
Network Working Group A. Clemm
Internet-Draft J. Medved
Intended status: Experimental E. Voit
Expires: March 26, 2014 Cisco Systems
 September 22, 2013

Mounting YANG-Defined Information from Remote Datastores
draft-clemm-netmod-mount-01.txt

Abstract

 This document introduces a new capability that allows YANG datastores
 to reference and incorporate information from remote datastores.
 This is accomplished using a new YANG data model that allows to
 define and manage datastore mount points that reference data nodes in
 remote datastores. The data model includes a set of YANG extensions
 for the purposes of declaring such mount points.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 26, 2014.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Clemm, et al. Expires March 26, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft YANG-Mount September 2013

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

1. Introduction . 2
2. Definitions and Acronyms 5
3. Example scenarios . 6
3.1. Network controller view 6
3.2. Distributed network configuration 8

4. Operating on mounted data 9
5. Data model structure . 10
5.1. YANG mountpoint extensions 10
5.2. Mountpoint management 11
5.3. YANG structure diagrams 13
5.4. Other considerations 13
5.4.1. Authorization . 13
5.4.2. Datastore qualification 14
5.4.3. Local mounting 14
5.4.4. Mount cascades 14
5.4.5. Implementation considerations 15

6. Datastore mountpoint YANG module 16
7. Security Considerations 23
8. Acknowledgements . 23
9. References . 23
9.1. Normative References 23
9.2. Informative References 23

Appendix A. Example . 24

1. Introduction

 This document introduces a new capability that allows YANG datastores
 [RFC6020] to incorporate and reference information from remote
 datastores. This is provided by introducing a mountpoint concept.
 This concept allows to declare a YANG data node as a "mount point",
 under which a remote datastore subtree can be mounted. To the user

https://datatracker.ietf.org/doc/html/rfc6020

Clemm, et al. Expires March 26, 2014 [Page 2]

Internet-Draft YANG-Mount September 2013

 of the primary datastore, the remote information appears as an
 integral part of the datastore. It allows remote data nodes and
 datastore subtrees to be inserted into the local data hierarchy,
 arranged below local data nodes. The concept is reminiscent of
 concepts in a Network File System that allows to mount remote folders
 and make them appear as if they were contained in the local file
 system of the user's machine.

 The ability to mount information from remote datastores is new and
 not covered by existing YANG mechanisms. Until now, management
 information provided in a datastore has been intrinsically tied to
 the same server. In contrast, the capability introduced here allows
 the server to represent information from remote systems as if it were
 its own and contained in its own local data hierarchy.

 YANG does provide means by which modules that have been separately
 defined can reference and augment one another. YANG also does
 provide means to specify data nodes that reference other data nodes.
 However, all the data is assumed to be instantiated as part of the
 same datastore, for example a datastore provided through a NETCONF
 server [RFC6241]. Existing YANG mechanisms do not account for the
 possibility that some information that needs to be referred not only
 resides in a different subtree of the same datastore, or was defined
 in a separate module that is also instantiated in the same datastore,
 but that is genuinely part of a different datastore that is provided
 by a different server.

 The ability to mount data from remote datastores is useful to address
 various problems that several categories of applications are faced
 with:

 One category of applications that can leverage this capability
 concerns network controller applications that need to present a
 consolidated view of management information in datastores across a
 network. Controller applications are faced with the problem that in
 order to expose information, that information needs to be part of
 their own datastore. Today, this requires support of a corresponding
 YANG data module. In order to expose information that concerns other
 network elements, that information has to be replicated into the
 controller's own datastore in the form of data nodes that may mirror
 but are clearly distinct from corresponding data nodes in the network
 element's datastore. In addition, in many cases, a controller needs
 to impose its own hierarchy on the data that is different from the
 one that was defined as part of the original module. An example for
 this concerns interface configuration data, which would be contained
 in a top-level container in a network element datastore, but may need
 to be contained in a list in a controller datastore in order to be
 able to distinguish instances from different network elements under

https://datatracker.ietf.org/doc/html/rfc6241

Clemm, et al. Expires March 26, 2014 [Page 3]

Internet-Draft YANG-Mount September 2013

 the controller's scope. This in turn would require introduction of
 redundant YANG modules that effectively replicate the same
 information save for differences in hierarchy.

 By directly mounting information from network element datastores, the
 controller does not need to replicate the same information from
 multiple datastores, nor does it need to re-define any network
 element and system-level abstractions to be able to put them in the
 context of network abstractions. Instead, the subtree of the remote
 system is attached to the local mount point. Operations that need to
 access data below the mount point are in effect transparently
 redirected to remote system, which is the authorative owner of the
 data. The mounting system does not even necessarily need to be aware
 of the specific data in the remote subtree.

 A second category of applications concerns decentralized networking
 applications that require globally consistent configuration of
 parameters. When each network element maintains its own datastore
 with the same configurable settings, a single global change requires
 modifying the same information in many network elements across a
 network. In case of inconsistent configurations, network failures
 can result that are difficult to troubleshoot. In many cases, what
 is more desirable is the ability to configure such settings in a
 single place, then make them available to every network element.
 Today, this requires in general the introduction of specialized
 servers and configuration options outside the scope of NETCONF, such
 as RADIUS [RFC2866] or DHCP [RFC2131]. In order to address this
 within the scope of NETCONF and YANG, the same information would have
 to be redundantly modeled and maintained, representing operational
 data (mirroring some remote server) on some network elements and
 configuration data on a designated master. Either way, additional
 complexity ensues.

