
Mobile Ad hoc Networking (MANET) T. Clausen
Internet-Draft LIX, Ecole Polytechnique, France
Expires: January 12, 2006 July 11, 2005

The Optimized Link-State Routing Protocol version 2
draft-clausen-manet-olsrv2-00

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on January 12, 2006.

Copyright Notice

 Copyright (C) The Internet Society (2005).

Abstract

 This document describes version 2 of the Optimized Link State Routing
 (OLSRv2) protocol for mobile ad hoc networks. The protocol is an
 optimization of the classical link state algorithm tailored to the
 requirements of a mobile wireless LAN.

 The key optimization of OLSRv2 is that of multipoint relays,
 providing an efficient mechanism for network-wide broadcast of link-
 state information. A secondary optimization is, that OLSRv2 employs
 partial link-state information: each node maintains information of

Clausen Expires January 12, 2006 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft OLSRv2 July 2005

 all destinations, but only a subset of links. This allows that only
 select nodes diffuse link-state advertisements (i.e. reduces the
 number of network-wide broadcasts) and that these advertisements
 contain only a subset of links (i.e. reduces the size of each
 network-wide broadcast). The partial link-state information thus
 obtained allows each OLSRv2 node to at all times maintain optimal (in
 terms of number of hops) routes to all destinations in the network.

 OLSRv2 imposes minimum requirements to the network by not requiring
 sequenced or reliable transmission of control traffic. Furthermore,
 the only interaction between OLSRv2 and the IP stack is routing table
 management.

 OLSRv2 is particularly suitable for large and dense networks as the
 technique of MPRs works well in this context.

Clausen Expires January 12, 2006 [Page 2]

Internet-Draft OLSRv2 July 2005

Table of Contents

1. Introduction . 5
1.1 Terminology . 5
1.2 Applicability Statement 7

2. Protocol Overview and Functioning 8
3. OLSRv2 Signaling Framework 11
3.1 OLSR Messages . 11
3.1.1 Address Blocks . 12
3.1.2 TLVs . 12

3.2 OLSRv2 Packet Format 13
4. Packet Processing and Message Forwarding 16
4.1 Processing and Forwarding Repositories 16
4.1.1 Received Message Set 16
4.1.2 Processed Set . 16
4.1.3 Forwarded Set . 17
4.1.4 Relay Set . 17

4.2 Actions when Receiving an OLSRv2-Message 17
4.3 Message Considered for Processing 18
4.4 Message Considered for Forwarding 19

5. Information Repositories 20
5.1 Local Link Information Base 20
5.1.1 Link Set . 20
5.1.2 2-hop Neighbor Set 21
5.1.3 Neighbor Address Association Set 21
5.1.4 MPR Set . 21

5.2 Topology Information Base 22
6. OLSRv2 Control Messages 23
6.1 HELLO Messages . 23
6.2 TC Messages . 23

7. Populating the MPR Set . 24
8. HELLO Message Generation 25
8.1 HELLO Message: Message TLVs 25
8.2 HELLO Message: Address Blocks and Address TLVs 25

9. HELLO Message Processing 27
9.1 Populating the Link Set 27
9.2 Populating the Neighbor Address Association Set 29
9.3 Populating the 2-Hop Neighbor Set 29
9.4 Populating the Relay Set 30
9.5 Neighborhood and 2-hop Neighborhood Changes 31

10. TC Message Generation 33
10.1 TC Message: Message TLVs 33
10.2 TC Message: Address Blocks and Address TLVs 33

11. TC Message Processing 34
12. Routing Table Calculation 36
13. Proposed Values for Constants 39
13.1 Message Types . 39
13.2 Message Intervals . 39

Clausen Expires January 12, 2006 [Page 3]

Internet-Draft OLSRv2 July 2005

13.3 Holding Times . 39
13.4 Willingness . 39

14. Representing Time . 40
15. IANA Considerations . 41
A. Example Heuristic for Calculating MPRs 42
B. Example Algorithms for Generating Control Traffic 45
B.1 Example Algorithm for Generating HELLO messages 45
B.2 Example Algorithm for Generating TC messages 46

C. Protocol and Port Number 48
D. OLSRv2 Packet and Message Layout 49
D.1 General OLSR Packet Format 49
D.1.1 Message TLVs . 50
D.1.2 Address Block . 50
D.1.3 Address Block TLV 52

D.2 Layout of OLSRv2 Specified Messages 52
D.2.1 Layout of HELLO Messages 53
D.2.2 Layout of TC messages 53

E. Summary of TLVs in OLSRv2 55
F. Node Configuration . 56
F.1 IPv6 Specific Considerations 56

G. Security Considerations 57
G.1 Confidentiality . 57
G.2 Integrity . 57
G.3 Interaction with External Routing Domains 58
G.4 Node Identity . 59

H. Flow and Congestion Control 60
I. Sequence Numbers . 61
J. References . 62
K. Contributors . 63
L. Acknowledgements . 64

 Author's Address . 64
 Intellectual Property and Copyright Statements 65

Clausen Expires January 12, 2006 [Page 4]

Internet-Draft OLSRv2 July 2005

1. Introduction

 The Optimized Link State Routing Protocol version 2 (OLSRv2) is
 developed for mobile ad hoc networks. It operates as a table driven,
 proactive protocol, i.e., exchanges topology information with other
 nodes of the network regularly. Each node selects a set of its
 neighbor nodes as "multipoint relays" (MPR). In OLSRv2, only nodes
 that are selected as such MPRs are then responsible for forwarding
 control traffic intended for diffusion into the entire network. MPRs
 provide an efficient mechanism for flooding control traffic by
 reducing the number of transmissions required.

 Nodes, selected as MPRs, also have a special responsibility when
 declaring link state information in the network. Indeed, the only
 requirement for OLSRv2 to provide shortest path routes to all
 destinations is that MPR nodes declare link-state information for
 their MPR selectors. Additional available link-state information may
 be utilized, e.g., for redundancy.

 Nodes which have been selected as multipoint relays by some neighbor
 node(s) announce this information periodically in their control
 messages. Thereby a node announces to the network, that it has
 reachability to the nodes which have selected it as an MPR. Then,
 aside from being used to facilitate efficient flooding, MPRs are also
 used for route calculation from any given node to any destination in
 the network.

 A node selects MPRs from among its one hop neighbors with
 "symmetric", i.e., bi-directional, linkages. Therefore, selecting
 the route through MPRs automatically avoids the problems associated
 with data packet transfer over uni-directional links (such as the
 problem of not getting link-layer acknowledgments for data packets at
 each hop, for link-layers employing this technique for unicast
 traffic).

 OLSRv2 is developed to work independently from other protocols.
 Likewise, OLSRv2 makes no assumptions about the underlying link-
 layer. However, OLSRv2 may use link-layer information and
 notifications when available and applicable.

 OLSRv2, as OLSRv1, inherits the concept of forwarding and relaying
 from HIPERLAN (a MAC layer protocol) which is standardized by ETSI
 [3].

1.1 Terminology

 The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

Clausen Expires January 12, 2006 [Page 5]

Internet-Draft OLSRv2 July 2005

 document are to be interpreted as described in RFC2119 [5].

 Additionally, this document uses the following terminology:

 node - a MANET router which implements the Optimized Link State
 Routing protocol as specified in this document.

 OLSRv2 interface - A network device participating in a MANET running
 OLSRv2. A node may have several OLSRv2 interfaces, each interface
 assigned an unique IP address.

 neighbor - A node X is a neighbor of node Y if node Y can hear node X
 (i.e., a link exists from an OLSRv2 interface on node X to an
 OLSRv2 interface on Y). A neighbor may also be called a 1-hop
 neighbor.

 2-hop neighbor - A node X is a 2-hop neighbor of node Y if node X is
 a neighbor of a neighbor of node Y.

 strict 2-hop neighbor - a 2-hop neighbor which is (i) not the node
 itself, (ii) not a neighbor of the node, and (iii) not a 2-hop
 neighbor only through a neighbor with willingness WILL_NEVER.

 multipoint relay (MPR) - A node which is selected by its 1-hop
 neighbor, node X, to "re-transmit" all the broadcast messages that
 it receives from X, provided that the message is not a duplicate,
 and that the time to live field of the message is greater than
 one.

 multipoint relay selector (MPR selector, MS) - A node which has
 selected its 1-hop neighbor, node X, as its multipoint relay, will
 be called an MPR selector of node X.

 link - A link is a pair of OLSRv2 interfaces from two different
 nodes, where at least one interface is able to hear (i.e. receive
 traffic from) the other. A node is said to have a link to another
 node when one of its interfaces has a link to one of the
 interfaces of the other node.

 symmetric link - A link where both interfaces have verified they are
 able to hear the other.

 asymmetric link - A link which is not symmetric.

 symmetric 1-hop neighborhood - The symmetric 1-hop neighborhood of
 any node X is the set of nodes which have at least one symmetric
 link to X.

https://datatracker.ietf.org/doc/html/rfc2119

Clausen Expires January 12, 2006 [Page 6]

Internet-Draft OLSRv2 July 2005

 symmetric 2-hop neighborhood - The symmetric 2-hop neighborhood of X
 is the set of nodes, excluding X itself, which have a symmetric
 link to the symmetric 1-hop neighborhood of X.

 symmetric strict 2-hop neighborhood - The symmetric strict 2-hop
 neighborhood of X is the set of nodes in its symmetric 2-hop
 neighborhood that are neither in its symmetric 1-hop neighborhood
 nor reachable only through a symmetric 1-hop neighbor of X with
 willingness WILL_NEVER.

1.2 Applicability Statement

 OLSRv2 is a proactive routing protocol for mobile ad hoc networks
 (MANETs) [1], [2]. It is well suited to large and dense networks of
 mobile nodes, as the optimization achieved using the MPRs works well
 in this context. The larger and more dense a network, the more
 optimization can be achieved as compared to the classic link state
 algorithm. OLSRv2 uses hop-by-hop routing, i.e., each node uses its
 local information to route packets.

 As OLSRv2 continuously maintains routes to all destinations in the
 network, the protocol is beneficial for traffic patterns where the
 traffic is random and sporadic between a large subset of nodes, and
 where the [source, destination] pairs are changing over time: no
 additional control traffic is generated in this situation since
 routes are maintained for all known destinations at all times.

