefficient |
 predictor-->| Transform T |--> T(P) v | Coder |
 P |_____________| | +-----------+ +-------------+
 | | PVQ | |
 +----> | Inverse | v
 | Quantizer | bitstream
 +-----------+ of coded T(X)
 |
 +-----------+ v
 decoded X <--| Inverse | <--------- dequantized T(X)
 | Transform |
 +-----------+

 Figure 2: AV1 with PVQ

2.1. Signaling Skip for Paritition and Transform Block

 In AV1, a skip flag for a partition block is true if all of
 quauntized coefficients in the partition are zeros. The signaling
 for the prediction mode in a partition cannot be skipped. If the
 skip flag is true with PVQ, the predicted pixels are the final
 decoded pixels (plus frame wise in-loop filtering such as deblocking)
 as in AV1 then a forward transform of a predictor is not required.

 While AV1 currently defines only one 'skip' flag for each 'partition'
 (a unit where prediction is done), PVQ introduces another kind of
 'skip' flag, called 'ac_dc_coded', which is defined for each
 transform block (and thus for each Y'CbCr plane as well). AV1 allows

Cho Expires May 4, 2017 [Page 4]

Internet-Draft Applying PVQ Outside Daala October 2016

 that a transform size can be smaller than a partition size which
 leads to partitions that can have multiple transform blocks. The
 ac_dc_coded flag signals whether DC and/or whole AC coefficients are
 coded by PVQ or not (PVQ does not quantize DC itself though).

2.2. Issues

 o PVQ has its own rate-distortion optimization (RDO) that differs
 from that of traditional scalar quantization. This leads the
 balance of quality between luma and chroma to be different from
 that of scalar quantization. When scalar quantization of AV1 is
 done for a block of coefficients, RDO, such as trellis coding, can
 be optionally performed. The second pass of 2-pass encoding in
 AV1 currently uses trellis coding. When doing so it appears a
 different scaling factor is applied for each of Y'CbCr channels.

 o In AV1, to optmize speed, there are inverse transforms that can
 skip applying certan 1D basis functions based on the distribution
 of quantized coefficients. However, this is mostly not possible
 with PVQ since the inverse transform is applied directly to a
 dequantized input, instead of a dequantized difference (i.e. input
 source - predictor) as in traditional video codec. This is true
 for both encoder and decoder.

 o PVQ was originally designed for the 2D DCT, while AV1 also uses a
 hybrid 2D transform consisting of a 1D DCT and a 1D ADST. This
 requires PVQ to have new coefficient scanning orders for the two
 new 2D transforms, DCT-ADST and ADST-DCT (ADST-ADST uses the same
 scan order as for DCT-DCT). Those new scan orders has been
 produced based on that of AV1, for each PVQ-defined-band of new 2D
 transforms.

3. Performance of PVQ in AV1

3.1. Coding Gain

 With the encoding options specified by both NETVC ([2]) and AOM
 testing for high latency case, PVQ gives similar coding efficiency to
 that of AV1, which is measured in PSNR BD-rate. Again, PVQ's
 activity masking is not turned on for this testing. Also, scalar
 quantization has matured over decades, while video coding with PVQ is
 much more recent.

 We compare the coding efficiency for one of IETF test sequence set
 "objective-1-fast" defined in [3], which consists of sixteen of
 1080p, seven of 720p, and seven of 640x360 sequences of various types
 of content, including slow/high motion of people and objects,
 animation, computer games and screen casting. The encoding is done

Cho Expires May 4, 2017 [Page 5]

Internet-Draft Applying PVQ Outside Daala October 2016

 for the first 30 frames of each sequence. The encodig options used
 is : "-end-usage=q -cq-level=x --passes=2 --good --cpu-used=0 --auto-
 alt-ref=2 --lag-in-frames=25 --limit=30", which is official test
 condition of IETF and AOM for high latency encoding except limiting
 30 frames only.

 For comparison reasons, some of the lambda values used in RDO are
 adjusted to match the balance of luma and chroma quality of the PVQ-
 enabled AV1 to that of current AV1.

 o Use half the value of lambda during intra prediction for the
 chroma channels.

 o Scale PVQ's lambda by 0.8 for the chroma channels.

 o Do not do RDO of DC for the chroma channels.

 The result are shown in Table 1, which is the BD-Rate change for
 several image quality metrics. (The encoders used to generate this
 result are available from author's git repository [4] and AOM's
 repositiony [5].)

 +-----------+-------------------+
 | Metric | AV1 --> AV1 + PVQ |
 +-----------+-------------------+
 | PSNR | 0.10% |
 | PSNR-HVS | 0.53% |
 | SSIM | 1.27% |
 | MS-SSIM | 0.42% |
 | CIEDE2000 | -0.94% |
 +-----------+-------------------+

 Table 1: Coding Gain by PVQ in AV1

3.2. Speed

 Total encoding time increases roughly 20 times or more when intensive
 RDO options, such as "--passes=2 --good --cpu-used=0 --auto-alt-ref=2
 --lag-in-frames=25", are turned on. The biggest reason for
 significant increase in encoding time is due to the increased
 computation by the PVQ. The PVQ tries to find asymptotically-optimal
 codepoints (in RD optimization sense) on a hypershpere with a greedy
 search, which has the time complexity close to O(n*n) for n
 coefficients. Meanwhile, scalar quantization has the time complexity
 of O(n).