 Instead of replicating the same global parameters across different
 datastores, the solution presented in this document allows a single
 copy to be maintained in a subtree of single datastore that is then
 mounted by every network element that requires access to these
 parameters. The global parameters can be hosted in a controller or a
 designated network element. This considerably simplifies the
 management of such parameters that need to be known across elements
 in a network and require global consistency.

 The capability of allowing to mount information from remote
 datastores into another datastore is accomplished by a set of YANG
 extensions that allow to define such mount points. For this purpose,
 a new YANG module is introduced. The module defines the YANG
 extensions, as well as a data model that can be used to manage the
 mountpoints and mounting process itself. Only the mounting module

https://datatracker.ietf.org/doc/html/rfc2866
https://datatracker.ietf.org/doc/html/rfc2131

Clemm, et al. Expires March 26, 2014 [Page 4]

Internet-Draft YANG-Mount September 2013

 and server needs to be aware of the concepts introduced here.
 Mounting is transparent to the models being mounted; any YANG model
 can be mounted.

2. Definitions and Acronyms

 Data node: An instance of management information in a YANG datastore.

 DHCP: Dynamic Host Configuration Protocol.

 Datastore: A conceptual store of instantiated management information,
 with individual data items represented by data nodes which are
 arranged in hierarchical manner.

 Data subtree: An instantiated data node and the data nodes that are
 hierarchically contained within it.

 Mount client: The system at which the mount point resides, into which
 the remote subtree is mounted.

 Mount point: A data node that receives the root node of the remote
 datastore being mounted.

 Mount server: The server with which the mount client communicates and
 which provides the mount client with access to the mounted
 information. Can be used synonymously with mount target.

 Mount target: A remote server whose datastore is being mounted.

 NACM: NETCONF Access Control Model

 NETCONF: Network Configuration Protocol

 RADIUS: Remote Authentication Dial In User Service.

 RPC: Remote Procedure Call

 Remote datastore: A datastore residing at a remote node.

 URI: Uniform Resource Identifier

 YANG: A data definition language for NETCONF

Clemm, et al. Expires March 26, 2014 [Page 5]

Internet-Draft YANG-Mount September 2013

3. Example scenarios

 The following example scenarios outline some of the ways in which the
 ability to mount YANG datastores can be applied. Other mount
 topologies can be conceived in addition to the ones presented here.

3.1. Network controller view

 Network controllers can use the mounting capability to present a
 consolidated view of management information across the network. This
 allows network controllers to not only expose network abstractions,
 such as topologies or paths, but also network element abstractions,
 such as information about a network element's interfaces, from one
 consolidated place.

 While an application on top of a controller could in theory also
 bypass the controller to access network elements directly for
 network-element abstractions, this would come at the expense of added
 inconvenience for the client application. In addition, it would
 compromise the ability to provide layered architectures in which
 access to the network by controller applications is truly channeled
 through the controller.

 Without a mounting capability, a network controller would need to at
 least conceptually replicate data from network elements to provide
 such a view, incorporating network element information into its own
 controller model that is separate from the network element's,
 indicating that the information in the controller model is to be
 populated from network elements. This can introduce issues such as
 data consistency and staleness. Even more importantly, it would in
 general lead to the redundant definition of data models: one model
 that is implemented by the network element itself, and another model
 to be implemented by the network controller. This leads to poor
 maintainability, as analogous information has to be redundantly
 defined and implemented across different data models. In general,
 controllers cannot simply support the same modules as their network
 elements for the same information because that information needs to
 be put into a different context. This leads to "node"-information
 that needs to be instantiated and indexed differently, because there
 are multiple instances across different data stores.

 For example, "system"-level information of a network element would
 most naturally placed into a top-level container at that network
 element's datastore. At the same time, the same information in the
 context of the overall network, such as maintained by a controller,
 might better be provided in a list. For example, the controller
 might maintain a list with a list element for each network element,
 underneath which the network element's system-level information is

Clemm, et al. Expires March 26, 2014 [Page 6]

Internet-Draft YANG-Mount September 2013

 contained. However, the containment structure of data nodes in a
 module, once defined, cannot be changed. This means that in the
 context of a network controller, a second module that repeats the
 same system-level information would need to be defined, implemented,
 and maintained. Any augmentations that add additional system-level
 information to the original module will likewise need to be
 redundantly defined, once for the "system" module, a second time for
 the "controller" module.

 By allowing a network controller to directly mount information from
 network element datastores, the controller does not need to replicate
 the same information from multiple datastores. Perhaps even more
 importantly, the need to re-define any network element and system-
 level abstractions to be able to put them in the context of network
 abstractions is avoided. In this solution, a network controller's
 datastore mounts information from many network element datastores.
 For example, the network controller datastore could implement a list
 in which each list element contains a mountpoint. Each mountpoint
 mounts a subtree from a different network element's datastore.

 This scenario is depicted in Figure 1. In the figure, M1 is the
 mountpoint for the datastore in Network Element 1 and M2 is the
 mountpoint for the datastore in Network Element 2. MDN1 is the
 mounted data node in Network Element 1, and MDN2 is the mounted data
 node in Network Element 2.