Clausen Expires January 12, 2006 [Page 7]

Internet-Draft OLSRv2 July 2005

2. Protocol Overview and Functioning

 OLSRv2 is a proactive routing protocol for mobile ad hoc networks.
 The protocol inherits the stability of a link state algorithm and has
 the advantage of having routes immediately available when needed due
 to its proactive nature. OLSRv2 is an optimization over the
 classical link state protocol, tailored for mobile ad hoc networks.
 The main tailoring and optimizations of OLSRv2 are:

 o periodic, unacknowledged transmission of all control messages;

 o optimized flooding for global link-state information diffusion;

 o partial topology maintenance -- each node will know of all
 destinations and a subset of links in the network.

 More specifically, OLSRv2 consists of the following main components:

 o A general and flexible signaling framework, allowing for
 information exchange between OLSRv2 nodes. This framework allows
 for both local information exchange (between neighboring nodes)
 and global information exchange using an optimized flooding
 mechanism denoted "MPR flooding".

 o A specification of local signaling, denoted HELLO messages. HELLO
 messages in OLSRv2 serve to:

 * discover links to adjacent OLSR nodes;

 * perform bidirectionality check on the discovered links;

 * advertise neighbors and hence discover 2-hop neighbors;

 * signal MPR selection.

 HELLO messages are emitted periodically, thereby allowing nodes to
 continuously track changes in their local neighborhoods.

 o A specification of global signaling, denoted TC messages. TC
 messages in OLSRv2 serve to:

 * inject link-state information into the entire network.

 TC messages are emitted periodically, thereby allowing nodes to
 continuously track global changes in the network.

 Thus, through periodic exchange of HELLO messages, a node is able to
 acquire and maintain information about its immediate neighborhood.

Clausen Expires January 12, 2006 [Page 8]

Internet-Draft OLSRv2 July 2005

 This includes information about immediate neighbors, as well as nodes
 which are two hops away. By HELLO messages being exchanged
 periodically, a node learns about changes in the neighborhood (new
 nodes emerging, old nodes disappearing) without requiring explicit
 mechanisms for doing so.

 Based on the local topology information, acquired through the
 periodic exchange of HELLO messages, an OLSRv2 node is able to make
 provisions for ensuring optimized flooding, denoted "MPR flooding",
 as well as injection of link-state information into the network.
 This is done through the notion of Multipoint Relays.

 The idea of multipoint relays is to minimize the overhead of flooding
 messages in the network by reducing redundant retransmissions in the
 same region. Each node in the network selects a set of nodes in its
 symmetric 1-hop neighborhood which may retransmit its messages. This
 set of selected neighbor nodes is called the "Multipoint Relay" (MPR)
 set of that node. The neighbors of node N which are *NOT* in its MPR
 set, receive and process broadcast messages but do not retransmit
 broadcast messages received from node N. The MPR set of a node is
 selected such that it covers (in terms of radio range) all symmetric
 strict 2-hop nodes. The MPR set of N, denoted as MPR(N), is then an
 arbitrary subset of the symmetric 1-hop neighborhood of N which
 satisfies the following condition: every node in the symmetric strict
 2-hop neighborhood of N MUST have a symmetric link towards MPR(N).
 The smaller a MPR set, the less control traffic overhead results from
 the routing protocol. [2] gives an analysis and example of MPR
 selection algorithms. Notice, that as long as the condition above is
 satisfied, any algorithm selecting MPR sets is acceptable in terms of
 implementation interoperability.

 Each node maintains information about the set of neighbors that have
 selected it as MPR. This set is called the "Multipoint Relay
 Selector set" (MPR Selector Set) of a node. A node obtains this
 information from periodic HELLO messages received from the neighbors.

 A broadcast message, intended to be diffused in the whole network,
 coming from any of the MPR selectors of node N is assumed to be
 retransmitted by node N, if N has not received it yet. This set can
 change over time (i.e., when a node selects another MPR-set) and is
 indicated by the selector nodes in their HELLO messages.

 Using the MPR flooding mechanism, link-state information can be
 injected into the network using TC messages: a node evaluates
 periodically if it is required to generate TC messages and, if so,
 which information is to be included in these TC messages.

 OLSRv2 is designed to work in a completely distributed manner and

Clausen Expires January 12, 2006 [Page 9]

Internet-Draft OLSRv2 July 2005

 does not depend on any central entity. The protocol does NOT REQUIRE
 reliable transmission of control messages: each node sends control
 messages periodically, and can therefore sustain a reasonable loss of
 some such messages. Such losses occur frequently in radio networks
 due to collisions or other transmission problems.

 Also, OLSRv2 does NOT REQUIRE sequenced delivery of messages. Each
 control message contains a sequence number which is incremented for
 each message. Thus the recipient of a control message can, if
 required, easily identify which information is more recent - even if
 messages have been re-ordered while in transmission. Furthermore,
 OLSRv2 provides support for protocol extensions such as sleep mode
 operation, multicast-routing etc. Such extensions may be introduced
 as additions to the protocol without breaking backwards compatibility
 with earlier versions.

 OLSRv2 does NOT REQUIRE any changes to the format of IP packets.
 Thus any existing IP stack can be used as is: OLSRv2 only interacts
 with routing table management.

Clausen Expires January 12, 2006 [Page 10]

Internet-Draft OLSRv2 July 2005

3. OLSRv2 Signaling Framework

 In OLSRv2, signaling serves as a way for a node to express its
 relationships with other nodes -- or more precisely, a control-
 message in OLSRv2 states that "the address X has the following
 special relationship with addresses W, Y and Z". This "special
 relationship" may be advertisement of an adjacency between interface
 X and interfaces WYZ, advertisement of an associated cost,
 advertisement of selection as designated router etc.

 In an OLSRv2 MANET, signaling may be either "local", intended only
 for nodes adjacent to the originator of the signal or "global",
 intended for all nodes in the OLSRv2 MANET.

 In this section, the general mechanism employed for all OLSRv2
 signaling is described.

 This section provides abstract descriptions of message- and packet
 formats. It is exclusively concerned with the content of messages
 and packets relevant for OLSRv2 semantics. The precise lay-out of
 OLSRv2 control messages and packets can be found in the complementary

Appendix D, including all details of the format of messages on the
 wire (i.e. additional necessary fields exclusively used for
 formatting and parsing, encoding of values, size of the fields,
 padding, ...).

3.1 OLSR Messages

 Signals in OLSRv2 are carried through "messages". They include
 information encapsulated in TLVs, explained with more details in
 section Section 3.1.2. A message has the following general layout

 message = <msg-tlv>*{<org-addr-block><tlv>*}{<addr-block><tlv>*}*

 with the usual notion of "*" indicating "zero or more" occurrences of
 the preceding element, and the elements defined thus:

 <msg-tlv> is a TLV, relevant to the entire message. This may, e.g.,
 provide information relative to the diffusion of the message, the
 validity time of the message etc;

 <org-addr-block> is a block of addresses, associated to the node from
 which the message is emitted, including the message originator
 address (see section Section 3.2);

Clausen Expires January 12, 2006 [Page 11]

Internet-Draft OLSRv2 July 2005

 <addr-block> is a block of addresses, with which the originator of
 the message has a special relationship;

 <tlv> is an attribute, associated to an address block, in a type-
 length-value format.

3.1.1 Address Blocks

 An address block represents a set of addresses in a compact form.
 Assuming that an address can be specified as a sequence of bits of
 the form 'head:tail', then an address-block is a set of addresses
 sharing the same 'head' and having different 'tails'. Specifically,
 an address block conforms to the following specification:

 address-block = {<address-length><head-length><head>{<tail>*}}

 with the usual notion of "*" indicating "zero or more" occurrences of
 the preceding element, and the elements defined thus:

 <address-length> is the number of bits in the address. For IPv4,
 this field will contain the number "32" and for IPv6 the number
 "128";

 <head-length> is the number of "common leftmost bits" in a set of
 addresses, akin to a "prefix", however with the only restriction
 on the head-length that 0 <= head-length <= address-length;

 <head> is the longest sequence of leftmost bits, which the addresses
 in the address block have in common. Akin to a prefix;

 <tail> is the sequence of bits which, when concatenated to the head,
 makes up a single, complete, unique address.

 This representation aims at providing a flexible, yet compact, way of
 representing sets of interface addresses.

3.1.2 TLVs

 A TLV is a carrier of information, relative to a message or to
 addresses in an address block. A TLV, associated to an address-
 block, specifies some attribute(s), which associate with address(ses)
 in the address-block. In order to provide the largest amount of
 flexibility to benefit from address aggregation as described in

Section 3.1.1, a TLV associated to an address block can apply to:

 o a single address in the address block;

Clausen Expires January 12, 2006 [Page 12]

Internet-Draft OLSRv2 July 2005

 o all addresses in the address block;

 o any continuous sequence of addresses in the address block;

 Specifically, a TLV conforms to the following specification:

 tlv = <type><index-start><index-stop><length><value>

 where the elements are defined thus:

 <type> specifies the type of the TLV -- more specifically, this field
 is an index to a table, specifying the processing of the data
 contained in <value>;

 <index-start> specifies the index of the first address in the
 address-block (starting at zero), for which this TLV applies;

 <index-stop> specifies the index of the last address in the address-
 block (starting at zero) for which this TLV applies;

 <length> specifies the length, counted in octets, of the data
 contained in <value>;

 <value> contains a payload, of the length specified in <length>,
 which is to be processed according to the specification indexed by
 the <type> field.

3.2 OLSRv2 Packet Format

 OLSRv2 messages are carried in a general packet format, allowing:

 o piggybacking of several independent messages (originated or
 forwarded) in a single transmission;

 o external extensibility -- i.e. new message types can be introduced
 for auxiliary functions, while still being delivered and forwarded
 correctly even by nodes not capable of interpreting the message;

 o controlled-scope diffusion of messages.

 For each message, contained in an OLSRv2 packet, a message header is
 inserted, which conforms to the following specification:

 msg-header = <type><vtime><msg-size><originator-address>
 <ttl><hopcount><msg-seq-number>

 with the elements defined thus:

Clausen Expires January 12, 2006 [Page 13]

Internet-Draft OLSRv2 July 2005

 <type> indicates the type of message -- more specifically, this field
 is an index to a table, specifying the processing of the data
 contained in the <message> that follows the msg-header;

 <vtime> indicates for how long time after reception a node MUST
 consider the information contained in the message as valid, unless
 a more recent update to the information is received;

 <msg-size> the size of the <msg-header> and the following <message>,
 counted in bytes;

 <originator-address> is the address of an interface of the node,
 which originated the packet. Each node SHOULD select one
 interface address and utilize consistently as "originator address"
 for all messages it generates;

 <ttl> contains the maximum number of hops a message will be
 transmitted. Before a message is retransmitted, the Time To Live
 MUST be decremented by 1. When a node receives a message with a
 Time To Live equal to 0 or 1, the message MUST NOT be
 retransmitted under any circumstances. Normally, a node would not
 receive a message with a TTL of zero.

