
Network Working Group B. Claise
Internet-Draft J. Clarke
Updates: 7950 (if approved) Cisco Systems, Inc.
Intended status: Standards Track B. Lengyel
Expires: November 25, 2018 Ericsson
 K. D'Souza
 AT&T
 May 24, 2018

New YANG Module Update Procedure
draft-clacla-netmod-yang-model-update-05

Abstract

 This document specifies a new YANG module update procedure in case of
 backward-incompatible changes, as an alternative proposal to the YANG
 1.1 specifications. This document updates RFC 7950.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 25, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Claise, et al. Expires November 25, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/rfc7950
https://datatracker.ietf.org/doc/html/rfc7950
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft YANG Catalog May 2018

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. The Problems . 3
2.1. Slow Standardization 4
2.2. Some YANG Modules Are Not Backward Compatible 4
2.3. Non-Backward Compatible Errors 4
2.4. YANG Module Transition Strategy 4
2.5. Need to Allow Non-Backward Compatible changes 5
2.6. Clear Indication of Node Support 5

 2.7. No way to easily decide whether a change is Backward
 Compatible . 6

3. The Solution . 7
3.1. Semantic Versioning 7

 3.1.1. Semantic Versioning, As Set by the YANG Module
 Designer . 7

3.1.2. The Derived Semantic Version 10
3.1.3. Implementation Experience 10

3.2. Import by Semantic Version 11
3.3. Updates to YANG 1.1 Module Update Rules 14
3.4. Updates to ietf-yang-library 14
3.5. Deprecated and Obsolete Reasons 15

4. Semantic Version Extension YANG Module 16
5. Contributors . 20
6. Security Considerations 20
7. IANA Considerations . 20
7.1. YANG Module Registrations 20

8. References . 20
8.1. Normative References 20
8.2. Informative References 21

Appendix A. Appendix . 21
A.1. Open Issues . 22

 Authors' Addresses . 22

1. Introduction

 The YANG data modeling language [RFC7950] specifies strict rules for
 updating YANG modules (see section 11 "Updating a Module"). Citing a
 few of the relevant rules:

 1. "As experience is gained with a module, it may be desirable to
 revise that module. However, changes to published modules are
 not allowed if they have any potential to cause interoperability
 problems between a client using an original specification and a
 server using an updated specification."

https://datatracker.ietf.org/doc/html/rfc7950

Claise, et al. Expires November 25, 2018 [Page 2]

Internet-Draft YANG Catalog May 2018

 2. "Note that definitions contained in a module are available to be
 imported by any other module and are referenced in "import"
 statements via the module name. Thus, a module name MUST NOT be
 changed. Furthermore, the "namespace" statement MUST NOT be
 changed, since all XML elements are qualified by the namespace."

 3. "Otherwise, if the semantics of any previous definition are
 changed (i.e., if a non-editorial change is made to any
 definition other than those specifically allowed above), then
 this MUST be achieved by a new definition with a new identifier."

 4. "deprecated indicates an obsolete definition, but it permits new/
 continued implementation in order to foster interoperability with
 older/existing implementations."

 What are the consequences?

 1. If a YANG module is intended to update another YANG module, the
 module name should not be changed as it will break existing
 tooling and code by changing imports statements, service
 composition at the orchestration layer, general network
 management applications, etc.

 2. When the same YANG module name is kept, its new revision must be
 updated in a backward-compatible way.

 3. While most of the non-backward compatible changes are prohibited,
 a client still does not know if a changed module is backward
 compatible, as a server may remove parts of a module after
 marking it deprecated or obsolete.

 This document specifies a new YANG module update procedure in case of
 backward-incompatible changes, as an alternative proposal to the YANG
 1.1 specifications. This document updates RFC 7950.

 This document does not address the potential need of an automatic way
 to discover that a YANG-MODULE-B obsoletes YANG-MODULE-A, so that
 YANG-MODULE-A should not be given any attention. This problem is
 currently solved by RFC obsolete tag as a level of indirection
 between the YANG modules.

2. The Problems

 This section lists a series of problems, which leads to the solution
 in the next section.

https://datatracker.ietf.org/doc/html/rfc7950

Claise, et al. Expires November 25, 2018 [Page 3]

Internet-Draft YANG Catalog May 2018

2.1. Slow Standardization

 The points made in the introduction lead to the logical conclusion
 that the standardized YANG modules have to be perfect on day one (at
 least the structure and meaning), which in turn might explain why
 IETF YANG modules take so long to standardize. Shooting for
 perfection is obviously a noble goal, but if the perfect standard
 comes too late, it doesn't help the industry.

2.2. Some YANG Modules Are Not Backward Compatible

 As we learn from our mistakes, we're going to face more and more
 backward-incompatible YANG modules. An example is the YANG data
 model for L3VPN service delivery [RFC8049], which, based on
 implementation experience, has been updated in a backward-
 incompatible way by [RFC8299].