 +-------------+
 | Network |
 | Controller |
 | Datastore |
 | |
 | +--N10 |
 | +--N11 |
 | +--N12 |
 | +--M1*******************************
 | +--M2****** *
 | | * *
 +-------------+ * *
 * +---------------+ * +---------------+
 * | +--N1 | * | +--N5 |
 * | +--N2 | * | +--N6 |
 ********> +--MDN2 | *********> +--MDN1 |
 | +--N3 | | +--N7 |
 | +--N4 | | +--N8 |
 | | | |
 | Network | | Network |
 | Element | | Element |
 | Datastore | | Datastore |

Clemm, et al. Expires March 26, 2014 [Page 7]

Internet-Draft YANG-Mount September 2013

 +---------------+ +---------------+

 Figure 1: Network controller mount topology

3.2. Distributed network configuration

 A second category of applications concerns decentralized networking
 applications that require globally consistent configuration of
 parameters that need to be known across elements in a network.
 Today, the configuration of such parameters is generally performed on
 a per network element basis, which is not only redundant but, more
 importantly, error-prone. Inconsistent configurations lead to
 erroneous network behavior that can be challenging to troubleshoot.

 Using the ability to mount information from remote datastores opens
 up a new possibility for managing such settings. Instead of
 replicating the same global parameters across different datastores, a
 single copy is maintained in a subtree of single datastore. This
 datastore can hosted in a controller or a designated network element.
 The subtree is subsequently mounted by every network element that
 requires access to these parameters.

 In many ways, this category of applications is an inverse of the
 previous category: Whereas in the network controller case data from
 many different datastores would be mounted into the same datastore
 with multiple mountpoints, in this case many elements, each with
 their own datastore, mount the same remote datastore, which is then
 mounted by many different systems.

 The scenario is depicted in Figure 2. In the figure, M1 is the
 mountpoint for the Network Controller datastore in Network Element 1
 and M2 is the mountpoint for the Network Controller datastore in
 Network Element 2. MDN is the mounted data node in the Network
 Controller datastore that contains the data nodes that represent the
 shared configuration settings.

 +---------------+ +---------------+
Network		Network		
Element		Element		
Datastore		Datastore		
+--N1		+--N5		
	+--N2			+--N6
	+--N2			+--N6
	+--N3			+--N7
	+--N4			+--N8
+--M1		+--M2		

Clemm, et al. Expires March 26, 2014 [Page 8]

Internet-Draft YANG-Mount September 2013

 +-----*---------+ +-----*---------+
 * * +---------------+
 * * | |
 * * | +--N10 |
 * * | +--N11 |
 ***> +--MDN |
 | +--N20 |
 | +--N21 |
 | ... |
 | +--N22 |
 | |
 | Network |
 | Controller |
 | Datastore |
 +---------------+

 Figure 2: Distributed config settings topology

4. Operating on mounted data

 This section provides a rough illustration of the operations flow
 involving mounted datastores.

 The first thing that should be noted about these operations flows
 concerns that a mount client essentially constitutes a special
 management application that interacts with a remote system. To the
 remote system, the mount client constitutes in effect just another
 application. The remote system is the authorative owner of the data.
 While it is conceivable that the remote system (or an application
 that proxies for the remote system) provides certain functionality to
 facilitate the specific needs of the mount client, the fact that
 another system decides to expose a certain "view" of that data is
 fundamentally not its concern.

 When a client makes a request to a server that involves data that is
 mounted from a remote system, the server will effectively act as a
 proxy to the remote system on the client's behalf. It will extract
 from the request the portion that involves the mounted subtree from
 the remote system. It will strip that portion of the local context,
 i.e. remove any local data paths and insert the data path of the
 mounted remote subtree, as appropriate. The server will then forward
 the transposed request to the remote system that is the authorative
 owner of the mounted data. Upon receiving the reply, the server will
 transpose the results into the local context as needed, for example
 map the data paths into the local data tree structure, and combine
 those results with the results of the remainder portion of the
 original request.

Clemm, et al. Expires March 26, 2014 [Page 9]

Internet-Draft YANG-Mount September 2013

 In the simplest and at the same time perhaps the most common case,
 the request will involve simple data retrieval. In that case, a
 "get" or "get-configuration" operation might be applied on a subtree
 whose scope includes a mount point. When resolving the mount point,
 the server issues its own "get" or "get-configuration" request
 against the remote system's subtree that is attached to the mount
 point. The returned information is then inserted into the data
 structure that is in turn returned to the client that originally
 invoked the request.

 Requests that involve editing of information and "writing through" to
 remote systems are more complicated, particularly where they involve
 the need for transactions and locking. While not our primary concern
 at this time, implications are briefly discussed in section

Section 5.4.5.

 Since mounted information involves in general communication with a
 remote system, there is a possibility that the remote system does not
 respond within a certain amount of time, that connectivity is lost,
 or that other errors occur. Accordingly, the ability to mount
 datastores also involves mountpoint management, which includes the
 ability to configure timeouts, retries, and management of mountpoint
 state (including dynamic addition removal of mountpoints).

 As a final note, it is conceivable that caching schemes are
 introduced. Caching can increase performance and efficiency in
 certain scenarios (for example, in the case of data that is
 frequently read but that rarely changes), but increases
 implementation complexity. Whether to perform caching is purely a
 local implementation decision. This specification has not
 requirement that caching be introduced and makes no corresponding
 assumptions; there is no dependency on any caching scheme.

5. Data model structure

5.1. YANG mountpoint extensions

 At the center of the module is a set of YANG extensions that allow to
 define a mountpoint.

 o The first extension, "mountpoint", is used to declare a
 mountpoint. The extension takes the name of the mountpoint as an
 argument.

 o The second extension, "target", serves as a substatement
 underneath a mountpoint statement. It takes an argument that
 identifies the target system. The argument is a reference to a
 data node that contains the information that is needed to identify

Clemm, et al. Expires March 26, 2014 [Page 10]

Internet-Draft YANG-Mount September 2013

 and address a remote server, such as an IP address, a host name,
 or a URI [RFC3986].

 o The third extension, "subtree", also serves as substatement
 underneath a mountpoint statement. It takes an argument that
 defines the root node of the datastore subtree that is to be
 mounted, specified as string that contains a path expression.

