
Network Working Group P. Conrad
Internet-Draft Temple University
Expires: May 2, 2003 P. Lei
 Cisco Systems, Inc.
 November 1, 2002

Services Provided By Reliable Server Pooling
draft-conrad-rserpool-service-03.txt

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on May 2, 2003.

Copyright Notice

 Copyright (C) The Internet Society (2002). All Rights Reserved.

Abstract

 RSerPool [1] is a framework to provide highly available services
 between clients and servers. This is achieved by grouping servers
 into pools, each with an identifier and pooling policy. Three
 classes of entities are defined: Pool Users (clients), Pool Elements
 (servers), and Name Servers.

 This memo defines the services provided by this framework to upper
 layer protocols and applications for Pool Users and Pool Elements.
 It describes the service primitives that the framework provides and
 describes example scenarios.

https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Conrad & Lei Expires May 2, 2003 [Page 1]

Internet-Draft Services Provided by RSerPool November 2002

 It also describes the requirements for mapping (or adaption or
 "shim") layers for a variety of transport protocols (SCTP, TCP, or
 others) such that upper layer protocols and applications may use a
 common framework/API to utilize the services provided.

Table of Contents

1. Introduction . 3
2. Conventions Used In This Document 4
3. Example Application Scenarios 4
3.1 Example Scenario for Failover Without RSerPool 4
3.2 Example Scenario Using RSerPool Name Services Only 5
3.3 Example Scenario Using Full RSerPool Services 7
4. Service Primitives . 8
4.1 Initialization . 8
4.2 PE Registration Services 8
4.3 Failover Callback Function 9
4.4 PE Selection Services 10
4.5 Upper Layer/Application Level Acknowledgements 11
4.6 RSerPool Managed Data Channel 11
5. Transport Mappings . 12
5.1 Defined Transport Mappings 12
5.2 Transport Mappings Requirements 13
5.2.1 Mappings: Mandatory Requirements 13
5.2.2 Mappings: Optional Requirements 13
5.2.3 Mappings: Other Requirements 14
6. Security Considerations 14
7. IANA Considerations . 14
8. Acknowledgements . 14

 References . 14
 Authors' Addresses . 15
 Full Copyright Statement 16

Conrad & Lei Expires May 2, 2003 [Page 2]

Internet-Draft Services Provided by RSerPool November 2002

1. Introduction

 The Reliable Server Pooling architecture is defined in [1]. The
 architecture provides highly available services by defining three
 classes of entities: pool users (clients), pool elements (servers),
 and name servers. Pool elements are grouped into server pools and
 can be used by pool users via its pool name (or "handle") and can be
 selected by following the pool's pool element selection policy.

 This memo describes how an upper layer protocol or application for a
 pool user or pool element uses this architecture and associated
 protocols to achieve these goals described in that document.
 Specifically, it describes how the ASAP protocol [5] and transport
 protocols (SCTP, TCP, etc.) can be utilized to realize highly
 available services between pool users and pool elements.

 There are tradeoffs between the amount of application modification
 required, the features and restrictions that the underlying transport
 is required to support, and the richness of the feature set provided
 by RSerPool. In order to provide support for both existing/legacy
 (non-RSerPool) and new applications, several service primitives are
 defined in which an upper layer protocol can interact with the
 RSerPool framework. Depending on the number of services utilized,
 the upper layer protocol achieve a range of reliability from simple
 pool element selection to a fully automatic failover capability.

 Utilizing a limited set of RSerPool services provides the capability
 for legacy upper layer software to use a few RSerPool services with
 relatively minor modifications, and allows a broad range of
 underlying transport protocols to be supported. To achieve a richer
 and more complete failover model, however, a majority of the RSerPool
 services should be used, which places certain requirements and
 restrictions on the transport layers that can be supported.

 Note that regardless of the number of service primitives actually
 utilized by any given upper layer protocol, this document assumes
 that the upper layer protocol/application is operating on a platform
 that has a full running, implmentation of ASAP.