 <hopcount> contains the number of hops a message has attained.
 Before a message is retransmitted, the Hop Count MUST be
 incremented by 1. Initially, this is set to '0' by the originator
 of the message;

 <msg-seq-number> is an unique number, generated by the originator
 node to uniquely identify each message in the network. "Wrap-
 around" is handled as described in Appendix I.

 The packet format is inherited directly from OLSRv1 [RFC3626] and
 conforms to the following specification:

 packet = <packet-length><packet seq. number>{<msg-header><message>}*

 with the usual notion of "*" indicating "zero or more" occurrences of
 the preceding element, and the elements defined thus:

 <packet-length> is the length (in bytes) of the packet;

 <packet seq. number> is the packet sequence number (PSN), which MUST
 be be incremented by one each time a new OLSRv2 packet is
 transmitted. "Wrap-around" is handled as described in Appendix I.
 A separate Packet Sequence Number is maintained for each OLSRv2
 interface such that packets transmitted over an interface are
 sequentially enumerated.

https://datatracker.ietf.org/doc/html/rfc3626

Clausen Expires January 12, 2006 [Page 14]

Internet-Draft OLSRv2 July 2005

 <msg-header> is the header for the following message, as defined
 above;

 <message> is the message as defined in Section 3.1.

Clausen Expires January 12, 2006 [Page 15]

Internet-Draft OLSRv2 July 2005

4. Packet Processing and Message Forwarding

 Upon receiving a basic packet, a node examines each of the "message
 headers". If the "message type" is known to the node, the message is
 processed locally according to the specifications for that message
 type -- otherwise, the message is treated as "unknown", and is
 evaluated for forwarding.

4.1 Processing and Forwarding Repositories

 The following data-structures are employed in order to ensure that a
 message is processed at most once and is forwarded at most once per
 interface of a node.

4.1.1 Received Message Set

 Each node maintains, for each OLSRv2 interface it possesses, a set of
 messages received over that interface:

 (R_addr, R_seq_number, R_time)

 where:

 R_addr is the originator address of the received message;

 R_seq_number is the message sequence number of the received message;

 R_time specifies the time at which this record expires and *MUST* be
 removed.

4.1.2 Processed Set

 Each node maintains a set of messages, which have been processed by
 the node:

 (P_addr, P_seq_number, P_time)

 where:

 P_addr is the originator address of the received message;

 P_seq_number is the message sequence number of the received message;

Clausen Expires January 12, 2006 [Page 16]

Internet-Draft OLSRv2 July 2005

 P_time specifies the time at which this record expires and *MUST* be
 removed.

4.1.3 Forwarded Set

 Each node maintains a set of messages, which have been retransmitted/
 forwarded by the node:

 (F_addr, F_seq_number, F_time)

 where:

 F_addr is the originator address of the received message;

 F_seq_number is the message sequence number of the received message;

 F_time specifies the time at which this record expires and *MUST* be
 removed.

4.1.4 Relay Set

 A node maintains a set of neighbor interfaces, in the form of "relay
 tuples", for which it is to relay flooded messages:

 (RS_if_addr, Rs_if_time)

 where:

 RS_if_addr is the address of the neighbor interface, for which a node
 SHOULD relay flooded messages;

 RS_if_time specifies the time at which this record expires and *MUST*
 be removed.

 In a node, this is denoted the "relay set".

4.2 Actions when Receiving an OLSRv2-Message

 Upon receiving a basic packet, a node MUST perform the following
 tasks for each encapsulated OLSRv2-message:

 1. If the packet contains no messages (i.e., the Packet Length is
 less than or equal to the size of the packet header), the packet
 MUST silently be discarded.

Clausen Expires January 12, 2006 [Page 17]

Internet-Draft OLSRv2 July 2005

 2. If for the message TTL <= 0 or if the Originator Address of the
 message is an interface address of the receiving node, then the
 message MUST silently be dropped.

 3. If an entry exists in the received set for the receiving
 interface, where:

 * R_addr == the originator of the received message, AND;

 * R_seq_number == the sequence number of the received message.

 then the message MUST be discarded

 4. Otherwise:

 1. Create an entry in the Received Set for the receiving
 interface with:

 + R_addr = originator address of the received message;

 + R_seq_number = sequence number of the received message;

 + R_time = current time + R_HOLD_TIME.

 2. If the message type is known to the receiving node, the
 message is considered for processing according to

Section 4.3;

 3. Otherwise, if the message type is unknown to the receiving
 node, the message is considered for forwarding according to

Section 4.4.

 Notice that known message types are not automatically considered for
 forwarding. Forwarding of known message types MUST be specified as a
 property of processing of that message type.

4.3 Message Considered for Processing

 If a message is considered for processing, the following tasks MUST
 be performed:

 1. If an entry exists in the Processed Set where:

 * P_addr == the originator address of the received message, AND;

 * P_seq_number == the sequence number of the received message.

 the message MUST be discarded.

Clausen Expires January 12, 2006 [Page 18]

Internet-Draft OLSRv2 July 2005

 2. Otherwise:

 1. Create an entry in the Processed Set with:

 + P_addr = originator address of the received message;

 + P_seq_number = sequence number of the received message;

 + P_time = current time + P_HOLD_TIME.

 2. Process message locally, according to the specification for
 the received message type.

 3. If a message of a known message type is to be forwarded, the
 algorithm in Section 4.4 MAY be performed.

4.4 Message Considered for Forwarding

 If a message is considered for forwarding, the following tasks MUST
 be performed:

 1. If an entry exists in the Forwarded Set where:

 * F_addr == the originator address of the received message, AND;

 * F_seq_number == the sequence number of the received message.

 then the message MUST be discarded

 2. Otherwise:

 1. If an entry exists in the relay set, where:

 + RS_if_addr == originator address of the received message

 2. Create an entry in the Forwarded Set with:

 - F_addr = originator address of the received message;

 - F_seq_number = sequence number of the received
 message;

 - F_time = current time + F_HOLD_TIME.

 3. Transmit the message on all OLSRv2 interfaces of the node

Clausen Expires January 12, 2006 [Page 19]

Internet-Draft OLSRv2 July 2005

5. Information Repositories

 The signaling of OLSRv2 populates a set of information repositories,
 specified in this section.

5.1 Local Link Information Base

 The local link information base stores information about links
 between local interfaces and interfaces on adjacent nodes.

5.1.1 Link Set

 A node records a set of "Link Tuples":

 (L_local_iface_addr, L_neighbor_iface_addr,
 L_SYM_time, L_ASYM_time, L_willingness, L_time).

 where:

 L_local_iface_addr is the interface address of the local node;

 L_neighbor_iface_addr is the interface address of the neighbor node ;

 L_SYM_time is the time until which the link is considered symmetric;

 L_ASYM_time is the time until which the neighbor interface is
 considered heard;

 L_willingness is the nodes willingness to be selected as MPR;

 L_time specifies when this record expires and *MUST* be removed.

 +-------------+-------------+--------------+
 | L_SYM_time | L_ASYM_time | L_STATUS |
 +-------------+-------------+--------------+
 | Expired | Expired | LOST |
 | | | |
 | Not Expired | Expired | SYMMETRIC |
 | | | |
 | Not Expired | Not Expired | SYMMETRIC |
 | | | |
 | Expired | Not Expired | ASYMMETRIC |
 +-------------+-------------+--------------+

 Table 1

 The status of the link, denoted L_STATUS, can be derived based on the
 fields L_SYM_time and L_ASYM_time as defined in Table 1.

Clausen Expires January 12, 2006 [Page 20]

Internet-Draft OLSRv2 July 2005

 In a node, the set of Link Tuples are denoted the "Link Set".

5.1.2 2-hop Neighbor Set

 A node records a set of "2-hop tuples"

 (N_local_iface_addr, N_neighbor_iface_addr, N_2hop_iface_addr, N_time)

 describing symmetric links between its neighbors and the symmetric
 2-hop neighborhood.

 N_local_iface_addr is the address of the local interface over which
 the information was received;

 N_neighbor_iface_addr is the interface address of a neighbor;

 N_2hop_iface_addr is the interface address of a 2-hop neighbor with a
 symmetric link to N_neighbor_iface_addr;

 specifies the time at which the tuple expires and *MUST* be
 removed.

 In a node, the set of 2-hop tuples are denoted the "2-hop Neighbor
 Set".

5.1.3 Neighbor Address Association Set

 A node maintains, for each neighbor with multiple OLSR interfaces, a
 "Neighbor Address Association Tuple", representing that "these n
 interfaces belong to the sane node".

 (I_neighbor_iface_addr_list, I_time)

 I_neighbor_iface_addr_list is the list of interface addresses of a
 neighbor node;

 I_time specifies the time at which the tuple expires and *MUST* be
 removed.

 In a node, the set of Neighbor Address Association Tuples is denoted
 the "Neighbor Address Association Set".

5.1.4 MPR Set

 A node maintains a set of neighbors which are selected as MPR. Their
 interface addresses are listed in the MPR Set.

Clausen Expires January 12, 2006 [Page 21]

Internet-Draft OLSRv2 July 2005

5.2 Topology Information Base

 Each node in the network maintains topology information about the
 network.

 For each destination in the network, at least one "Topology Tuple"

 (T_dest_iface_addr, T_last_iface_addr, T_seq, T_time)

 is recorded.

 T_dest_iface_addr is the interface address of a node, which may be
 reached in one hop from the node with the interface address
 T_last_iface_addr;

 T_last_iface_addr is, conversely, the last hop towards
 T_dest_iface_addr. Typically, T_last_iface_addr is a MPR of
 T_dest_iface_addr;

 T_seq is a sequence number, and T_time specifies the time at which
 this tuple expires and *MUST* be removed.

 In a node, the set of Topology Tuples are denoted the "Topology Set".