 A mountpoint MUST be contained underneath a container. Future
 revisions might allow for mountpoints to be contained underneath
 other data nodes, such as lists, leaf-lists, and cases. However, to
 keep things simple, at this point mounting is only allowed directly
 underneath a container.

 Only a single data node can be mounted at one time. While the mount
 target could refer to any data node, it is recommended that as a best
 practice, the mount target SHOULD refer to a container. It is
 possibly to maintain e.g. a list of mount points, with each mount
 point each of which has a mount target an element of a remote list.
 However, to avoid unnecessary proliferation of the number of mount
 points and associated management overhead, in order to mount lists or
 leaf-lists, a container containing the list respectively leaf-list
 SHOULD be mounted.

 It is possible for a mounted datastore to contain another mountpoint,
 thus leading to several levels of mount indirections. However,
 mountpoints MUST NOT introduce circular dependencies. In particular,
 a mounted datastore MUST NOT contain a mountpoint which specifies the
 mounting datastore as a target and a subtree which contains as root
 node a data node that in turn contains the original mountpoint.
 Whenever a mount operation is performed, this condition MUST be
 validated by the mount client.

5.2. Mountpoint management

 The YANG module contains facilities to manage the mountpoints
 themselves.

 For this purpose, a list of the mountpoints is introduced. Each list
 element represents a single mountpoint. It includes an
 identification of the mount target, i.e. the remote system hosting
 the remote datastore and a definition of the subtree of the remote
 data node being mounted. It also includes monitoring information
 about current status (indicating whether the mount has been
 successful and is operational, or whether an error condition applies
 such as the target being unreachable or referring to an invalid
 subtree).

https://datatracker.ietf.org/doc/html/rfc3986

Clemm, et al. Expires March 26, 2014 [Page 11]

Internet-Draft YANG-Mount September 2013

 In addition to the list of mountpoints, a set of global mount policy
 settings allows to set parameters such as mount retries and timeouts.

 Each mountpoint list element also contains a set of the same
 configuration knobs, allowing administrators to override global mount
 policies and configure mount policies on a per-mountpoint basis if
 needed.

 There are two ways how mounting occurs: automatic (dynamically
 performed as part of system operation) or manually (administered by a
 user or client application). A separate mountpoint-origin object is
 used to distinguish between manually configured and automatically
 populated mountpoints.

 When configured automatically, mountpoint information is
 automatically populated by the datastore that implements the
 mountpoint. The precise mechanisms for discovering mount targets and
 bootstrapping mount points are provided by the mount client
 infrastructure and outside the scope of this specification.
 Likewise, when a mountpoint should be deleted and when it should
 merely have its mount-status indicate that the target is unreachable
 is a system-specific implementation decision.

 Manual mounting consists of two steps. In a first step, a mountpoint
 is manually configured by a user or client application through
 administrative action. Once a mountpoint has been configured, actual
 mounting occurs through an RPCs that is defined specifically for that
 purpose. To unmount, a separate RPC is invoked; mountpoint
 configuration information needs to be explicitly deleted.

 The structure of the mountpoint management data model is depicted in
 the following figure, where brackets enclose list keys, "rw" means
 configuration, "ro" operational state data, and "?" designates
 optional nodes. Parantheses enclose choice and case nodes. The
 figure does not depict all definitions; it is intended to illustrate
 the overall structure.

 rw mount-server-mgmt
 +-- rw mountpoints
 | +-- rw mountpoint [mountpoint-id]
 | +-- rw mountpoint-id string
 | +-- rw mount-target
 | | +--: (IP)
 | | | +-- rw target-ip yang:ip-address
 | | +--: (URI)
 | | | +-- rw uri yang:uri
 | | +--: (host-name)
 | | | +-- rw hostname yang:host

Clemm, et al. Expires March 26, 2014 [Page 12]

Internet-Draft YANG-Mount September 2013

 | | +-- (node-ID)
 | | | +-- rw node-info-ref mnt:subtree-ref
 | | +-- (other)
 | | +-- rw opaque-target-id string
 | +-- rw subtree-ref mnt:subtree-ref
 | +-- ro mountpoint-origin enumeration
 | +-- ro mount-status mnt:mount-status
 | +-- rw manual-mount? empty
 | +-- rw retry-timer? uint16
 | +-- rw number-of-retries? uint8
 +-- rw global-mount-policies
 +-- rw manual-mount? empty
 +-- rw retry-time? uint16
 +-- rw number-of-retries? uint8

5.3. YANG structure diagrams

 YANG data model structure overviews have proven very useful to convey
 the "Big Picture". It would be useful to indicate in YANG data model
 structure overviews the fact that a given data node serves as a
 mountpoint. We propose for this purpose also a corresponding
 extension to the structure representation convention. Specifically,
 we propose to prefix the name of the mounting data node with upper-
 case 'M'.

 rw network
 +-- rw nodes
 +-- rw node [node-ID]
 +-- rw node-ID
 +-- M node-system-info

5.4. Other considerations

5.4.1. Authorization

 Whether a mount client is allowed to modify information in a mounted
 datastore or only retrieve it and whether there are certain data
 nodes or subtrees within the mounted information for which access is
 restricted is subject to authorization rules. To the mounted system,
 a mounting client will in general appear like any other client.
 Authorization privileges for remote mounting clients need to be
 specified through NACM (NETCONF Access Control Model) [RFC6536].