 While Standards Development Organization (SDO) YANG modules are
 obviously better for the industry, we must recognize that many YANG
 modules are actually generated YANG modules (for example, from
 internal databases), also known as native YANG modules, or vendor
 modules [RFC8199]. From time to time, the new YANG modules are not
 backward-compatible.

 In such cases, it would be better to indicate how backward-compatible
 a given YANG module actually is.

2.3. Non-Backward Compatible Errors

 Sometimes small errors force us to make non-backward compatible
 updates. As an example imagine that we have a string with a complex
 pattern (e.g., an IP address). Let's assume the initial pattern
 incorrectly allows IP addresses to start with 355. In the next
 version this is corrected to disallow addresses starting with 355.
 Formally this is an non-backward compatible change as the value space
 of the string is decreased. In reality an IP address and the
 implementation behind it was never capable of handling an address
 starting with 355. So practically this is a backward compatible
 change, just like a correction of the description statement. Still
 current YANG rules would force a module name change.

2.4. YANG Module Transition Strategy

 Let's assume for a moment that we change the name of a YANG module
 when making a backwards-incompatible change, with the specific
 example of ietf-routing, which some propose to update to ietf-
 routing-2. [yangcatalog] provides tooling that shows the
 interdependencies of YANG modules.

https://datatracker.ietf.org/doc/html/rfc8049
https://datatracker.ietf.org/doc/html/rfc8299
https://datatracker.ietf.org/doc/html/rfc8199

Claise, et al. Expires November 25, 2018 [Page 4]

Internet-Draft YANG Catalog May 2018

 Here are the over 30 modules that depend on ietf-routing
 <https://www.yangcatalog.org/yang-search/
 impact_analysis.php?modules[]=ietf-
 routing&recurse=0&rfcs=1&show_subm=1&show_dir=dependents>.

 Let's look at the difference for ietf-routing-2:
 <https://www.yangcatalog.org/yang-search/
 impact_analysis.php?modules[]=ietf-routing-
 2&recurse=0&rfcs=1&show_subm=1&show_dir=dependents>.

 Changing the module name from ietf-routing to ietf-routing-2 implies
 that the we have to warn all draft authors of ietf-routing YANG
 dependent modules. First, to make sure they are aware of ietf-
 routing-2 (publishing a RFC8022bis mentioning in the module
 description that this module is not compatible with the NMDA
 architecture, and providing a pointer to ietf-routing-2 requires
 manual, tedius work). And second, to ask them to change their import
 (or service composition) to ietf-routing-2. Hopefully, in the ietf-
 routing case, most dependent YANG modules are part of the IETF, so
 the communication is a manageable. For the already existing
 dependent vendor modules the problem is worse. And then there are
 network management applications that may already be using ietf-
 routing that would require new code to handle ietf-routing-2.

 Changing the ietf-interfaces YANG module name would be a different
 challenge, as it's used throughout the industry:
 <https://www.yangcatalog.org/yang-search/
 impact_analysis.php?modules[]=ietf-
 interfaces&recurse=0&rfcs=1&show_subm=1&show_dir=dependents>

2.5. Need to Allow Non-Backward Compatible changes

 As described in the previous sections, there is a need to allow non-
 backward compatible changes without changing a module's name. This
 would avoid many of the above problems. Allowing non-backward
 compatible changes to happen without a module name change will
 decrease the number of separate modules to handle and will make it a
 trivial task to track these non-backward compatible changes.

2.6. Clear Indication of Node Support

 The current definition of deprecated and obsolete in [RFC7950] (as
 quoted below) is problematic and should be corrected.

 o "deprecated" indicates an obsolete definition, but it permits new/
 continued implementation in order to foster interoperability with
 older/existing implementations.

https://www.yangcatalog.org/yang-search/
https://www.yangcatalog.org/yang-search/
https://www.yangcatalog.org/yang-search/
https://datatracker.ietf.org/doc/html/rfc7950

Claise, et al. Expires November 25, 2018 [Page 5]

Internet-Draft YANG Catalog May 2018

 o "obsolete" means that the definition is obsolete and SHOULD NOT be
 implemented and/or can be removed from implementations.

 YANG is considered an interface contract between the server and the
 client. The current definitions of deprecated and obsolete mean that
 a schema node that is either deprecated or obsolete may or may not be
 implemented. The client has no way to find out which is the case
 except for by trying to write or read data at the leaf in question.
 This probing would need to be done for each separate data-node, which
 is not a trivial thing to do. This "may or may not" is unacceptable
 in a contract. In effect, this works as if there would be an if-
 feature statement on each deprecated schema node where the server
 does not advertise whether the feature is supported or not. Why is
 it not advertised?

 If a schema part is considered old/bad we need to be able to give
 advance warning that it will be removed. As this is an advance
 warning the part shall still be present and usable in the current
 revision; however, it will be removed in one of the next revisions.
 This is compounded by the fact that obsolete nodes may return bad or
 incorrect data. A client might expect they work by the fact they
 return something at all. There must be a clear indication from the
 server whether or not deprecated and obsolete nodes are implemented
 as defined.