 Comparing to Daala, the search space for a RDO decision in AV1 is far
 larger because AV1 considers ten intra prediction modes and four

Cho Expires May 4, 2017 [Page 6]

Internet-Draft Applying PVQ Outside Daala October 2016

 different transforms (for the transform block sizes 4x4, 8x8, and
 16x16 only), and the transform block size can be smaller than the
 prediction block size. Since the largest transform and the
 prediction sizes are currently 32x32 and 64x64 in AV1, PVQ can be
 called approximately 5,160 times more in AV1 than in Daala. Also,
 AV1 uses transform and quantization for each candidate of RDO.

 As an example, AV1 calls PVQ function 632,520 times to encode the
 grandma_qcif (176x144) in intra frame mode (for a actual quantizer
 used for quantization being 38), while Daala calls 3843 times only.
 So, PVQ was called 165 times more in AV1 than Daala. Table 2 shows
 the frequency of PVQ function calls in AV1 at each speed level (mode
 = good). The first column indicates speed level, the second column
 shows the number of calls to PVQ's search for each band (function
 pvq_search_rdo_double() in [6]), and the third column shows the
 number of calls to PVQ's encoding of whole transfrom block (function
 od_pvq_encode() in [7]). Smaller speed level gives slower encoding
 but better quality for the same rate by doing more RDO optimizations.
 The major difference from speed level 4 to 3 is enabling that a
 transform block size can be smaller than a prediction (i.e.
 partition) block size.

 +-------------+------------------------------+----------------------+
 | Speed Level | # of calls to PVQ search for | # of calls to PVQ |
 | | a band | encode |
 +-------------+------------------------------+----------------------+
5	365,913	26,786
4	472,222	56,980
3	3,680,366	564,724
2	3,680,366	564,724
1	3,990,327	580,566
0	4,109,113	632,520
 +-------------+------------------------------+----------------------+

 Table 2: Number of Calls to PVQ in AV1

4. Future Work

 Possible future works include:

 o Enable activity masking, which also needs HVS-tuned quantiztion
 matrix (bandwise QP scalers).

 o Adjust, probably perceptualy driven, the balance between luma and
 chroma qualities.

 o Optimize the speed of the PVQ codes, adding SIMD.

Cho Expires May 4, 2017 [Page 7]

Internet-Draft Applying PVQ Outside Daala October 2016

 o RDO with more model-driven decision making, instead of full
 transform + quantization.

5. Development Repository

 The ongoing work of integrating PVQ into AV1 video codec is located
 at the git repository [8].

6. Acknowledgements

 Thanks to Tim Terriberry for his proof reading and valuable comments.
 Also thanks to Guillaume Matres for his contibutions to intergrating
 PVQ into AV1 during his intership at Mozilla and Thomas Daede for
 providing and maintaining testing infrastructure by way of
 www.arewecompressedyet.com (AWCY) web site [9].

7. IANA Considerations

 This memo includes no request to IANA.

8. Informative References

 [I-D.valin-netvc-pvq]
 Valin, J., "Pyramid Vector Quantization for Video Coding",

draft-valin-netvc-pvq-00 (work in progress), June 2015.

 [PVQ-demo]
 Valin, JM., "Daala: Perceptual Vector Quantization (PVQ)",
 November 2014, <https://people.xiph.org/~jm/daala/pvq_demo
 />.

 [Perceptual-VQ]
 Valin, JM. and TB. Terriberry, "Perceptual Vector
 Quantization for Video Coding", Proceedings of SPIE Visual
 Information Processing and Communication , February 2015,
 <https://arxiv.org/pdf/1602.05209v1.pdf>.

 [Terriberry_16]
 Terriberry, TB., "Perceptually-Driven Video Coding with
 the Daala Video Codec", Proceedings SPIE Volume 9971,
 Applications of Digital Image Processing XXXIX , September
 2016, <https://arxiv.org/pdf/1610.02488.pdf>.

https://datatracker.ietf.org/doc/html/draft-valin-netvc-pvq-00
https://people.xiph.org/~jm/daala/pvq_demo
https://arxiv.org/pdf/1602.05209v1.pdf
https://arxiv.org/pdf/1610.02488.pdf

Cho Expires May 4, 2017 [Page 8]

Internet-Draft Applying PVQ Outside Daala October 2016

Author's Address

 Yushin Cho
 Mozilla Corporation
 331 E. Evelyn Avenue
 Mountain View, CA 94041
 USA

 Phone: +1 650 903 0800
 Email: ycho@mozilla.com

Cho Expires May 4, 2017 [Page 9]