 Users and implementers need to be aware of certain issues when
 mounted information is modified, not just retrieved. Specifically,
 in certain corner cases validation of changes made to mounted data

https://datatracker.ietf.org/doc/html/rfc6536

Clemm, et al. Expires March 26, 2014 [Page 13]

Internet-Draft YANG-Mount September 2013

 may involve constraints that involve information that is not visible
 to the mounting datastore. This means that in such cases the reason
 for validation failures may not always be fully understood by the
 mounting system.

 Likewise, if the concepts of transactions and locking are applied at
 the mounting system, these concepts will need to be applied across
 multiple systems, not just across multiple data nodes within the same
 system. This capability may not be supported by every
 implementation. For example, locking a datastore that contains a
 mountpoint requires that the mount client obtains corresponding locks
 on the mounted datastore as needed. Any request to acquire a lock on
 a configuration subtree that includes a mountpoint MUST NOT be
 granted if the mount client fails to obtain a corresponding lock on
 the mounted system. Likewise, in case transactions are supported by
 the mounting system, but not the target system, requests to acquire a
 lock on a configuration subtree that includes a mountpoint MUST NOT
 be granted.

5.4.2. Datastore qualification

 It is conceivable to differentiate between different datastores on
 the remote server, that is, to designate the name of the actual
 datastore to mount, e.g. "running" or "startup". However, for the
 purposes of this spec, we assume that the datastore to be mounted is
 generally implied. Mounted information is treated as analogous to
 operational data; in general, this means the running or "effective"
 datastore is the target. That said, the information which targets to
 mount does constitute configuration and can hence be part of a
 startup or candidate datastore.

5.4.3. Local mounting

 It is conceivable that the mount target does not reside in a remote
 datastore, but that data nodes in the same datastore as the
 mountpoint are targeted for mounting. This amounts to introducing an
 "aliasing" capability in a datastore. While this is not the scenario
 that is primarily targeted, it is supported and there may be valid
 use cases for it.

5.4.4. Mount cascades

Clemm, et al. Expires March 26, 2014 [Page 14]

Internet-Draft YANG-Mount September 2013

 It is possible for the mounted subtree to in turn contain a
 mountpoint. However, circular mount relationships MUST NOT be
 introduced. For this reason, a mounted subtree MUST NOT contain a
 mountpoint that refers back to the mounting system with a mount
 target that directly or indirectly contains the originating
 mountpoint. As part of a mount operation, the mount points of the
 mounted system need to be checked accordingly.

5.4.5. Implementation considerations

 Implementation specifics are outside the scope of this specification.
 That said, the following considerations apply:

 Systems that wish to mount information from remote datastores need to
 implement a mount client. The mount client communicates with a
 remote system to access the remote datastore. To do so, there are
 several options:

 o The mount client acts as a NETCONF client to a remote system.
 Alternatively, another interface to the remote system can be used,
 such as a REST API using JSON encodings, as specified in
 [I-D.bierman-netconf-restconf]. Either way, to the remote system,
 the mount client constitutes essentailly a client application like
 any other. The mount client in effect IS a special kind of client
 application.

 o The mount client communicates with a remote mount server through a
 separate protocol. The mount server is deployed on the same
 system as the remote NETCONF datastore and interacts with it
 through a set of local APIs.

 o The mount client communicates with a remote mount server that acts
 as a NETCONF client proxy to a remote system, on the client's
 behalf. The communication between mount client and remote mount
 server might involve a separate protocol, which is translated into
 NETCONF operations by the remote mount server.

 It is the responsibility of the mount client to manage the
 association with the target system, e.g. validate it is still
 reachable by maintaining a permanent association, perform
 reachability checks in case of a connectionless transport, etc.

Clemm, et al. Expires March 26, 2014 [Page 15]

Internet-Draft YANG-Mount September 2013

 It is the responsibility of the mount client to manage the
 mountpoints. This means that the mount client needs to populate the
 mountpoint monitoring information (e.g. keep mount-status up to data
 and determine in the case of automatic mounting when to add and
 remove mountpoint configuration). In the case of automatic mounting,
 the mount client also interacts with the mountpoint discovery and
 bootstrap process.

 The mount client needs to also participate in servicing datastore
 operations involving mounted information. An operation requested
 involving a mountpoint is relayed by the mounting system's
 infrastructure to the mount client. For example, a request to
 retrieve information from a datastore leads to an invocation of an
 internal mount client API when a mount point is reached. The mount
 client then relays a corresponding operation to the remote datastore.
 It subsequently relays the result along with any responses back to
 the invoking infrastructure, which then merges the result (e.g. a
 retrieved subtree with the rest of the information that was
 retrieved) as needed. Relaying the result may involve the need to
 transpose error response codes in certain corner cases, e.g. when
 mounted information could not be reached due to loss of connectivity
 with the remote server, or when a configuration request failed due to
 validation error.

6. Datastore mountpoint YANG module

 <CODE BEGINS>
 file "mount@2013-09-22.yang"
 module mount {
 namespace "urn:cisco:params:xml:ns:yang:mount";
 // replace with IANA namespace when assigned

 prefix mnt;

 import ietf-yang-types {
 prefix yang;
 }

 organization
 "IETF NETMOD (NETCONF Data Modeling Language) Working Group";

 contact
 "WG Web: http://tools.ietf.org/wg/netmod/

WG List: netmod@ietf.org

 WG Chair: David Kessens
 david.kessens@nsn.com

http://tools.ietf.org/wg/netmod/WG
http://tools.ietf.org/wg/netmod/WG

Clemm, et al. Expires March 26, 2014 [Page 16]

Internet-Draft YANG-Mount September 2013

 WG Chair: Juergen Schoenwaelder
 j.schoenwaelder@jacobs-university.de

 Editor: Alexander Clemm
 alex@cisco.com";

 description
 "This module provides a set of YANG extensions and definitions
 that can be used to mount information from remote datastores.";

 revision 2013-09-22 {
 description "Initial revision.";
 }

 feature mount-server-mgmt {
 description
 "Provide additional capabilities to manage remote mount
 points";
 }

 extension mountpoint {
 description
 "This YANG extension is used to mount data from a remote
 system in place of the node under which this YANG extension
 statement is used.