2.7. No way to easily decide whether a change is Backward Compatible

 A management system, SDN controller or any other user of a module
 should be capable of easily determining the compatibility between two
 module versions. Higher level logic for a network function,
 something that can not be implemented in a purely model driven way,
 is always dependent on a specific version of the module. If the
 client finds that the module has been updated on the network node, it
 has to decide if it tries to handle it as it handled the previous
 version of the model or if it just stops, to avoid problems. To make
 this decision the client needs to know if the module was updated in a
 backward compatible way or not.

 This is not possible to decide today because of the following:

 o It is possible to change the semantic behavior of a data node,
 action or rpc while the YANG definition does not change (with the
 possible exception of the description statement). In such a case
 it is impossible to determine whether the change is backward
 compatible just by looking at the YANG statements. Its only the
 human model designer that can decide.

Claise, et al. Expires November 25, 2018 [Page 6]

Internet-Draft YANG Catalog May 2018

 o Problems with the deprecated and obsolete status statement,
Section 2.6

 o Modelers might decide to violate YANG 1.1 update rules for some of
 the reasons above

 Finding status changes or violations of update rules need a line by
 line comparision of the old and new modules, no easy task.

3. The Solution

 The solution is composed of five parts:

 1. A semantic versioning YANG extension, along with an optional
 additional check that validates the semantic versioning from a
 syntactic point of view, which can either assist in determining
 the correct semantic versioning values, or which can help in
 determining the values for YANG modules that don't support this
 extension.

 2. The import by version statement"

 3. Updates to the YANG 1.1 module update rules

 4. Updates to ietf-yang-library

 5. The deprecated and obsolotes Reason"

3.1. Semantic Versioning

3.1.1. Semantic Versioning, As Set by the YANG Module Designer

 The semantic versioning solution proposed here has already been
 proposed in [I-D.openconfig-netmod-model-catalog] (included here with
 the authors' permission) which itself is based on [openconfigsemver].
 The goal is to indicate the YANG module backwards (in)compatibility,
 following semver.org semantic versioning [semver]:

 "The SEMVER version number for the module is introduced. This is
 expressed as a semantic version number of the form: x.y.z

 o x is the MAJOR version. It is incremented when the new version of
 the specification is incompatible with previous versions.

 o y is the MINOR version. It is incremented when new functionality
 is added in a manner that is backward-compatible with previous
 versions.

Claise, et al. Expires November 25, 2018 [Page 7]

Internet-Draft YANG Catalog May 2018

 o z is the PATCH version. It is incremented when bug fixes are made
 in a backward-compatible manner."

 The semantic version value is set by the YANG module developer at the
 design and implementation times. Along these lines, we propose the
 following YANG 1.1 extension for a more generic semantic version.
 The formal definition is found at the end of this document.

 extension module-version {
 argument semver;
 }

 The extension would typically be used this way:

Claise, et al. Expires November 25, 2018 [Page 8]

Internet-Draft YANG Catalog May 2018

 module yang-module-name {

 namespace "name-space";
 prefix "prefix-name";

 import ietf-semver { prefix "semver"; }

 description
 "to be completed";

 revision 2017-10-30 {
 description
 "Change the module structure";
 semver:module-version "2.0.0";
 }

 revision 2017-07-30 {
 description
 "Added new feature XXX";
 semver:module-version "1.2.0";
 }

 revision 2017-04-03 {
 description
 "Update copyright notice.";
 semver:module-version "1.0.1";
 }

 revision 2017-04-03 {
 description
 "First release version.";
 semver:module-version "1.0.0";
 }

 revision 2017-01-26 {
 description
 "Initial module for inet types";
 semver:module-version "0.1.0";
 }

 //YANG module definition starts here

 See also "Semantic Versioning and Structure for IETF Specifications"
 [I-D.claise-semver] for a mechanism to combine the semantic
 versioning, the GitHub tools, and a potential change to the IETF
 process.

Claise, et al. Expires November 25, 2018 [Page 9]

Internet-Draft YANG Catalog May 2018

3.1.2. The Derived Semantic Version

 If an explicitly defined semantic version is not available in the
 YANG module, it is possible to algoritmically calculate a derived
 semantic version. This can be used for modules not containing a
 definitive semantic-version as defined in this document or as a
 starting value when specifying the definitive semantic-version. Be
 aware that this algorithm may sometimes incorrectly classify changes
 between the categories non-compatible, compatible or error-
 correction.

3.1.3. Implementation Experience

 [yangcatalog] uses the pyang utility to calculate the derived-
 semantic-version for all of the modules contained within the catalog.
 [yangcatalog] contains many revisions of the same module in order to
 provide its derived-semantic-version for module consumers to know
 what has changed between revisions of the same module.

 Two distinct leafs in the YANG module
 [I-D.clacla-netmod-model-catalog] contain this semver notation:

 o the semantic-version leaf contains the value embedded within a
 YANG module (if it is available).

 o the derived-semantic-version leaf is established by examining the
 the YANG module themselves. As such derived-semantic-version only
 takes syntax into account as opposed to the meaning of various
 elements when it computes the semantic version.

 o The algorithm used to produce the derived-semantic-version is as
 follows:

 1. Order all modules of the same name by revision from oldest to
 newest. Include module revisions that are not available, but
 which are defined in the revision statements in one of the
 available module versions.