 The following figure illustrates the protocol stacks when using the
 RSerPool framework (Pool Element perspective shown). Note that the
 mapping layer MAY be a "NULL" layer, if no control channel is
 utilized and/or the data channel is not utilized (e.g. application
 specific data).

Conrad & Lei Expires May 2, 2003 [Page 3]

Internet-Draft Services Provided by RSerPool November 2002

 +--------------------------------------+
 | Application/Upper Layer Protocol |
 +--------------------------------------+
 | RSerPool API |
 |(control channel) | (data channel) |
 +------------------+--------+----------+
 | ASAP layer | |
 +------------------+--------+ |
 | mapping/adaption layer |
 +------------------+-------------------+
 | transport protocol |
 +------------------+-------------------+

 The purpose of this document is to describe:

 1. the precise services provided by RSerPool to the upper layer,

 2. the tradeoffs in choosing which services to utilize,

 3. how applications must be designed for each of these services,

 4. how applications written over various transports (SCTP, TCP, and
 others) can be mapped into these services.

2. Conventions Used In This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [2].

3. Example Application Scenarios

 To illustrate the differences among an application without RSerPool,
 an application using limited RserPool services, and an application
 using a full suite of RSerPool services, this section provides an
 informal description of how failover may be handled in each of these
 cases.

3.1 Example Scenario for Failover Without RSerPool

 Consider a typical client/server application that does not use a
 reliable server pooling framework of any kind. Typically, the server
 is specified by a DNS name. At some point, the application
 translates this name to an IP address (via DNS), and subsequently
 makes initial contact with the server to begin a session, via SCTP,
 TCP, UDP, or some other protocol. If the client loses contact or
 fails to make contact with the server (either due to server failure,

https://datatracker.ietf.org/doc/html/rfc2119

Conrad & Lei Expires May 2, 2003 [Page 4]

Internet-Draft Services Provided by RSerPool November 2002

 or a failure in the network) the client must either abandon the
 session, or try to contact another server.

 In this scenario, the client must first determine that a failure took
 place. There are several ways that a client application may
 determine that a server failed, including the following:

 1. The client may have sent a request to the server, and may time
 out waiting for a response, or may receive a message such as "no
 route to host", "port not available", or "connection refused".

 2. The client may have sent a request to the server, or may have
 tried to initiate a connection or association and may have
 received a connection/association failure error.

 3. The client may already have established a connection to server,
 but at some point receives an indication from the transport layer
 that the connection failed.

 Suppose that the client application has a feature by which the user
 can enter the hostname of a secondary server to contact in the event
 of failure. Once the application determines that a failure took
 place on the primary server, the application can then attempt to
 resolve the hostname of the secondary server, and contact the
 secondary server to establish a session there. This process can be
 iterated to a tertiary server, and so forth.

 A limitation of this model is that there is no provision (other than
 static client configuration, plus the capabilities of DNS) to
 determine which server to contact initially (other than DNS) or which
 server to contact next in the event of server failure. (See [3] for
 a discussion of the limitations of using DNS for this purpose.)

3.2 Example Scenario Using RSerPool Name Services Only

 Now consider the same client/server application mentioned in Section
3.1. First we describe what the application programmer must do to

 modify the code to use RSerPool name services. We then describe the
 benefits that these modifications provide.

 For pool user ("client") applications, there are typically only three
 modifications are required along with adding ASAP:

 1. Instead of specifying the hostnames of primary, secondary,
 tertiary servers, etc., the application user specifies a pool
 handle (or pool name).

 2. Instead of using a DNS based service (e.g. the Unix library

Conrad & Lei Expires May 2, 2003 [Page 5]

Internet-Draft Services Provided by RSerPool November 2002

 function gethostbyname()) to translate from a hostname to an IP
 address, the application will invoke an RSerPool service
 primitive "GetPrimaryServer" that takes as input a pool handle,
 and returns the IP address of the primary server. The
 application then uses that IP address just as it would have used
 the IP address returned by the DNS in the previous scenario.