 This extension takes one argument which specifies the name
 of the mountpoint.

 This extension can occur as a substatement underneath a
 container statement, a list statement, or a case statement.
 As a best practice, it SHOULD occur as statement only
 underneath a container statement, but it MAY also occur
 underneath a list or a case statement.

 The extension takes two parameters, target and subtree, each
 defined as their own YANG extensions.
 A mountpoint statement MUST contain a target and a subtree
 substatement for the mountpoint definition to be valid.

 The target system MAY be specified in terms of a data node
 that uses the grouping 'mnt:mount-target'. However, it
 can be specified also in terms of any other data node that
 contains sufficient information to address the mount target,
 such as an IP address, a host name, or a URI.

 The subtree SHOULD be specified in terms of a data node of
 type 'mnt:subtree-ref'. The targeted data node MUST

Clemm, et al. Expires March 26, 2014 [Page 17]

Internet-Draft YANG-Mount September 2013

 represent a container.

 It is possible for the mounted subtree to in turn contain a
 mountpoint. However, circular mount relationships MUST NOT
 be introduced. For this reason, a mounted subtree MUST NOT
 contain a mountpoint that refers back to the mounting system
 with a mount target that directly or indirectly contains the
 originating mountpoint.";

 argument "name";
 }

 extension target {
 description
 "This YANG extension is used to specify a remote target
 system from which to mount a datastore subtree. This YANG
 extension takes one argument which specifies the remote
 system. In general, this argument will contain the name of
 a data node that contains the remote system information. It
 is recommended that the reference data node uses the
 mount-target grouping that is defined further below in this
 module.

 This YANG extension can occur only as a substatement below
 a mountpoint statement. It MUST NOT occur as a substatement
 below any other YANG statement.";

 argument "target-name";
 }

 extension subtree {
 description
 "This YANG extension is used to specify a subtree in a
 datastore that is to be mounted. This YANG extension takes
 one argument which specifies the path to the root of the
 subtree. The root of the subtree SHOULD represent an
 instance of a YANG container. However, it MAY represent
 also another data node.

 This YANG extension can occur only as a substatement below
 a mountpoint statement. It MUST NOT occur as a substatement
 below any other YANG statement.";

 argument "subtree-path";
 }

 typedef mount-status {
 description

Clemm, et al. Expires March 26, 2014 [Page 18]

Internet-Draft YANG-Mount September 2013

 "This type is used to represent the status of a
 mountpoint.";
 type enumeration {
 enum ok; {
 description
 "Mounted";
 }
 enum no-target {
 description
 "The argument of the mountpoint does not define a
 target system";
 }
 enum no-subtree {
 description
 "The argument of the mountpoint does not define a
 root of a subtree";
 }
 enum target-unreachable {
 description
 "The specified target system is currently
 unreachable";
 }
 enum mount-failure {
 description
 "Any other mount failure";
 }
 enum unmounted {
 description
 "The specified mountpoint has been unmounted as the
 result of a management operation";
 }
 }
 }
 typedef subtree-ref {
 type string; // string pattern to be defined
 description
 "This string specifies a path to a datanode. It corresponds
 to the path substatement of a leafref type statement. Its
 syntax needs to conform to the corresponding subset of the
 XPath abbreviated syntax. Contrary to a leafref type,
 subtree-ref allows to refer to a node in a remote datastore.
 Also, a subtree-ref refers only to a single node, not a list
 of nodes.";
 }
 rpc mount {
 description
 "This RPC allows an application or administrative user to
 perform a mount operation. If successful, it will result in

Clemm, et al. Expires March 26, 2014 [Page 19]

Internet-Draft YANG-Mount September 2013

 the creation of a new mountpoint.";
 input {
 leaf mountpoint-id {
 type string {
 length "1..32";
 }
 }
 }
 output {
 leaf mount-status {
 type mount-status;
 }
 }
 }
 rpc unmount {
 "This RPC allows an application or administrative user to
 unmount information from a remote datastore. If successful,
 the corresponding mountpoint will be removed from the
 datastore.";
 input {
 leaf mountpoint-id {
 type string {
 length "1..32";
 }
 }
 }
 output {
 leaf mount-status {
 type mount-status;
 }
 }
 }
 grouping mount-monitor {
 leaf mount-status {
 description
 "Indicates whether a mountpoint has been successfully
 mounted or whether some kind of fault condition is
 present.";
 type mount-status;
 config false;
 }
 }
 grouping mount-target {
 description
 "This grouping contains data nodes that can be used to
 identify a remote system from which to mount a datastore
 subtree.";
 container mount-target {

Clemm, et al. Expires March 26, 2014 [Page 20]