 2. If module A, revision N+1 has failed compilation, bump its
 derived semantic MAJOR version. For unavailable module
 versions assume non-backward compatible changes were done.,
 thus bump its derived semantic MAJOR version.

 3. Else, run "pyang --check-update-from" on module A, revision N
 and revision N+1 to see if backward-incompatible changes
 exist.

Claise, et al. Expires November 25, 2018 [Page 10]

Internet-Draft YANG Catalog May 2018

 4. If backward-incompatible changes exist, bump module A,
 revision N+1's derived MAJOR semantic version.

 5. If no backward-incompatible changes exist, compare the pyang
 trees of module A, revision N and revision N+1.

 6. If there are structural differences (e.g., new nodes), bump
 module A, revision N+1's derived MINOR semantic version.

 7. If no structural differences exist, bump module A, revision
 N+1's derived PATCH semantic version.

 The pyang utility checks many of the points listed in section 11 of
 [RFC7950] for known module incompatibilities. While this approach is
 a good way to programmatically obtain a semantic version number, it
 does not address all cases whereby a major version number might need
 to be increased. For example, a node may have the same name and same
 type, but its meaning may change from one revision of a module to
 another. This represents a semantic change that breaks backwards
 compatibility, but the above algorithm would not find it. Therefore,
 additional, sometimes manual, rigor must be done to ensure a proper
 version is chosen for a given module revision.

3.2. Import by Semantic Version

 If a module is imported by another one, it is usually not specified
 which revision of the imported module should be used. However, not
 all revisions may be acceptable. Today YANG 1.1 allows one to
 specify the revision date of the imported module, but that is too
 specific, as even a small spelling correction of the imported module
 results in a change to its revision date, thus making the module
 revision ineligible for import.

 Using semantic versioning to indicate the acceptable imported module
 versions is much more flexible. For example:

 o Only a module of a specific MAJOR version is acceptable. All
 MINOR and PATCH versions can also be imported.

 o A module at a specific MAJOR version or higher is acceptable.

 o A module at a specific MAJOR.MINOR version is acceptable. All
 PATCH versions can also be imported.

 o A module within a certain range of versions are acceptable. For
 example, in this case, a module between version 1.0.0 (inclusive)
 and 3.0.0 (exclusive) are acceptable.

https://datatracker.ietf.org/doc/html/rfc7950#section-11
https://datatracker.ietf.org/doc/html/rfc7950#section-11

Claise, et al. Expires November 25, 2018 [Page 11]

Internet-Draft YANG Catalog May 2018

 The ietf-semver module provides another extension, import-versions
 that is a child of import and specifies the rules for an acceptable
 set of versions of the given module. The structure of this extension
 is specified as follows:

 TODO: How to specify this? One thought is below, not fully
 formalized as this should be discussed further. Note: while this
 uses a comma to separate discrete versions, we could instead allow
 for this to be specified multiple times.

[\[(]X[.Y[.Z]][-[X[.Y[.X]]][\])]][,...]

Where the first character MAY be a '[' or '(' to indicate at least inclusive
and at least
 exclusive (respectively). If this is omitted, a full semantic version must be
specified
 and the import will only support this one version.

The following version, if specified with a '[' or '(' indicates the lower
bound. This can
 be a full semantic version or a MAJOR only or MAJOR.MINOR only.

The '-', if specified, is a literal hyphen indicating a range will be
specified. If the second portion
 of the import-versions clause is omitted, then there is no upper bound on what
will be considered
 an acceptable imported version.

After the '-' the upper bound semantic version (or part thereof) follows.

After the upper bound version, one of ']' or ')' MUST follow to indicate
whether this limit is inclusive
 or exclusive of the upper bound respectively.

Finally, a literal comma (',') MAY be specified with additional ranges. Each
range is taken as a logical
 OR.

 For example:

Claise, et al. Expires November 25, 2018 [Page 12]

Internet-Draft YANG Catalog May 2018

import example-module {
 semver:import-versions "[1.0.0-3.0.0)";
 // All versions between 1.0.0 (inclusive) and 3.0.0 (exclusive) are
acceptable.
}

import example-module {
 semver:import-versions "[2-5]";
 // All versions between 2.0.0 (inclusive) and 5.y.z (inclusive) where y and z
are
 // any value for MINOR and PATCH versions.
}

import example-module {
 semver:import-versions "[1.5-2.0.0),[2.5";
 // All versions between 1.5.0 (inclusive) and 2.0.0 (exclusive) as well as
all versions
 // greater than 2.5 (inclusive). In this manner, if 2.0 was branched from
1.4, and a
 // new feature was added into 1.5, all versions of 1.x.x starting at 1.5 are
allowed,
 // but the feature was not merged into 2.y.z until 2.5.0.
}

import example-module {
 semver:import-versions "[1";
 // All versions greater than MAJOR version 1 are acceptable. This includes
any
 // MINOR or PATCH versions.
}

import example-module {
 semver:import-versions "1.0.0";
 // Only version 1.0.0 is acceptable (this mimics what exists with import by
revision).
}

import example-module {
 semver:import-versions "[1.1-2)"";
 // All versions greater than 1.1 (inclusive, and including all PATCH versions
off of 1.1)
 // up to MAJOR version 2 (exclusive) are acceptable.
}

import example-module {
 semver:import-versions "[1.1-2),[3";
 // All versions greater than 1.1 (inclusive, and including all PATCH versions
off of 1.1)