 3. Without the use of additional RSerPool services, failure
 detection is application specific just as in the previous
 scenario. However, when failure is detected on the primary
 server, instead of invoking DNS translation again on the hostname
 of a secondary server, the application invokes the service
 primitive "GetNextServer", which has a dual meaning. First it
 indicates to the RSerPool layer the failure of the server
 returned by a previous "GetPrimaryServer" or "GetNextServer"
 call. Second, it provides the IP address of the next server that
 should be contacted, according to the best information available
 to the RSerPool layer at the present time (e.g. set of available
 pool elements, pool element policy in effect for the pool, etc.).

 For pool element ("server") applications, two additions in are
 required along with adding ASAP:

 1. The server should invoke the REGISTER service primitive upon
 startup to add itself into the server pool using an appropriate
 pool handle. This also includes the address(es) protocol or
 mapping id, port (if required by the mapping), and pooling
 policy(s).

 2. The server should invoke the DEREGISTER service primitive to
 remove itself from the server pool when shutting down.

 When using these RSerPool services, RSerPool provides benefits that
 are limited (as compared to utilizing all services, described in

Section 3.3), but nevertheless quite useful as compared to not using
 RSerPool at all (as in Section 3.1). First, the client user need
 only supply a single string, i.e. the pool handle, rather than a
 list of servers. Second, the decision as to which server is to be
 used can be determined dynamically by the server selection mechanism
 (i.e. a "pool policy" performed by ASAP; see [1]). Finally, when
 failures occur, these are reported to the pool via signaling present
 in ASAP [5]) and ENRP [4], other clients will eventually know (once
 this failure is confirmed by other elements of the RSerPool
 architecture) that this server has failed.

 Utilizing this subset of services is useful for applications built
 over connectionless protocols such as UDP that cannot easily be
 adapted to the transport layer requirements required for full

Conrad & Lei Expires May 2, 2003 [Page 6]

Internet-Draft Services Provided by RSerPool November 2002

 failover services (see section Section 5) or for an expedient way to
 provide some of the benefits of RSerPool to legacy applications
 (regardless of the transport protocol used). However, to take full
 advantage of the RSerPool framework, utilization of the full suite of
 services as described in the next section is recommended.

3.3 Example Scenario Using Full RSerPool Services

 Finally, consider the same client/server application as in Section
3.1, but this time, modified to all RSerPool provided services. As

 in the Section 3.1, we first describe the modifications needed, then
 we describe the benefits provided.

 When the full suite of RSerPool services are used, all communication
 between the pool user and the pool element is mediated by the
 RSerPool framework, including not only session establishment and
 teardown, but also the sending and receiving of data. Accordingly,
 it is necessary to modify the application to use the service
 primitives (i.e. the API) provided by RSerPool, rather than the
 transport layer primitives provided by TCP, SCTP, or whatever
 transport protocol is being used.

 As in the previous case, sessions (rather than connections or
 associations) are established, and the destination endpoint is
 specified as a pool handle rather than as a list of IP addresses with
 a port number. However, failover from one pool element to another is
 fully automatic, and can be transparent to the application:

 The RSerPool framework control channel provides maintainance
 functions to keep pool element lists, policies, etc. current.

 Since the application data (e.g. data channel) is managed by the
 RSerPool framework, any unsent and unacknowledged transport data
 can be automatically re-sent to the newly selected pool element
 upon failover. This is enhanced by providing the application an
 "upper layer acknowledegment" service.

 The application can provide a callback function (described in
Section 4.3) that is invoked in the case of a failover. This

 callback function can execute any application specific failover
 code, such as generating a special message (or sequence of
 messages) that helps the new pool element construct any state
 needed to continue an in-process session.

 Retrofitting an existing application to this mode of RSerPool
 requires more effort on the part of the application programmer than
 retrofitting an application to use just the pool selection services;
 all use of the transport layer's primitives (e.g. the calls to the

Conrad & Lei Expires May 2, 2003 [Page 7]

Internet-Draft Services Provided by RSerPool November 2002

 sockets API) must be modified to use the RSerPool primitives (e.g.
 the RSerPool API). This can be mitigated by making the API for
 RSerPool as close to existing transport APIs as possible. However,
 failure detection and failover is automated in this case.