Internet-Draft YANG-Mount September 2013

 choice target-address-type {
 mandatory;
 case IP {
 leaf target-ip {
 type yang:ip-address;
 }
 case URI {
 leaf uri {
 type yang:uri;
 }
 }
 case host-name {
 leaf hostname {
 type yang:host;
 }
 }
 case node-ID {
 leaf node-info-ref {
 type subtree-ref;
 }
 }
 case other {
 leaf opaque-target-ID {
 type string;
 description
 "Catch-all; could be used also for mounting
 of data nodes that are local.";
 }
 }
 }
 }
 }
 grouping mount-policies {
 description
 "This grouping contains data nodes that allow to configure
 policies associated with mountpoints.";
 leaf manual-mount {
 type empty;
 description
 "When present, a specified mountpoint is not
 automatically mounted when the mount data node is
 created, but needs to mounted via specific RPC
 invocation.";
 }
 leaf retry-timer {
 type uint16;
 units "seconds";
 description

Clemm, et al. Expires March 26, 2014 [Page 21]

Internet-Draft YANG-Mount September 2013

 "When specified, provides the period after which
 mounting will be automatically reattempted in case of a
 mount status of an unreachable target";
 }
 leaf number-of-retries {
 type uint8;
 description
 "When specified, provides a limit for the number of
 times for which retries will be automatically
 attempted";
 }
 }

 container mount-server-mgmt {
 if-feature mount-server-mgmt;
 container mountpoints {
 list mountpoint {
 key "mountpoint-id";

 leaf mountpoint-id {
 type string {
 length "1..32";
 }
 }
 leaf mountpoint-origin {
 type enumeration {
 enum client {
 description
 "Mountpoint has been supplied and is
 manually administered by a client";
 }
 enum auto {
 description
 "Mountpoint is automatically
 administered by the server";
 }
 config false;
 }
 }
 uses mount-target;
 leaf subtree-ref {
 type subtree-ref;
 mandatory;
 }
 uses mount-monitor;
 uses mount-policies;
 }
 }

Clemm, et al. Expires March 26, 2014 [Page 22]

Internet-Draft YANG-Mount September 2013

 container global-mount-policies {
 uses mount-policies;
 description
 "Provides mount policies applicable for all mountpoints,
 unless overridden for a specific mountpoint.";
 }
 }
 }
 <CODE ENDS>

7. Security Considerations

 TBD

8. Acknowledgements

 We wish to acknowledge the helpful contributions, comments, and
 suggestions that were received from Tony Tkacik, Robert Varga, Lukas
 Sedlak, and Benoit Claise.

9. References

9.1. Normative References

 [RFC2131] Droms, R., "Dynamic Host Configuration Protocol", RFC
2131, March 1997.

 [RFC2866] Rigney, C., "RADIUS Accounting", RFC 2866, June 2000.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, January 2005.

 [RFC6020] Bjorklund, M., "YANG - A Data Modeling Language for the
 Network Configuration Protocol (NETCONF)", RFC 6020,
 October 2010.

 [RFC6241] Enns, R., Bjorklund, M., Schoenwaelder, J., and A.
 Bierman, "Network Configuration Protocol (NETCONF)", RFC

6241, June 2011.

 [RFC6536] Bierman, A. and M. Bjorklund, "Network Configuration
 Protocol (NETCONF) Access Control Model", RFC 6536, March
 2012.

9.2. Informative References

https://datatracker.ietf.org/doc/html/rfc2131
https://datatracker.ietf.org/doc/html/rfc2131
https://datatracker.ietf.org/doc/html/rfc2866
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc6020
https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc6536

Clemm, et al. Expires March 26, 2014 [Page 23]

Internet-Draft YANG-Mount September 2013

 [I-D.bierman-netconf-restconf]
 Bierman, A., Bjorklund, M., Watsen, K., and R. Fernando,
 "RESTCONF Protocol", draft-bierman-netconf-restconf-01
 (work in progress), September 2013.

Appendix A. Example

 In the following example, we are assuming the use case of a network
 controller that wants to provide a controller network view to its
 client applications. This view needs to include network abstractions
 that are maintained by the controller itself, as well as certain
 information about network devices where the network abstractions tie
 in with element-specific information. For this purpose, the network
 controller leverages the mount capability specified in this document
 and presents a fictitious Controller Network YANG Module that is
 depicted in the outlined structure below. The example illustrates
 how mounted information is leveraged by the mounting datastore to
 provide an additional level of information that ties together network
 and device abstractions, which could not be provided otherwise
 without introducing a (redundant) model to replicate those device
 abstractions

 rw controller-network
 +-- rw topologies
 | +-- rw topology [topo-id]
 | +-- rw topo-id node-id
 | +-- rw nodes
 | | +-- rw node [node-id]
 | | +-- rw node-id node-id
 | | +-- rw supporting-ne network-element-ref
 | | +-- rw termination-points
 | | +-- rw term-point [tp-id]
 | | +-- tp-id tp-id
 | | +-- ifref mountedIfRef
 | +-- rw links
 | +-- rw link [link-id]
 | +-- rw link-id link-id
 | +-- rw source tp-ref
 | +-- rw dest tp-ref
 +-- rw network-elements
 +-- rw network-element [element-id]
 +-- rw element-id element-id
 +-- rw element-address
 | +-- ...
 +-- M interfaces

https://datatracker.ietf.org/doc/html/draft-bierman-netconf-restconf-01

Clemm, et al. Expires March 26, 2014 [Page 24]