 // up to MAJOR version 2 (exclusive), as well as all versions greater than
MAJOR version 3
 // (inclusive) are acceptable.
}

import example-module {
 semver:import-versions "[1.1-2),[3.0.0";
 // This is equivalent to the example above, simply indicating that a partial
semantic version
 // assumes all missing components are 0.
}

Claise, et al. Expires November 25, 2018 [Page 13]

Internet-Draft YANG Catalog May 2018

 The import statement SHOULD include a semver:import-versions
 statement and MUST NOT include a revision statement. An import
 statement MUST NOT contain both a semver:import-versions and a
 revision substatement. The use of the revision substatement for
 import should be discouraged.

3.3. Updates to YANG 1.1 Module Update Rules

RFC 7950 section 11, must be updated to allow for non-backwards
 changes provided they follow the semantic versioning guidelines and
 increase the MAJOR version number when a backwards incompatible
 change is made. The following is proposed text for this change.

 "As experience is gained with a module, it may be desirable to revise
 that module. Changes to published modules are allowed, even if they
 have some potential to cause interoperability problems, if the
 module-version YANG extension is used in the revision statement to
 clearly indicate the nature of the change."

3.4. Updates to ietf-yang-library

 The ietf-semver YANG module also specifies additional ietf-yang-
 library [RFC7895] [I-D.ietf-netconf-rfc7895bis] leafs to be added at
 the module and submodule levels. The first is module-version, which
 augments /yanglib:yang-library/yanglib:module-set/yanglib:module.
 This specifies the current semantic version of the associated module
 and revision in a given module-set. The related submodule-version
 leaf is added at /yanglib:yang-library/yanglib:module-
 set/yanglib:module/yanglib:submodule to indicate the semantic version
 of a submodule.

 In order to satisfy the requirement that deprecated and obsolete node
 presence and operation are easily and clearly known to clients, ietf-
 semver also augments the ietf-yang-library with two additional
 boolean leafs at /yanglib:yang-library/yanglib:module-set/
 yanglib:module. A client can make one request of the ietf-yang-
 library and know whether or a not a module that has deprecated or
 obsolete has those nodes implemented by the server, as opposed to
 making multiple requests for each node in question.

 deprecated-nodes-present : A boolean that indicates whether or not
 this server implements deprecated nodes. The value of this leaf
 SHOULD be true; and if so, the server MUST implement nodes within
 this module as they are documented. If specific deprecated nodes
 are not implemented as document, then they MUST be listed as
 deviations. This leaf defaults to true.

https://datatracker.ietf.org/doc/html/rfc7950#section-11
https://datatracker.ietf.org/doc/html/rfc7895

Claise, et al. Expires November 25, 2018 [Page 14]

Internet-Draft YANG Catalog May 2018

 obsolete-nodes-present : A boolean that indicates whether or not
 this server implements obsolete nodes. The value of this leaf
 SHOULD be false; and if so, the server MUST NOT implement nodes
 within this module. If this leaf is true, then all nodes in this
 module MUST be implemented as documented in the module. Any
 variation of this MUST be listed as deviations. This leaf
 defaults to false.

 If a module does not have any deprecated or obsolete nodes, the
 server SHOULD set the corresponding leaf above to true. This is
 helpful to clients, such that if the MAJOR version number has not
 changed, and these booleans are true, then a client does not have to
 check the status of any node for the module.

 Module compatibility can be affected if values other than the default
 are used for the leafs described here. For example, if a server does
 not implemennt deprecated nodes, then a given module revision may be
 incompatible with a previous revision where the nodes were not
 deprecated. When calculating backwards compatibility, the default
 values of these leafs MUST be considered. From a client's point of
 view, if two module revisions have the same MAJOR version but the
 run-time value of deprecated-nodes-present (as read from the ietf-
 yang-library) is false, then compatibility MUST NOT be assumed based
 on the module-version alone.