Clausen Expires January 12, 2006 [Page 22]

Internet-Draft OLSRv2 July 2005

6. OLSRv2 Control Messages

 OLSRv2 employs two different message types for exchanging protocol
 information. Those are HELLO messages, which are locally scoped, and
 TC messages, which are globally scoped.

6.1 HELLO Messages

 HELLO messages are, in OLSRv2, exchanged between neighbor nodes with
 the purpose of populating the local link information base:

 o Link Sensing: detecting new and lost adjacent interfaces and
 performing bidirectionality check of links;

 o 2-hop Neighbor Discovery: detecting the 2-hop symmetric
 neighborhood of a node;

 o MPR Signaling: signal MPR selection to neighbor nodes and detect
 selection of MPRs

 HELLO messages are exchanged between neighbor nodes only, i.e. they
 are never forwarded by any node. A HELLO message conforms to the
 following specification:

 hello msg = <hello-msg-tlvs>*{<addr_block><addr_block_tlv>+}*;

 with the usual notion of "*" indicating "zero or more" occurrences of
 the preceding element, and "+" indicating "one or more" of the
 preceding element.

6.2 TC Messages

 TC messages are, in OLSRv2, transmitted to the entire network with
 the purpose of populating the topology information base:

 o Topology Discovery: ensure that information is present in each
 node describing all destinations and (at least) a sufficient
 subset of links in order to provide least-hop paths to all
 destinations.

 TC messages are exchanged within the entire network, i.e. they are
 forwarded according to the specification in section Section 4.4. A
 TC message conforms to the following specification:

 tc msg = <tc-msg-tlvs>*{<addr_block><addr_block_tlv>*}*;

Clausen Expires January 12, 2006 [Page 23]

Internet-Draft OLSRv2 July 2005

7. Populating the MPR Set

 Each node MUST select, from among its one-hop neighbors, a subset of
 nodes as MPR. This subset MUST be selected such that a message
 transmitted by the node, and retransmitted by all its MPR nodes, will
 be received by all nodes 2 hops away.

 Each node selects its MPR-set individually, utilizing the information
 in then neighbor set. Initially, a node will have an empty neighbor-
 set, thus, initially the MPR set is empty. A node SHOULD recalculate
 its MPR set when a change is detected to the neighbor set or 2-hop
 neighbor set.

 More specifically, a node MUST calculate MPRs per interface, the
 union of the MPR sets of each interface make up the MPR set for the
 node.

 MPRs are used to flood control messages from a node into the network
 while reducing the number of retransmissions that will occur in a
 region. Thus, the concept of MPR is an optimization of a classical
 flooding mechanism. While it is not essential that the MPR set is
 minimal, it is essential that all strict 2-hop neighbors can be
 reached through the selected MPR nodes. A node SHOULD select an MPR
 set such that any strict 2-hop neighbor is covered by at least one
 MPR node. Keeping the MPR set small ensures that the overhead of
 OLSRv2 is kept at a minimum.

Appendix A contains an example heuristic for selecting MPRs.

Clausen Expires January 12, 2006 [Page 24]

Internet-Draft OLSRv2 July 2005

8. HELLO Message Generation

 An OLSRv2 HELLO message is composed of two parts, as described in
Section 6.1: a set of message TLVs, describing general properties of

 the message and the node emitting the HELLO, and a set of address
 blocks (with associated TLV sets), describing the links and their
 associated properties.

 OLSRv2 HELLO messages are generated and transmitted per interface,
 i.e. different HELLO messages are generated and transmitted per
 OLSRv2 interface of a node.

 OLSRv2 HELLO messages are generated and transmitted periodically,
 with a default interval between two consecutive HELLO emissions on
 the same interface of HELLO_INTERVAL.

 This section specifies the requirements, which HELLO message
 generation MUST fulfill. An example algorithm is proposed in

Appendix B.1.

8.1 HELLO Message: Message TLVs

 For each OLSRv2 interface a node MUST generate a HELLO message with
 at least the message TLVs specified in Table 2. Note that the
 processing in Section 9 does not however assumes

 +-------------+-------------------------------------+---------------+
 | TLV Type | TLV Value | Default Value |
 +-------------+-------------------------------------+---------------+
 | Willingness | willingness to be selected as MPR. | WILL_DEFAULT |
 +-------------+-------------------------------------+---------------+

 Table 2

8.2 HELLO Message: Address Blocks and Address TLVs

 For each OLSRv2 interface a node MUST generate a HELLO message with
 address blocks and address TLVs according to Table 3.

Clausen Expires January 12, 2006 [Page 25]

Internet-Draft OLSRv2 July 2005

 +---------------------------+---------------------------------------+
 | The set of neighbor | TLV (Type = Value) |
 | interfaces which are.... | |
 +---------------------------+---------------------------------------+
HEARD over the interface	(Link Status=HEARD);
over which the HELLO is	(Interface=TransmittingInterface)
being transmitted	
SYMMETRIC over the	(Link Status=SYMMETRIC);
interface over which the	(Interface=TransmittingInterface)
HELLO is being	
transmitted	
LOST over the interface	(Link Status=LOST);
over which the HELLO is	(Interface=TransmittingInterface)
being transmitted	
SYMMETRIC over ANY	(Link Status=SYMMETRIC);
interface of the node	(Interface=Other)
other than the interface	
over which the HELLO is	
being transmitted	
selected as MPR for the	(Link Status=SYMMETRIC);
interface over which the	(Interface=TransmittingInterface);
HELLO is transmitted	(MPR Selection=True)
 +---------------------------+---------------------------------------+

 Table 3

Clausen Expires January 12, 2006 [Page 26]

Internet-Draft OLSRv2 July 2005

9. HELLO Message Processing

 Upon receiving a HELLO message, a node will update its local link
 information base according to the specification given in this
 section.

 For the purpose of this section, please notice the following:

 o the "validity time" of a message is calculated from the Vtime
 field of the message header as specified in Section 14;

 o the "originator address" refers to the address, contained in the
 "originator address" field of the OLSRv2 message header specified
 in Section 3.2;

 o a HELLO message MUST neither be forwarded nor be recorded in the
 duplicate set;

 o the address blocks considered exclude the originator address
 block, unless explicitly specified;

 o a HELLO message is valid when, for each address listed in the
 address blocks:

 * the address is associated with at least one TLV with Type=Link
 Status, AND

 * the address is associated with at least one TLV with
 Type=Interface, AND

 * all the TLVs with identical type, that the address is
 associated with, have identical values (e.g.
 Interface=TransmittingInterface is not compatible with
 Interface=Other for instance), AND

 * if the address is associated with one TLV "MPR Selection=True",
 then it MUST be associated also with one TLV "Link
 Status=SYMMETRIC".

 Invalid HELLO messages are not processed.

9.1 Populating the Link Set

 Upon receiving a HELLO message, a node SHOULD update its Link Set
 with the information contained in the HELLO. Thus, for each address,
 listed in the HELLO message address blocks (see Section 6):

Clausen Expires January 12, 2006 [Page 27]

Internet-Draft OLSRv2 July 2005

 1. if there exists no link tuple with

 * L_neighbor_iface_addr == Source Address

 a new tuple is created with

 * L_neighbor_iface_addr = Source Address;

 * L_local_iface_addr = Address of the interface which
 received the HELLO message;

 * L_SYM_time = current time - 1 (expired);

 * L_time = current time + validity time.

 2. The tuple (existing or new) with:

 * L_neighbor_iface_addr == Source Address

 is then modified as follows:

 2. if the node finds the address of the interface, which
 received the HELLO message, in one of the address blocks
 included in message, then the tuple is modified as follows:

 1. if the occurrence of L_local_iface_addr in the HELLO
 message is associated with a TLV with Type="Link Status"
 and value=LOST, and it is also associated with an TLV
 with Type="Interface" and Value="TransmittingInterface"
 then

 - L_SYM_time = current time - 1 (i.e., expired)

 2. else if the occurrence of L_local_iface_addr in the HELLO
 message is associated with a TLV with Type="Link Status"
 and value=SYMMETRIC or HEARD, and it is also associated
 with an TLV with Type="Interface" and
 Value="TransmittingInterface" then

 - L_SYM_time = current time + validity time,

 - L_time = L_SYM_time + NEIGHB_HOLD_TIME.

 3. L_ASYM_time = current time + validity time;

 4. L_time = max(L_time, L_ASYM_time)

Clausen Expires January 12, 2006 [Page 28]

Internet-Draft OLSRv2 July 2005

 3. Additionally, the willingness field is updated as follows:

 If a TLV with Type="Willingness" is present in the message
 TLVs, then

 + L_willingness = Value of the TLV

 otherwise:

 + L_willingness = WILL_DEFAULT

 The rule for setting L_time is the following: a link losing its
 symmetry SHOULD still be advertised in HELLOs (with the remaining
 status as defined by Table 1) during at least the duration of the
 "validity time". This allows neighbors to detect the link breakage.

9.2 Populating the Neighbor Address Association Set

 Upon receiving a HELLO message, where the originator address block
 (see Section 3.1) contains two or more addresses, the node SHOULD
 update its Neighbor Address Association Set as follows:

 1. All neighbor address association tuples where

 * I_neighbor_iface_addr_list contains at least one address which
 is present in the originator address block of the received
 message,

 SHOULD be removed, and a new neighbor address association tuple
 SHOULD be created with:

 * I_neighbor_iface_addr_list = list of addresses of the
 originator address block;

 * I_time = current time + validity time.

9.3 Populating the 2-Hop Neighbor Set

 Upon receiving a HELLO message from a symmetric neighbor interface, a
 node SHOULD update its 2-hop Neighbor Set.

 If the Originator Address is the L_local_iface_addr from a link tuple
 included in the Link Set with L_STATUS equal to SYMMETRIC (in other
 words: if the Originator Address is a symmetric neighbor interface)
 then the 2-hop Neighbor Set SHOULD be updated as follows:

Clausen Expires January 12, 2006 [Page 29]

Internet-Draft OLSRv2 July 2005

 1. for each address (henceforth: 2-hop neighbor address), listed in
 the HELLO message with a Link Status TLV equal to SYMMETRIC:

 1. if the 2-hop neighbor address is an address of the receiving
 node:

 silently discard the 2-hop neighbor address.

 (in other words: a node is not its own 2-hop neighbor).

 2. Otherwise, a 2-hop tuple is created with:

 + N_local_iface_addr = address of the interface over
 which the HELLO message was received;

 + N_neighbor_iface_addr = Originator Address of the message;

 + N_2hop_iface_addr = 2-hop neighbor address;

 + N_time = current time + validity time.