Internet-Draft YANG-Mount September 2013

 The controller network model consists of the following key
 components:

 o A container with a list of topologies. A topology is a graph
 representation of a network at a particular layer, for example, an
 IS-IS topology, an overlay topology, or an Openflow topology.
 Specific topology types can be defined in their own separate YANG
 modules that augment the controller network model. Those
 augmentations are outside the scope of this example

 o An inventory of network elements, along with certain information
 that is mounted from each element. The information that is
 mounted in this case concerns interface configuration information.
 For this purpose, each list element that represents a network
 element contains a corresponding mountpoint. The mountpoint uses
 as its target the network element address information provided in
 the same list element

 o Each topology in turn contains a container with a list of nodes.
 A node is a network abstraction of a network device in the
 topology. A node is hosted on a network element, as indicated by
 a network-element leafref. This way, the "logical" and "physical"
 aspects of a node in the network are cleanly separated.

 o A node also contains a list of termination points that terminate
 links. A termination point is implemented on an interface.
 Therefore, it contains a leafref that references the corresponding
 interface configuration which is part of the mounted information
 of a network element. Again, the distinction between termination
 points and interfaces provides a clean separation between logical
 concepts at the network topology level and device-specific
 concepts that are instantiated at the level of a network element.
 Because the interface information is mounted from a different
 datastore and therefore occurs at a different level of the
 containment hierarchy than it would if it were not mounted, it is
 not possible to use the interface-ref type that is defined in YANG
 data model for interface management [] to allow the termination
 point refer to its supporting interface. For this reason, a new
 type definition "mountedIfRef" is introduced that allows to refer
 to interface information that is mounted and hence has a different
 path.

 o Finally, a topology also contains a container with a list of
 links. A link is a network abstraction that connects nodes via
 node termination points. In the example, directional point-to-
 point links are depicted in which one node termination point
 serves as source, another as destination.

Clemm, et al. Expires March 26, 2014 [Page 25]

Internet-Draft YANG-Mount September 2013

 The following is a YANG snippet of the module definition which makes
 use of the mountpoint definition.

Clemm, et al. Expires March 26, 2014 [Page 26]

Internet-Draft YANG-Mount September 2013

 <CODE BEGINS>
 module controller-network {
 namespace "urn:cisco:params:xml:ns:yang:controller-network";
 // example only, replace with IANA namespace when assigned
 prefix cn;
 import mount {
 prefix mnt;
 }
 import interfaces {
 prefix if;
 }
 ...
 typedef mountedIfRef {
 type leafref {
 path "/cn:controller-network/cn:network-elements/"
 +"cn:network-element/cn:interfaces/if:interface/if:name";
 // cn:interfaces corresponds to the mountpoint
 }
 }
 ...
 list termination-point {
 key "tp-id";
 ...
 leaf ifref {
 type mountedIfRef;
 }
 ...
 list network-element {
 key "element-id";
 leaf element-id {
 type element-ID;
 }
 container element-address {
 ... // choice definition that allows to specify
 // host name,
 // IP addresses, URIs, etc
 }
 mnt:mountpoint "interfaces" {
 mnt:target "./element-address";
 mnt:subtree "/if:interfaces";
 }
 ...
 }
 ...
 <CODE ENDS>

Clemm, et al. Expires March 26, 2014 [Page 27]

Internet-Draft YANG-Mount September 2013

 Finally, the following contains an XML snippet of instantiated YANG
 information. We assume three datastores: NE1 and NE2 each have a
 datastore (the mount targets) that contains interface configuration
 data, which is mounted into NC's datastore (the mount client).

 Interface information from NE1 datastore:

 <interfaces>
 <interface>
 <name>fastethernet-1/0</name>
 <name>ethernetCsmacd</type>
 <location>1/0</location>
 </interface>
 <interface>
 <name>fastethernet-1/1</name>
 <name>ethernetCsmacd</type>
 <location>1/1</location>
 </interface>
 <interfaces>

 Interface information from NE2 datastore:
 <interfaces>
 <interface>
 <name>fastethernet-1/0</name>
 <name>ethernetCsmacd</type>
 <location>1/0</location>
 </interface>
 <interface>
 <name>fastethernet-1/2</name>
 <name>ethernetCsmacd</type>
 <location>1/2</location>
 </interface>
 <interfaces>

 NC datastore with mounted interface information from NE1 and NE2:

 <controller-network>
 ...
 <network-elements>
 <network-element>
 <element-id>NE1</element-id>
 <element-address> </element-address>
 <interfaces>
 <if:interface>
 <if:name>fastethernet-1/0</if:name>
 <if:type>ethernetCsmacd</if:type>
 <if:location>1/0</if:location>

Clemm, et al. Expires March 26, 2014 [Page 28]

Internet-Draft YANG-Mount September 2013

 </if:interface>
 <if:interface>
 <if:name>fastethernet-1/1</if:name>
 <if:type>ethernetCsmacd</if:type>
 <if:location>1/1</if:location>
 </if:interface>
 <interfaces>
 </network-element>
 <network-element>
 <element-id>NE2</element-id>
 <element-address> </element-address>
 <interfaces>
 <if:interface>
 <if:name>fastethernet-1/0</if:name>
 <if:type>ethernetCsmacd</if:type>
 <if:location>1/0</if:location>
 </if:interface>
 <if:interface>
 <if:name>fastethernet-1/2</if:name>
 <if:type>ethernetCsmacd</if:type>
 <if:location>1/2</if:location>
 </if:interface>
 <interfaces>
 </network-element>
 </network-elements>
 ...
 </controller-network>

Authors' Addresses

 Alexander Clemm
 Cisco Systems

 EMail: alex@cisco.com

 Jan Medved
 Cisco Systems

 EMail: jmedved@cisco.com

 Eric Voit
 Cisco Systems

 EMail: evoit@cisco.com

Clemm, et al. Expires March 26, 2014 [Page 29]