3.5. Deprecated and Obsolete Reasons

 The ietf-semver module specifies an extension, status-description,
 that is designed to be used as a substatement of the status statement
 when the status is deprecated or obsolete. This argument to this
 extension is freeform text that explains why the node was deprecated
 or made obsolete. It may also point to other schema elements that
 take the place of the deprecated or obsolete node. This text is
 designed for human consumption to aid in the migration away from
 nodes that will one day no longer work. An example is shown below.

 leaf imperial-temperature {
 type int64;
 units "degrees Fahrenheit";
 status deprecated {
 semver:status-description
 "Imperial measurements are being phased out in favor
 of their metric equivalents. Use metric-temperature
 instead.";
 }
 description
 "Temperature in degrees Fahrenheit.";
 }

Claise, et al. Expires November 25, 2018 [Page 15]

Internet-Draft YANG Catalog May 2018

4. Semantic Version Extension YANG Module

 The extension and related ietf-yang-library changes described in this
 module are defined in the YANG module below.

<CODE BEGINS> file "ietf-semver@2018-04-05.yang"
 module ietf-semver {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-semver";
 prefix semver;

 import ietf-yang-library {
 prefix yanglib;
 }

 organization
 "IETF NETMOD (Network Modeling) Working Group";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 Author: Benoit Claise
 <mailto:bclaise@cisco.com>

 Author: Joe Clarke
 <mailto:jclarke@cisco.com>

 Author: Kevin D'Souza
 <mailto:kd6913@att.com>

 Author: Balazs Lengyel
 <mailto:balazs.lengyel@ericsson.com>";
 description
 "This module contains a definition for a YANG 1.1 extension to
 express the semantic version of YANG modules.";

 revision 2018-04-05 {
 description
 "* Properly import ietf-yang-library.
 * Fix the name of module-semver => module-version.
 * Fix regular expression syntax.
 * Augment yang-library with booleans as to whether or not
 deprecated and obsolete nodes are present.
 * Add an extension to enable import by semantic version.
 * Add an extension status-description to track deprecated
 and obsolete reasons.
 * Fix yang-library augments to use 7895bis.";
 reference

https://datatracker.ietf.org/wg/netmod/

Claise, et al. Expires November 25, 2018 [Page 16]

Internet-Draft YANG Catalog May 2018

 "draft-clacla-netmod-yang-model-update:
 New YANG Module Update Procedure";
 semver:module-version "0.2.1";
 }
 revision 2017-12-15 {
 description
 "Initial revision.";
 reference
 "draft-clacla-netmod-yang-model-update:
 New YANG Module Update Procedure";
 semver:module-version "0.1.1";
 }

 extension module-version {
 argument semver;
 description
 "The version number for the module revision it is used in.
 This is expressed as a semantic version string in the form:
 x.y.z
 where:
 * x corresponds to the major version,
 * y corresponds to a minor version,
 * z corresponds to a patch version.

 A major version number of 0 indicates that this model is still
 in development, and is potentially subject to change.

 Following a release of major version 1, all modules will
 increment major revision number where backwards incompatible
 changes to the model are made.

 The minor version is changed when features are added to the
 model that do not impact current clients use of the model.
 When major version is stepped, the minor version is reset to 0.

 The patch-level version is incremented when non-feature changes
 (such as bugfixes or clarifications to human-readable
 descriptions that do not impact model functionality) are made
 that maintain backwards compatibility.
 When major or minor version is stepped, the patch-level is
 reset to 0.

 By comparing the module-version between two revisions of a
 given module, one can know if different revisions are backwards
 compatible or not, as well as
 whether or not new features have been added to a newer revision.

 If a module contains this extension it indicates that for this

https://datatracker.ietf.org/doc/html/draft-clacla-netmod-yang-model-update
https://datatracker.ietf.org/doc/html/draft-clacla-netmod-yang-model-update

Claise, et al. Expires November 25, 2018 [Page 17]

Internet-Draft YANG Catalog May 2018

 module the updated status and update rules as this described in
 RFC XXXX are used.

 The statement MUST only be a substatement of the revision statement.
 Zero or one module-version statement is allowed per parent
 statement. NO substatements are allowed.
 ";
 reference "http://semver.org/ : Semantic Versioning 2.0.0";
 }

 extension import-versions {
 argument version-clause;
 description
 "This extension specifies an acceptable set of semantic versions of a
given module
 that may be imported. The version-clause argument is specified in the
following
 format

 [\\[(]X[.Y[.Z]][-[X[.Y[.X]]][\\])]][,...]

 Where the first character MAY be a '[' or '(' to indicate at least
inclusive and at least
 exclusive (respectively). If this is omitted, a full semantic
version must be specified
 and the import will only support this one version.

 The following version, if specified with a '[' or '(' indicates the
lower bound. This can
 be a full semantic version or a MAJOR only or MAJOR.MINOR only.

 The '-', if specified, is a literal hyphen indicating a range will be
specified. If the second portion
 of the import-versions clause is omitted, then there is no upper
bound on what will be considered
 an acceptable imported version.

 After the '-' the upper bound semantic version (or part thereof)
follows.
 After the upper bound version, one of ']' or ')' MUST follow to
indicate whether this limit is inclusive
 or exclusive of the upper bound respectively.

 Finally, a literal comma (',') MAY be specified with additional
ranges. Each range is taken as a logical
 OR.