 This tuple may replace an older similar tuple with same
 N_local_iface_addr, N_neighbor_iface_addr and
 N_2hop_iface_addr values.

9.4 Populating the Relay Set

 Upon receiving a HELLO message, if a node finds one of its own
 interface addresses, listed with an MPR TLV (indicating that the
 originator node has selected one of the receiving nodes interfaces as
 MPR), the Relay Set SHOULD be updated as follows:

 For each address in the originator address block:

 1. If there exists no Relay tuple with:

 * RS_if_addr == that address

 then a new tuple is created with:

 * RS_if_addr = that address

 2. The tuple (new or otherwise) with

 * RS_if_addr == that address

 is then modified as follows:

Clausen Expires January 12, 2006 [Page 30]

Internet-Draft OLSRv2 July 2005

 * RS_time = current time + validity time.

 Relay tuples are removed upon expiration of RS_time, or upon link
 breakage as described in Section 9.5.

9.5 Neighborhood and 2-hop Neighborhood Changes

 A change in the neighborhood is detected when:

 o The L_SYM_time field of a link tuple expires. This is considered
 as a link loss.

 o A new link tuple is inserted in the Link Set with a non expired
 L_SYM_time or a tuple with expired L_SYM_time is modified so that
 L_SYM_time becomes non-expired. This is considered as a link
 appearance if there was previously no such link tuple.

 A change in the 2-hop neighborhood is detected when a 2-hop neighbor
 tuple expires or is deleted according to section Section 9.3.

 The following processing occurs when changes in the neighborhood or
 the 2-hop neighborhood are detected:

 o In case of link loss, all 2-hop tuples with

 * N_local_iface_addr == interface address of the node where the
 link was lost

 * N_neighbor_iface_addr == interface address of the neighbor

 MUST be deleted.

 o In case of neighbor interface loss, if there exists no link left
 to this neighbor node, all MPR selector tuples associated with
 that neighbor are deleted. More precisely:

 * If there exists an entry in the neighbor address iface
 association set where

 + I_neighbor_iface_addr_list includes the
 N_neighbor_iface_addr of the lost link tuple

 AND such has there exists a link tuple such has

 + L_neighbor_iface_addr is one of the addresses in
 I_neighbor_iface_addr_list

 then a link to the neighbor interface was lost, but the

Clausen Expires January 12, 2006 [Page 31]

Internet-Draft OLSRv2 July 2005

 neighbor node itself is still a neighbor (with another link),
 and the mpr selector set is not changed,

 * otherwise, the neighbor node is lost, and all MPR selector
 tuples with MS_iface_addr == interface address of the neighbor
 MUST be deleted, along with any interface address associated in
 the neighbor address iface association set.

 o The MPR set MUST be re-calculated when a link appearance or loss
 is detected, or when a change in the 2-hop neighborhood is
 detected.

 o An additional HELLO message MAY be sent when the MPR set changes.

 Additionally, proper update of the sets describing local topology
 should be made when a neighbor association address tuple has a list
 of addresses which is modified.

Clausen Expires January 12, 2006 [Page 32]

Internet-Draft OLSRv2 July 2005

10. TC Message Generation

 An OLSRv2 TC message is composed of two parts, as described in
Section 6.2: a set of message TLVs, describing general properties of

 the message and the node emitting the TC, and a set of address blocks
 (with associated TLV sets), describing the links and their associated
 properties.

 OLSRv2 TC messages are generated and transmitted per node, i.e. the
 same TC messages are generated and transmitted on all OLSRv2
 interfaces of a node.

 OLSRv2 TC messages are generated and transmitted periodically, with a
 default interval between two consecutive TC emissions by the same
 node of TC_INTERVAL.

10.1 TC Message: Message TLVs

 Each OLSRv2 node, selected as MPR (i.e. a node with a non-empty MPR
 Selector Set) MUST generate TC messages with message TLVs according
 to the following table:

 +----------------------+----------------------+---------------------+
 | TLV Type | TLV Value | Default Value |
 +----------------------+----------------------+---------------------+
Seq. no	<the current value	N/A
	of the ASSN of the	
	node>	
 +----------------------+----------------------+---------------------+

 Table 4

10.2 TC Message: Address Blocks and Address TLVs

 Each OLSRv2 node, selected as MPR (i.e. a node with a non-empty MPR
 Selector Set) MUST generate TC messages with address blocks and
 address TLVs according to the following table:

 +---------------------------------+---------------------------------+
 | Addresses | TLVs |
 +---------------------------------+---------------------------------+
The set of neighbor interfaces,	
which have selected the node as	
MPR	
 +---------------------------------+---------------------------------+

 Table 5

Clausen Expires January 12, 2006 [Page 33]

Internet-Draft OLSRv2 July 2005

11. TC Message Processing

 Upon receiving a TC message, a node will update its topology
 information base according to the specification given in this
 section.

 For the purpose of this section, please notice the following:

 o the "validity time" of a message is calculated from the Vtime
 field of the message header as specified in Section 14;

 o the "originator address" refers to the address, contained in the
 "originator address" field of the OLSRv2 message header specified
 in Section 3.2;

 o the ASSN of the node, originating the TC message, is recovered as
 the value of the Seq. no message TLV in the TC message;

 Upon receiving a TC message, a node SHOULD update its topology set as
 follows:

 1. If the sender interface (NB: not originator) address of this
 message is not in the symmetric 1-hop neighborhood of this node,
 the message MUST be discarded;

 2. otherwise, if the TC message does not contain a message-TLV of
 type Seq. no., the message SHOULD be discarded;

 3. otherwise, if there exist some tuple in the topology set where:

 T_last_iface_addr == originator address in the message AND

 T_seq > ASSN;

 then the TC message SHOULD be discarded.

 4. The topology set is then updated in two steps:

 1. any topology tuple where:

 T_last_iface_addr == originator address in the message AND

 T_seq < ASSN

 SHOULD be removed.

 2. For each address, listed in the TC message:

Clausen Expires January 12, 2006 [Page 34]

Internet-Draft OLSRv2 July 2005

 1. if there exists a tuple in the topology set where:

 T_dest_iface_addr == advertised neighbor address, AND

 T_last_iface_addr == originator address;

 then the tuple is updated as follows:

 T_time = current time + validity time.

 (Note that necessarily: T_seq == ASSN).

 2. Otherwise, a new topology tuple is created with:

 T_dest_iface_addr == advertised neighbor main address,
 AND

 T_last_iface_addr == originator address in the message
 AND

 T_seq == ASSN;

Clausen Expires January 12, 2006 [Page 35]

Internet-Draft OLSRv2 July 2005

12. Routing Table Calculation

 A node records a set of "routing tuples":

 (R_dest_iface_addr, R_next_iface_addr, R_dist, R_iface_addr)

 describing the next hop and distance of the path to each destination
 in the network for which a route is known.

 R_dest_iface_addr is the interface address of the destination node;

 R_next_iface_addr is the interface address of the "next hop" on the
 path towards R_dest_iface_addr;

 R_dist is the number of hops on the path to R_dest_iface_addr;

 R_iface_addr is the address of the local interface over which a
 packet MUST be sent to reach R_next_iface_addr.

 In a node, the set of routing tuples is denoted the "routing set".

 The routing set is updated when a change (an entry appearing/
 disappearing) is detected in:

 o the link set,

 o the neighbor address association set,

 o the 2-hop neighbor set,

 o the topology set,

 Updates to the routing set does not generate or trigger any messages
 to be transmitted. The state of the routing set SHOULD, however, be
 reflected in the IP routing table by adding and removing entries from
 the routing table as appropriate.

 To construct the routing set of node X, a shortest path algorithm is
 run on the directed graph containing the arcs X -> Y where Y is any
 symmetric neighbor of X (with Link Type equal to SYM), the arcs Y ->
 Z where Y is a neighbor node with willingness different of WILL_NEVER
 and there exists an entry in the 2-hop Neighbor set with Y as
 N_neighbor_iface_addr and Z as N_2hop_iface_addr, and the arcs U ->
 V, where there exists an entry in the topology set with V as
 T_dest_iface_addr and U as T_last_iface_addr. The graph is
 complemented with the arcs W0 -> W1 where W0 and W1 are two addresses
 of interfaces of a same neighbor (in a neighbor address association
 tuple).

Clausen Expires January 12, 2006 [Page 36]

Internet-Draft OLSRv2 July 2005

 The following procedure is given as an example for (re-)calculating
 the routing set (with a breadth-first algorithm):

 1. All the tuples from the routing set are removed.

 2. The new routing tuples are added starting with the symmetric
 neighbors (h=1) as the destinations. Thus, for each tuple in the
 link set where:

 * L_STATUS = SYMMETRIC

 a new routing tuple is recorded in the routing set with:

 * R_dest_iface_addr = L_neighbor_iface_addr, of the link tuple;

 * R_next_iface_addr = L_neighbor_iface_addr, of the link tuple;

 * R_dist = 1;

 * R_iface_addr = L_local_iface_addr of the link tuple.

 3. for each neighbor address association tuple, for which two
 addresses A1 and A2 exist in I_neighbor_iface_addr_list where:

 * there exists a routing tuple with:

 + R_dest_iface_addr = A1

 * there is no routing tuple with:

 + R_dest_iface_addr = A2

 then a tuple in the routing set is created with:

 * R_dest_iface_addr = A2;

 * R_next_iface_addr = R_next_iface_addr of the route tuple of
 A1;

 * R_dist = R_dist of the route tuple of A1 (e.g. 1);

 * R_iface_addr = R_iface_addr of the route tuple of A1.

 4. for each symmetric strict 2-hop neighbor where the
 N_neighbor_iface_addr has a willingness different from WILL_NEVER
 a tuple in the routing set is created with:

Clausen Expires January 12, 2006 [Page 37]

Internet-Draft OLSRv2 July 2005

 * R_dest_iface_addr = N_2hop_iface_addr of the 2-hop neighbor;

 * R_next_iface_addr = the R_next_iface_addr of the route tuple
 with:

 + R_dest_iface_addr == N_neighbor_iface_addr of the 2-hop
 tuple;

 * R_dist = 2;

 * R_iface_addr = the R_iface_addr of the route tuple with:

 + R_dest_iface_addr == N_neighbor_iface_addr of the 2-hop
 tuple;

 5. The new route tuples for the destination nodes h+1 hops away are
 recorded in the routing table. The following procedure MUST be
 executed for each value of h, starting with h=2 and incrementing
 by 1 for each iteration. The execution will stop if no new tuple
 is recorded in an iteration.

 1. For each topology tuple in the topology set, if its
 T_dest_iface_addr does not correspond to R_dest_iface_addr of
 any route tuple in the routing set AND its T_last_iface_addr
 corresponds to R_dest_iface_addr of a route tuple whose
 R_dist is equal to h, then a new route tuple MUST be recorded
 in the routing set (if it does not already exist) where:

 + R_dest_iface_addr = T_dest_iface_addr;

 + R_next_iface_addr = R_next_iface_addr of the route tuple
 where:

 - R_dest_iface_addr == T_last_iface_addr

 + R_dist = h+1; and

 + R_iface_addr = R_iface_addr of the route tuple where:

 - R_dest_iface_addr == T_last_iface_addr.

 2. Several topology tuples may be used to select a next hop
 R_next_iface_addr for reaching the node R_dest_iface_addr.
 When h=1, ties should be broken such that nodes with highest
 willingness and MPR selectors are preferred as next hop.

Clausen Expires January 12, 2006 [Page 38]

Internet-Draft OLSRv2 July 2005

13. Proposed Values for Constants

 This section list the values for the constants used in the
 description of the protocol.

13.1 Message Types

 o HELLOv2 = 5

 o TCv2 = 6

13.2 Message Intervals

 o HELLO_INTERVAL = 2 seconds

 o REFRESH_INTERVAL = 2 seconds

 o TC_INTERVAL = 5 seconds

13.3 Holding Times

 o NEIGHB_HOLD_TIME = 3 x REFRESH_INTERVAL

 o TOP_HOLD_TIME = 3 x TC_INTERVAL

 o DUP_HOLD_TIME = 30 seconds

13.4 Willingness

 o WILL_NEVER = 0

 o WILL_LOW = 1

 o WILL_DEFAULT = 3

 o WILL_HIGH = 6

 o WILL_ALWAYS = 7

Clausen Expires January 12, 2006 [Page 39]

Internet-Draft OLSRv2 July 2005

14. Representing Time

 In HELLO messages, the 4 highest bits of the value of the TLV with
 Type="Htime" (see Appendix D.2.1) represent the mantissa (a) and the
 four lowest bits the exponent (b), yielding that the HELLO interval
 is expressed thus: C*(1+a/16)*2^b [in seconds]

 Similarily, the validity time is represented by its mantissa (four
 highest bits of Vtime field) and by its exponent (four lowest bits of
 Vtime field). In other words:

 o validity time = C*(1+a/16)* 2^b [in seconds]

 where a is the integer represented by the four highest bits of Vtime
 field and b the integer represented by the four lowest bits of Vtime
 field. The proposed value of the scaling factor C is specified in

Section 13

Clausen Expires January 12, 2006 [Page 40]

Internet-Draft OLSRv2 July 2005

15. IANA Considerations

 OLSRv2 defines a TLV "Type" field. A new registry MUST be created
 for values for this TLV type field, with values assigned as specified
 in Table 6.

 Assigned TLV Types

 +--------------+--+
 | Mnemonic | Value |
 +--------------+--+
Htime	0
Seq. no	1
Willingness	2
Link Status	3
Interface	4
MPR	5
 +--------------+--+

 Table 6

 OLSRv2 message types MUST be assigned from the OLSRv2 repository
 (HELLOv2, TCv2)

Clausen Expires January 12, 2006 [Page 41]

Internet-Draft OLSRv2 July 2005

Appendix A. Example Heuristic for Calculating MPRs

 The following specifies a proposed heuristic for selection of MPRs.

 In graph theory terms, MPR computation is a "set cover" problem,
 which is a difficult optimization problem, but for which an easy and
 efficient heuristics exist: the so-called "Greedy Heuristic", a
 variant of which is described here. In simple terms, MPR computation
 constructs an MPR-set that enables a node to reach any 2-hop
 interfaces through relaying by one MPR node.

 There are several peripheral issues that the algorithm need to
 address. The first one is that some nodes have some willingness
 WILL_NEVER. The second one is that some nodes may have several
 interfaces.

 The algorithm hence need to be precised in the following way:

 o All neighbor nodes with willingness equal to WILL_NEVER MUST
 ignored in the following algorithm: they are not considered as
 neighbors (hence not used as MPR), nor as 2-hop neighbors (hence
 no attempt to cover them is made).

 o Because link sensing is performed by interface, the local network
 topology, is best described in terms of links: hence the algorithm
 is considering neighbor interfaces, and 2-hop neighbor interfaces
 (and their addresses). Additionally, asymmetric links are
 ignored. This is reflected in the definitions below.

 o MPR computation is performed on each interface of the node: on
 each interface I, the node MUST select some neighbor interface, so
 that all 2-hop interfaces are reached.

 >From now on, MPR calculation will be described for one interface I
 on the node, and the following terminology will be used in describing
 the heuristics:

 neighbor interface (of I) - An interface of a neighbor to which there
 exist a symmetrical link on interface I.

 N - the set of such neighbor interfaces

 2-hop neighbor interface (of I) An interface of a symmetric strict
 2-hop neighbor and which can be reached from a neighbor interface
 for I.

Clausen Expires January 12, 2006 [Page 42]

Internet-Draft OLSRv2 July 2005

 N2 - the set of such 2-hop neighbor interfaces

 D(y): - the degree of a 1-hop neighbor interface y (where y is a
 member of N), is defined as the number of symmetric neighbor
 interfaces of node y which are in N2

 MPR set - the set of the neighbor interfaces selected as MPR.

 The proposed heuristic selects iteratively some interfaces from N as
 MPR in order to cover 2-hop neighbor interfaces from N2, as follows:

 1. Start with an MPR set made of all members of N with N_willingness
 equal to WILL_ALWAYS

 2. Calculate D(y), where y is a member of N, for all interfaces in
 N.

 3. Add to the MPR set those interfaces in N, which are the *only*
 nodes to provide reachability to an interface in N2. For
 example, if interface B in N2 can be reached only through a
 symmetric link to interface A in N, then add interface B to the
 MPR set. Remove the interfaces from N2 which are now covered by
 a interface in the MPR set.

 4. While there exist interfaces in N2 which are not covered by at
 least one interface in the MPR set:

 1. For each interface in N, calculate the reachability, i.e.,
 the number of interfaces in N2 which are not yet covered by
 at least one node in the MPR set, and which are reachable
 through this neighbor interface;

 2. Select as a MPR the interface with highest N_willingness
 among the interfaces in N with non-zero reachability. In
 case of multiple choice select the interface which provides
 reachability to the maximum number of interfaces in N2. In
 case of multiple interfaces providing the same amount of
 reachability, select the interface as MPR whose D(y) is
 greater. Remove the interfaces from N2 which are now covered
 by an interface in the MPR set.

 Other algorithms, as well as improvements over this algorithm, are
 possible. For example:

 o Some 2-hop neighbors may have several interfaces. The described
 algorithm attempts to reach every such interface of the nodes.
 However, whenever information that several 2-hop interfaces are,
 in fact, interfaces of the same 2-hop neighbor, is available, it

Clausen Expires January 12, 2006 [Page 43]

Internet-Draft OLSRv2 July 2005

 can be used: only one of the interfaces of the 2-hop neighbor
 needs to be covered.

 o Assume that in a multiple-interface scenario there exists more
 than one link between nodes 'a' and 'b'. If node 'a' has selected
 node 'b' as MPR for one of its interfaces, then node 'b' can be
 selected as MPR with minimal performance loss by any other
 interfaces on node 'a'.

Clausen Expires January 12, 2006 [Page 44]

Internet-Draft OLSRv2 July 2005

Appendix B. Example Algorithms for Generating Control Traffic

 The proposed generation of the control messages proceeds in four
 steps. HELLO messages, like TC messages consist essentially in a
 list of advertised addresses of neighbors (some part of the
 topology).

 Hence, a first step is to collect the set of relevant of addresses
 which are to be advertised. Because there are a number of TLVs which
 can be associated to each address (including mandatory ones), this
 steps results into a list of addresses, each associated with a
 certain number of TLVs.

 Thus, the second step is then to regroup the addresses which share
 exactly the same TLVs (same Type and same Value), into an address
 block which will be associated with a list of TLVs.

 The third step is to pack the message header and message TLVs into a
 string of bytes.

 The fourth step consists in packing every address block obtained in
 the second step: by finding the longest common prefix of the
 addresses in the address block (the head), then, packing the list of
 the tail of the addresses into a string of bytes, followed by the
 TLVs of the address block.

 This generation method can be used for TC generation and HELLO
 generation: in each case, all what need to be specified is the
 message headers, message TLVs, and the list of each address with its
 associated TLVs.

 The message headers are identical to RFC 3626, and should be filled
 in the same way . The orginator address block MUST include all the
 addresses of the node (including the one of chosen for originator
 address in the message header)

Appendix B.1 Example Algorithm for Generating HELLO messages

 This section proposes an algorithm for generating HELLOs .
 Periodically, on every interface I, the node generates a HELLO
 message different on each interface, as follows:

 1. First, the list of the links of the interface is collected. It
 is the list of the link tuples where:

 * L_local_iface_addr == address of the interface

 Each corresponding address L_neighbor_iface_addr is then

https://datatracker.ietf.org/doc/html/rfc3626

Clausen Expires January 12, 2006 [Page 45]

Internet-Draft OLSRv2 July 2005

 advertized with the following TLVs:

 * Type="Link Status", Value=L_STATUS, status of the link (see
Section 5.1.1)

 * Type="Interface" Value="TransmittingInterface"

 * Type="MPR Selection", Value="True", if and only of the address
 L_neighbor_iface_addr is one interface address in the MPR set.

 2. Second, if the node has several interfaces, for each address
 which was not previously advertised, and for which there exists a
 link tuple on another interface where:

 * L_local_iface_addr is different from address of the interface
 I

 * L_STATUS == SYMMETRIC

 the corresponding address L_neighbor_iface_addr is advertized
 with the following TLVs:

 * Type="Link Status", Value=L_STATUS, status of the link (see
Section 5.1.1)

 * Type="Interface" Value="Other"

 3. Then a HELLO message is generated using the previous method, with
 the proper headers and TLVs:

 * a message TLV with Type="Htime" and Value=encoding of the
 HELLO generation interval, is added

 * a message TLV with Type="Willingness" and Value=the
 willingness of the node

 * the message header including Vtime, which MUST be set to a
 value higher than this generation interval, typically 3 times
 the generation interval, to allow for message losses.