 The statement MUST only be a substatement of the import statement.
Zero or one

 import-versions statement is allowed per import statement. NO
substatements are allowed.";
 reference "I-D.clacla-netmod-yang-model-update : Import By Semantic
Version";
 }

 extension status-description {
 argument description;
 description
 "Freeform text that describes why a given node has been deprecated or
made obsolete.
 This may point to other schema elements that can be used in lieu of
the given node.

Claise, et al. Expires November 25, 2018 [Page 18]

Internet-Draft YANG Catalog May 2018

 This statement MUST only be used as a substatement of the status
statement, and MUST
 only be used when the status is deprecated or obsolete. Zero or more
status-description
 statements are allowed per parent statement. NO substatements are
allowed.";
 reference "I-D.clacla-netmod-yang-model-update : Deprecated and Obsolete
Reasons";
 }

 augment "/yanglib:yang-library/yanglib:module-set/yanglib:module" {
 description
 "Augmentations for the ietf-yang-library module to support semantic
versioning.";
 leaf module-version {
 type string {
 pattern '[0-9]+\.[0-9]+\.[0-9]+';
 }
 description
 "The semantic version for this module in MAJOR.MINOR.PATCH format.
This version
 must match the semver:module-version value in specific revision of
the module
 loaded in this module-set.";
 }
 leaf deprecated-nodes-present {
 type boolean;
 default "true";
 description
 "A boolean that indicates whether or not this server implements
deprecated nodes.
 The value of this leaf SHOULD be true; and if so, the server MUST
implement nodes
 within this module as they are documented. If specific deprecated
nodes are not
 implemented as document, then they MUST be listed as deviations. If
a module does
 not currently contain any deprecated nodes, then this leaf SHOULD be
set to true.";
 }
 leaf obsolete-nodes-present {
 type boolean;
 default "false";
 description
 "A boolean that indicates whether or not this server implements
obsolete nodes.
 The value of this leaf SHOULD be false; and if so, the server MUST
NOT implement

 nodes within this module. If this leaf is true, then all nodes in
this module MUST
 be implemented as documented in the module. Any variation of this
MUST be listed as
 deviations. If a module does not currently contain any obsolete
nodes, then this
 leaf SHOULD be set to true.";
 }
 }
 augment "/yanglib:yang-library/yanglib:module-set/yanglib:module/
yanglib:submodule" {
 description
 "Augmentations for the ietf-yang-library module/submodule to support
semantic versioning.";
 leaf submodule-version {
 type string {
 pattern '[0-9]+\.[0-9]+\.[0-9]+';
 }
 description

Claise, et al. Expires November 25, 2018 [Page 19]

Internet-Draft YANG Catalog May 2018

 "The semantic version for this submodule in MAJOR.MINOR.PATCH
format. This version
 must match the semver:module-version value in specific revision of
the submodule
 loaded in this module-set.";
 }
 }
 }
<CODE ENDS>

5. Contributors

 o Anees Shaikh, Google

 o Rob Shakir, Google

6. Security Considerations

 The document does not define any new protocol or data model. There
 are no security impacts.

7. IANA Considerations

7.1. YANG Module Registrations

 The following YANG module is requested to be registred in the "IANA
 Module Names" registry:

 The ietf-semver module:

 o Name: ietf-semver

 o XML Namespace: urn:ietf:params:xml:ns:yang:ietf-semver

 o Prefix: semver

 o Reference: [RFCXXXX]

8. References

8.1. Normative References

 [RFC7895] Bierman, A., Bjorklund, M., and K. Watsen, "YANG Module
 Library", RFC 7895, DOI 10.17487/RFC7895, June 2016,
 <https://www.rfc-editor.org/info/rfc7895>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
RFC 7950, DOI 10.17487/RFC7950, August 2016,

 <https://www.rfc-editor.org/info/rfc7950>.

https://datatracker.ietf.org/doc/html/rfc7895
https://www.rfc-editor.org/info/rfc7895
https://datatracker.ietf.org/doc/html/rfc7950
https://www.rfc-editor.org/info/rfc7950

Claise, et al. Expires November 25, 2018 [Page 20]

Internet-Draft YANG Catalog May 2018

8.2. Informative References

 [I-D.clacla-netmod-model-catalog]
 Clarke, J. and B. Claise, "YANG module for
 yangcatalog.org", draft-clacla-netmod-model-catalog-03
 (work in progress), April 2018.

 [I-D.claise-semver]
 Claise, B., Barnes, R., and J. Clarke, "Semantic
 Versioning and Structure for IETF Specifications", draft-

claise-semver-02 (work in progress), January 2018.

 [I-D.ietf-netconf-rfc7895bis]
 Bierman, A., Bjorklund, M., Schoenwaelder, J., Watsen, K.,
 and R. Wilton, "YANG Library", draft-ietf-netconf-

rfc7895bis-06 (work in progress), April 2018.

 [I-D.openconfig-netmod-model-catalog]
 Shaikh, A., Shakir, R., and K. D'Souza, "Catalog and
 registry for YANG models", draft-openconfig-netmod-model-

catalog-02 (work in progress), March 2017.