Appendix B.2 Example Algorithm for Generating TC messages

 A sequence number, ASSN, is associated with the advertised neighbor
 set which is sent in TC. The ANSN number MUST be incremented when
 links are removed from the advertised address set; the ASSN number
 SHOULD be incremented when links are added to the advertised address
 set.

Clausen Expires January 12, 2006 [Page 46]

Internet-Draft OLSRv2 July 2005

 Periodically, the node generates TC messages, broadcast on all the
 interfaces of the node, as follows:

 1. Each MS_iface_addr in the MPR selector set, will be included in
 the TC message.

 2. The TC message is generated using the previous method with the
 proper headers, and including the mandatory TC message TLV,
 Type="ASSN" Value=the current value of the ASSN of the node.

Clausen Expires January 12, 2006 [Page 47]

Internet-Draft OLSRv2 July 2005

Appendix C. Protocol and Port Number

 Packets in OLSRv2 are communicated using UDP. Port 698 has been
 assigned by IANA for exclusive usage by the OLSR (v1 and v2)
 protocol.

Clausen Expires January 12, 2006 [Page 48]

Internet-Draft OLSRv2 July 2005

Appendix D. OLSRv2 Packet and Message Layout

 This section specifies the translation from the abstract descriptions
 of OLSRv2 control signals, employed in the protocol specification,
 and the bit-layout in the control-frames actually exchanged between
 the nodes.

Appendix D.1 General OLSR Packet Format

 The basic layout of any packet in OLSRv2 is as follows (omitting IP
 and UDP headers):

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Packet Length | Packet Sequence Number |
 +-+
 | Message Type | Vtime | Message Size |
 +-+
 | Originator Address |
 +-+
 | Time To Live | Hop Count | Message Sequence Number |
 +-+
 | Number of Msg TLVs | Number of Address Blocks |
 +-+
 | Msg TLV | Msg TLV | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
 | |
 : ... :
 | |
 + +-+
 | | Msg TLV | Padding |
 +-+
 | |
 | Originator Address Block: Addr Block 1 |
 | |
 +-+
 | |
 | Addr Block 2 |
 | |
 +-+
 | |
 : :
 | |
 (etc.)

 The generic packet format defined in RFC3626 encapsulates messages,

https://datatracker.ietf.org/doc/html/rfc3626

Clausen Expires January 12, 2006 [Page 49]

Internet-Draft OLSRv2 July 2005

 similarly to OLSRv1. OLSRv2 messages are defined as new message
 types. These messages contain the same header as OLSRv1 messages,
 with address blocks and TLVs, as described below.

Appendix D.1.1 Message TLVs

 The TLV format (Type-Length-Value) is used to introduce information
 in a flexible way. A message TLV associates some information
 (depending on the type) with the node/address that originated the
 message.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
 : Value ... :
 | |
 +-+

Appendix D.1.2 Address Block

 An address block is a way of representing addresses, as well as
 information associated with addresses, in a compact and flexible way.
 The proposed format of an address block is as follows:

Clausen Expires January 12, 2006 [Page 50]

Internet-Draft OLSRv2 July 2005

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | # addresses | Addr. length | Head length | #TLV |
 +-+
 | |
 : Head :
 | |
 +-+
 | Tail | Tail | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
 | |
 : ... :
 | |
 + +-+-+-+-+-+-+-+-+-+
 | | Tail |
 +-+
 | Addr. Block TLV | Addr. Block TLV | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +
 | |
 : ... :
 | |
 + +-+
 | | Addr. Block TLV | Padding |
 +-+

 # addresses - The number of addresses in the address block

 Addr. length - The length, in bits, of an individual address. For
 IPv4 addresses, this field MUST be set to 32 For IPv6 addresses,
 this field MUST be set to 128

 Prefix length - The length of the common prefix of all the addresses
 in the address block. 0 <= Prefix length < Addr. length A prefix
 length of 0 indicates, that the prefix field (following) is
 absent.

 #TLV - The number of TLV's in the address block.

 Prefix The longest sequence of bits which is common among all the
 addresses, included in the address block. This field is of a
 fixed length, as specified in the field "prefix length"

 Host The host fields specifies the unique part of all the addresses,
 included in the address block. Indeed, letting + denote the
 concatenation operator, the expression prefix+host will yield a
 unique address. This field os of a fixed length = "Addr. length"
 - "Prefix length"

Clausen Expires January 12, 2006 [Page 51]

Internet-Draft OLSRv2 July 2005

 TLV A TLV carries the information, associated to one, or a set of,
 addresses in the classic type-length-value format. This format is
 explicitly given below.

 Padding A variable-length field of all-zero's, to achieve 32-bit
 alignment of the packet.

 Note that no alignments are attempted -- all alignments happen in the
 address block listed above.

Appendix D.1.3 Address Block TLV

 Again, the TLV format (Type-Length-Value) is used to introduce
 information in a flexible way inside Address Blocks. An Address
 Block TLV associates some information with some address(s) listed in
 the Address Block.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Index Start | Index Stop | Length |
 +-+
 | Value ...
 +-+-+-+-+-+-+-+-+

 Type This field specifies the type of the TLV -- more specifically,
 this field is an index to a table specifying the processing of the
 data contained in "Value".

 Addr Start This field specifies to which address the TLV applies: the
 addresses listed between Index Start and Index Stop.

 Addr Stop This field specifies to which address the TLV applies: the
 addresses listed between Index Start and Index Stop.

 Length This field specifies the length of the data contained in
 "Value"

 Value This field is a field of the length specified in Length, which
 contains data -- information, which is to be interpreted according
 to the specification by the "Type" field, and in the context given
 by the "addr#" and "Offset" fields.

Appendix D.2 Layout of OLSRv2 Specified Messages

 The message format specified for OLSRv2 allows a great deal of

Clausen Expires January 12, 2006 [Page 52]

Internet-Draft OLSRv2 July 2005

 flexibility in how control messages are organized. For example,
 while it is possible to represent a sequence of addresses as an
 address-block, it is also possible -- although possibly less optimal
 -- to represent the same sequence as individual addresses in an
 OLSRv2 control message.

 This section will, therefore, give an example of how OLSRv2 HELLO and
 TC messages typically can be be generated. It is, however, important
 to keep in mind that this section presents one possible instance of
 HELLO and TC messages.

Appendix D.2.1 Layout of HELLO Messages

 HELLO TLVs

 +-------------+---------------+------------+-------------------------+
 | Type | Scope | Importance | Description |
 +-------------+---------------+------------+-------------------------+
Status	Address Block	MUST	SYM, ASYM, LOST
MPR	Address Block	MUST	Nodes selected as MPR
Willingness	Messaged	MAY	Willingness information
Htime	Message	MUST	Htime information
 +-------------+---------------+------------+-------------------------+

 Table 7

Appendix D.2.2 Layout of TC messages

 TC TLVs

 +------+-------+------------+-------------------------------------+
 | Type | Scope | Importance | Description |
 +------+-------+------------+-------------------------------------+
 | ASSN | Msg | MUST | Advertised Neighbor Sequence Number |
 +------+-------+------------+-------------------------------------+

 Table 8

Clausen Expires January 12, 2006 [Page 53]

Internet-Draft OLSRv2 July 2005

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | TC Msg Type | Vtime | Message Size |
 +-+
 | Originator Address |
 +-+
 | Time To Live | Hop Count | Message Sequence Number |
 +-+
 | Number of Msg TLVs (1) | Number of Address Blocks (1) |
 +-+
 | ANSN (Message TLV) |

 +-+
 |# addresses(17)|Addr lgth (32) |Prefx lgth (28)| #TLV (2) |

 +-+
 | IP Prefix | Host1 |

 +-+
 | Host2 | Host3 | Host4 | Host5 | Host6 | Host7 | Host8 | Host9 |
 +-+
 | Host10| Host11| Host12| Host13| Host14| Host15| Host16| Host17|
 +-+
 | Same Node (Addr. Block TLV) |

 +-+

Clausen Expires January 12, 2006 [Page 54]

Internet-Draft OLSRv2 July 2005

Appendix E. Summary of TLVs in OLSRv2

 Assigned TLV Types

 +-------------+--------+--------+-----------------------------------+
 | Mnemonic | Value | Scope | Description |
 +-------------+--------+--------+-----------------------------------+
Htime	1	Msg	The message emission Interval. A
			node, transmitting a message with
			a Htime message TLV commits
			itself to refreshing or updating
			the information contained in the
			message at the latest each Htime.
Seq. no	1	Msg	A sequence number, associated
			with the content of the message.
Willingness	X	Msg	The originating nodes willingness
			to carry traffic originated by
			other nodes -- i.e. the
			originating nodes willingness to
			act as a relay or router
 +-------------+--------+--------+-----------------------------------+

 Table 9

Clausen Expires January 12, 2006 [Page 55]

Internet-Draft OLSRv2 July 2005

Appendix F. Node Configuration

 OLSRv2 does not make any assumption about node addresses, other than
 that each node is assumed to have a unique and routable IP address.

 When applicable, a recommended way of connecting an OLSR network to
 an existing IP routing domain is to assign an IP prefix (under the
 authority of the nodes/gateways connecting the MANET with the routing
 domain) exclusively to the OLSR area, and to configure the gateways
 statically to advertise routes to that IP sequence to nodes in the
 existing routing domain.

Appendix F.1 IPv6 Specific Considerations

 In the case of IPv6, a node's routable IP address can either be a
 global address, or a manet-local address (as described in

draft-wakikawa-manet-ipv6). Typically an OLSRv2 may have several
 addresses, for example: a link-local address and a routable address.
 However the link-local address is only valid within the 1-hop
 neighborhood. It may be used to resolve neighbor state with the
 Neighbor Discovery Protocol, but routes to link-local addresses MUST
 NOT be advertized and MUST NOT be inserted in routing tables. Only
 routable addresses are stored in routing tables, and a routable
 address MUST be used for the originator address in HELLO messages and
 in TC messages.

 OLSRv2 uses a specific flooding address (ff02::3) called the All-
 OLSRv2-Multicast address. This address is similar to all nodes/
 routers multicast address in IPv6 specification (i.e. ff02::1 or
 ff02::2). The difference is that All-OLSRv2-Multicast specifies that
 intended receivers are OLSRv2 nodes. Since the All-OLSRv2-Multicast
 address is a link-local address, the message sent to the multicast
 address can not reach further than 1 hop. Each OLSRv2 node MUST
 process flooding packets and possibly re-flood the packets to the
 same destination (ff02::3), if they are designated forwarders. Note
 that although ff02::3 is a link-local address, each flooded message
 MUST be transmitted with a routable address as originator address.

https://datatracker.ietf.org/doc/html/draft-wakikawa-manet-ipv6

Clausen Expires January 12, 2006 [Page 56]

Internet-Draft OLSRv2 July 2005

Appendix G. Security Considerations

 Currently, OLSR does not specify any special security measures. As a
 proactive routing protocol, OLSR makes a target for various attacks.
 The various possible vulnerabilities are discussed in this section.

Appendix G.1 Confidentiality

 Being a proactive protocol, OLSR periodically diffuses topological
 information. Hence, if used in an unprotected wireless network, the
 network topology is revealed to anyone who listens to OLSR control
 messages.

 In situations where the confidentiality of the network topology is of
 importance, regular cryptographic techniques such as exchange of OLSR
 control traffic messages encrypted by PGP [9] or encrypted by some
 shared secret key can be applied to ensure that control traffic can
 be read and interpreted by only those authorized to do so.

Appendix G.2 Integrity

 In OLSR, each node is injecting topological information into the
 network through transmitting HELLO messages and, for some nodes, TC
 messages. If some nodes for some reason, malicious or malfunction,
 inject invalid control traffic, network integrity may be compromised.
 Therefore, message authentication is recommended.

 Different such situations may occur, for instance:

 1. a node generates TC messages, advertising links to non-neighbor
 nodes;

 2. a node generates TC messages, pretending to be another node;

 3. a node generates HELLO messages, advertising non-neighbor nodes;

 4. a node generates HELLO messages, pretending to be another node;

 5. a node forwards altered control messages;

 6. a node does not broadcast control messages;

 7. a node does not select multipoint relays correctly;

 8. a node forwards broadcast control messages unaltered, but does
 not forward unicast data traffic;

Clausen Expires January 12, 2006 [Page 57]

Internet-Draft OLSRv2 July 2005

 9. a node "replays" previously recorded control traffic from another
 node.

 Authentication of the originator node for control messages (for
 situation 2, 4 and 5) and on the individual links announced in the
 control messages (for situation 1 and 3) may be used as a
 countermeasure. However to prevent nodes from repeating old (and
 correctly authenticated) information (situation 9) temporal
 information is required, allowing a node to positively identify such
 delayed messages.

 In general, digital signatures and other required security
 information may be transmitted as a separate OLSRv2 message type,
 thereby allowing that "secured" and "unsecured" nodes can coexist in
 the same network, if desired, or signatures and security information
 may be transmitted within the OLSRv2 HELLO and TC messages, using the
 TLV mechanism.

 Specifically, the authenticity of entire OLSRv2 control messages can
 be established through employing IPsec authentication headers,
 whereas authenticity of individual links (situation 1 and 3) require
 additional security information to be distributed.

 An important consideration is, that all control messages in OLSR are
 transmitted either to all nodes in the neighborhood (HELLO messages)
 or broadcast to all nodes in the network (e.g., TC messages).

 For example, a control message in OLSRv2 is always a point-to-
 multipoint transmission. It is therefore important that the
 authentication mechanism employed permits that any receiving node can
 validate the authenticity of a message. As an analogy, given a block
 of text, signed by a PGP private key, then anyone with the
 corresponding public key can verify the authenticity of the text.

Appendix G.3 Interaction with External Routing Domains

 OLSRv2 does, through the use of TC messages, provide a basic
 mechanism for injecting external routing information to the OLSRv2
 domain. Section XXX also specifies that routing information can be
 extracted from the topology table or the routing table of OLSR and,
 potentially, injected into an external domain if the routing protocol
 governing that domain permits.

 Other than as described in the section XXX, when operating nodes,
 connecting OLSRv2 to an external routing domain, care MUST be taken
 not to allow potentially insecure and un-trustworthy information to
 be injected from the OLSRv2 domain to external routing domains. Care
 MUST be taken to validate the correctness of information prior to it

Clausen Expires January 12, 2006 [Page 58]

Internet-Draft OLSRv2 July 2005

 being injected as to avoid polluting routing tables with invalid
 information.

 A recommended way of extending connectivity from an existing routing
 domain to an OLSRv2 routed MANET is to assign an IP prefix (under the
 authority of the nodes/gateways connecting the MANET with the exiting
 routing domain) exclusively to the OLSRv2 MANET area, and to
 configure the gateways statically to advertise routes to that IP
 sequence to nodes in the existing routing domain.

Appendix G.4 Node Identity

 OLSR does not make any assumption about node addresses, other than
 that each node is assumed to have a unique IP address.

Clausen Expires January 12, 2006 [Page 59]

Internet-Draft OLSRv2 July 2005

Appendix H. Flow and Congestion Control

 TBD

Clausen Expires January 12, 2006 [Page 60]

Internet-Draft OLSRv2 July 2005

Appendix I. Sequence Numbers

 Sequence numbers are used in OLSR with the purpose of discarding
 "old" information, i.e., messages received out of order. However
 with a limited number of bits for representing sequence numbers,
 wrap-around (that the sequence number is incremented from the maximum
 possible value to zero) will occur. To prevent this from interfering
 with the operation of OLSRv2, the following MUST be observed.

 The term MAXVALUE designates in the following the largest possible
 value for a sequence number.

 The sequence number S1 is said to be "greater than" the sequence
 number S2 if:

 o S1 > S2 AND S1 - S2 <= MAXVALUE/2 OR

 o S2 > S1 AND S2 - S1 > MAXVALUE/2

 Thus when comparing two messages, it is possible - even in the
 presence of wrap-around - to determine which message contains the
 most recent information.

Clausen Expires January 12, 2006 [Page 61]

Internet-Draft OLSRv2 July 2005

Appendix J. References

 o [1] P. Jacquet, P. Minet, P. Muhlethaler, N. Rivierre.
 Increasing reliability in cable free radio LANs: Low level
 forwarding in HIPERLAN. Wireless Personal Communications, 1996.

 o [2] A. Qayyum, L. Viennot, A. Laouiti. Multipoint relaying: An
 efficient technique for flooding in mobile wireless networks. 35th
 Annual Hawaii International Conference on System Sciences
 (HICSS'2001).

 o [3] ETSI STC-RES10 Committee. Radio equipment and systems:
 HIPERLAN type 1, functional specifications ETS 300-652, ETSI, June
 1996.

 o [4] P. Jacquet and L. Viennot, Overhead in Mobile Ad-hoc Network
 Protocols, INRIA research report RR-3965, 2000.

 o [5] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 o [6] T. Clausen, G. Hansen, L. Christensen and G. Behrmann. The
 Optimized Link State Routing Protocol, Evaluation through
 Experiments and Simulation. IEEE Symposium on "Wireless Personal
 Mobile Communications", September 2001.

 o [7] T. Clausen, P. Jacquet, A. Laouiti, P. Muhlethaler, A.
 Qayyum and L. Viennot. Optimized Link State Routing Protocol.
 IEEE INMIC Pakistan 2001. [8] Narten, T. and H. Alvestrand,
 "Guidelines for Writing an IANA Considerations Section in RFCs",

BCP 26, RFC 2434, October 1998.

 o [9] Atkins, D., Stallings, W. and P. Zimmermann, "PGP Message
 Exchange Formats", RFC 1991, August 1996.

 o [10] P. Jacquet, A. Laouiti, P. Minet, L. Viennot. Performance
 analysis of OLSR multipoint relay flooding in two ad hoc wireless
 network models, INRIA research report RR-4260, 2001.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc1991

Clausen Expires January 12, 2006 [Page 62]

Internet-Draft OLSRv2 July 2005

Appendix K. Contributors

 This specification is the result of the joint efforts of the
 following contributers -- listed alphabetically.

 o Cedric Adjih, INRIA, France, <Cedric.Adjih@inria.fr>

 o Emmanuel Baccelli, INRIA, France, <Emmanuel.Baccelli@inria.fr>

 o Thomas Heide Clausen, PCRI, <T.Clausen@computer.org>

 o Justin Dean, NRL, <jdean@itd.nrl.navy.mil>

 o Christopher Dearlove, BAE Systems, UK,
 <Chris.Dearlove@baesystems.com>

 o Satoh Hiroki, Hitachi SDL, Japan, <h-satoh@sdl.hitachi.co.jp>

 o Monden Kazuya, Hitachi SDL, Japan, <monden@sdl.hitachi.co.jp>

 o Ryuji Wakikawa, KEIO University, Japan, <ryuji@sfc.wide.ad.jp>

Clausen Expires January 12, 2006 [Page 63]

Internet-Draft OLSRv2 July 2005

Appendix L. Acknowledgements

 The authors would like to acknowledge the team behind OLSRv1,
 specified in RFC3626, including Paul Muhlethaler, Philippe Jacquet,
 Anis Laouiti, Pascale Minet, Laurent Viennot (all at INRIA, France),
 and Amir Qayuum (Center for Advanced Research in Engineering) for
 their contributions.

 The authors would like to gratefully acknowledge the following people
 for intense technical discussions, early reviews and comments on the
 specification and its components: Kenichi Mase (Niigata University),
 Li Li (CRC), Louise Lamont (CRC), Joe Macker (NRL), Andrew Cullen
 (BAE Systems), Philippe Jacquet (INRIA), Khaldoun Al Agha (LRI),
 Richard Ogier (?), Song-Yean Cho (Samsung Software Center),
 Shubhranshu Singh (Samsung AIT) and the entire IETF MANET working
 group.

Author's Address

 Thomas Heide Clausen
 LIX, Ecole Polytechnique, France

 Phone: +33 6 6058 9349
 Email: T.Clausen@computer.org
 URI: http://www.lix.polytechnique.fr/Labo/Thomas.Clausen/

https://datatracker.ietf.org/doc/html/rfc3626
http://www.lix.polytechnique.fr/Labo/Thomas.Clausen/

Clausen Expires January 12, 2006 [Page 64]

Internet-Draft OLSRv2 July 2005

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2005). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/bcp78

Clausen Expires January 12, 2006 [Page 65]