 [openconfigsemver]
 "Semantic Versioning for Openconfig Models",
 <http://www.openconfig.net/docs/semver/>.

 [RFC8049] Litkowski, S., Tomotaki, L., and K. Ogaki, "YANG Data
 Model for L3VPN Service Delivery", RFC 8049,
 DOI 10.17487/RFC8049, February 2017,
 <https://www.rfc-editor.org/info/rfc8049>.

 [RFC8199] Bogdanovic, D., Claise, B., and C. Moberg, "YANG Module
 Classification", RFC 8199, DOI 10.17487/RFC8199, July
 2017, <https://www.rfc-editor.org/info/rfc8199>.

 [RFC8299] Wu, Q., Ed., Litkowski, S., Tomotaki, L., and K. Ogaki,
 "YANG Data Model for L3VPN Service Delivery", RFC 8299,
 DOI 10.17487/RFC8299, January 2018,
 <https://www.rfc-editor.org/info/rfc8299>.

 [semver] "Semantic Versioning 2.0.0", <https://www.semver.org>.

 [yangcatalog]
 "YANG Catalog", <https://yangcatalog.org>.

Appendix A. Appendix

https://datatracker.ietf.org/doc/html/draft-clacla-netmod-model-catalog-03
https://datatracker.ietf.org/doc/html/draft-claise-semver-02
https://datatracker.ietf.org/doc/html/draft-claise-semver-02
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-rfc7895bis-06
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-rfc7895bis-06
https://datatracker.ietf.org/doc/html/draft-openconfig-netmod-model-catalog-02
https://datatracker.ietf.org/doc/html/draft-openconfig-netmod-model-catalog-02
http://www.openconfig.net/docs/semver/
https://datatracker.ietf.org/doc/html/rfc8049
https://www.rfc-editor.org/info/rfc8049
https://datatracker.ietf.org/doc/html/rfc8199
https://www.rfc-editor.org/info/rfc8199
https://datatracker.ietf.org/doc/html/rfc8299
https://www.rfc-editor.org/info/rfc8299
https://www.semver.org
https://yangcatalog.org

Claise, et al. Expires November 25, 2018 [Page 21]

Internet-Draft YANG Catalog May 2018

A.1. Open Issues

 There are a number of open issues to be disccused. These include the
 following:

 o Do we need a new version of YANG?
 While eventually this will fold into a new version, the belief is
 this solution can work with extensions alone with an update to the
 [RFC7950] text concerning module updates.

 o Should IETF/IANA officially generate derived semantic versions for
 their own modules? As they are the owner of the modules it should
 be their responsibility, but how to document it? Note that next
 round of funding for the yangcatalog.org could help develop the
 perfect derived-semantic-version toolset

 o We could consider a new naming convention for module files.
 Today, module files are named using a module@revision.yang
 notation. We could consider module%semver.yang or
 module#version.yang variants. Re-using the '@' for version is not
 ideal, so another separator character should be used. In this
 manner, both version and revision could be used.

 o Taking another page from Openconfig, the notion of a module bundle
 could be considered. That is, there may need to be a way to
 enumerate modules that are part of a bundle and are known to
 interoperate. This may not be as critical if a rich import-by-
 version is defined.
 While the issue is interesting, it will be not be handled in this
 document.

 o Similarly, the concept of a feature bundle should be considered.
 Typically, operators combine and test YANG modules to build value-
 add services. These bundles form releases for specific features
 or services, and it is critical to ensure as the modules evolve,
 the bundles can coherently evolve with them.
 While the issue is interesting, it will be not be handled in this
 document.

 o When we'll start using this new procedure for a new YANG module
 revision, will we have to update all the dependent YANG modules to
 start using this new procedure, along with the new import
 statement? Is this a moot point, as a new YANG module name would
 suffer from the same symptoms?
 We see no need for updating other dependent modules. It is a good
 idea to update them, as they will benefit from using SEMVER,
 however there is no specific need to update them.

https://datatracker.ietf.org/doc/html/rfc7950

Claise, et al. Expires November 25, 2018 [Page 22]

Internet-Draft YANG Catalog May 2018

Authors' Addresses

 Benoit Claise
 Cisco Systems, Inc.
 De Kleetlaan 6a b1
 1831 Diegem
 Belgium

 Phone: +32 2 704 5622
 Email: bclaise@cisco.com

 Joe Clarke
 Cisco Systems, Inc.
 7200-12 Kit Creek Rd
 Research Triangle Park, North Carolina
 United States of America

 Phone: +1-919-392-2867
 Email: jclarke@cisco.com

 Balazs Lengyel
 Ericsson
 Magyar Tudosok Korutja
 1117 Budapest
 Hungary

 Phone: +36-70-330-7909
 Email: balazs.lengyel@ericsson.com

 Kevin D'Souza
 AT&T
 200 S. Laurel Ave
 Middletown, NJ
 United States of America

 Email: kd6913@att.com

Claise, et al. Expires November 25, 2018 [Page 23]