 Furthermore, since the primitives provided by RSerPool are similar to
 those of existing transport protocols (and, it is hoped, the APIs
 will be also) for developers of new applications, writing to the
 RSerPool failover mode primitives is not significantly different in
 terms of programmer effort or learning curve than writing the same
 applications over existing transport layer primitives.

4. Service Primitives

 Upper layer protocols and applications may "choose" to use these
 primitive services as needed. By selecting and using the appropriate
 set of service primitives, a range of failover scenarios may be
 supported. These service primitives are described in the sub-
 sections that follow.

4.1 Initialization

 [OPEN TBD: what primitive(s) does a PU indicate what mappings can be
 used (are supported), whether automatic rollover, message retrieval
 are desired, etc. These will likely be in the form of a
 initialization call]

4.2 PE Registration Services

 Pool Elements ("server") must use the following services to add or
 remove themselves from server pools:

 REGISTER, to add the pool element into a server pool using {pool
 handle, mapping mode, protocol or mapping id, port, policy info}
 where mapping mode is defined in Section 5. A response result
 code is returned.

 DEREGISTER, to remove the pool element from a server pool using
 {pool handle, mapping mode, protocol or mapping id, port, policy
 info} where mapping mode is defined in Section 5. A response
 result code is returned.

 TBD: if REGISTER also returns an opaque instance id, the
 application can just use that id for DEREGISTER, instead of
 passing in the (same) parameters used in REGISTER.

Conrad & Lei Expires May 2, 2003 [Page 8]

Internet-Draft Services Provided by RSerPool November 2002

4.3 Failover Callback Function

 The charter of the RSerPool Working Group specifically states that
 transaction failover is out of scope for RSerPool, i.e. "if a server
 fails during processing of a transaction this transaction may be
 lost. Some services may provide a way to handle the failure, but
 this is not guaranteed." Accordingly, the RSerPool framework
 provides a "hook" for applications to provide their own application-
 specific failover mechanism(s).

 Specifically, an application can specify a callback function that is
 invoked whenever a failover has taken place. This callback function
 is invoked immediately after the new transport layer connection/
 association is established with a new server, and gives the
 application the opportunity to send one or more messages that may
 help the server to resume any transaction or session that was in
 progress when the first server failed.

 As a simple example of how such a callback is useful, consider a file
 transfer service built using RSerPool. Let us assume that some FTP
 mirroring software is used to maintain mirrored sites, and that the
 actual mirroring is out of scope. However, we would like to use
 RSerPool to select a server from among the available mirror sites,
 and to failover in the middle of a file transfer if a primary server
 fails.

 For this example, assume that a simple request/response protocol is
 used, where one request message results in one or more response
 messages. Each request message contains the filename, and the offset
 desired within the file, (default zero.) Each response message
 contains some portion of the file, along with the offset, length of
 the portion in this message, and the length of the entire file.

 A single request results is sufficient to result in a sequence of
 response messages from the requested offset to the end of the file.
 For simplicity, assume that the response messages are delivered by
 the underlying transport strictly in order (although this requirement
 could be relaxed if a small amount of extra complexity were
 introduced.)

 In this protocol, all that is needed for failover is for the
 application to keep track of the number of bytes that it has read
 from the server, and to provide a callback function that reissues the
 request to the new server, replacing the offset with this number.
 When there is no failover, only one request message is sent and the
 minimum number of response messages are returned; in the event of
 failover(s), single new request message is sent for each failover
 that occurs.

Conrad & Lei Expires May 2, 2003 [Page 9]

Internet-Draft Services Provided by RSerPool November 2002

 While this is a simple example, for more complex application
 requirements, the failover callback could be used in a variety of
 ways:

 The client might send security credentials for authentication by
 the server, and/or to provide a "key" by which the server could
 locate and setup state by accessing some application-specific (and
 out-of-scope) state sharing mechanism used by the servers.

 The client might keep track of various synchronization points in
 the transaction, and use the failover callback to replay message
 from a recent synchronization point.

 [Open Issue TBD: Are there others to add to this list?]

4.4 PE Selection Services

 When automatic failover is enabled, selection of a new pool element
 according to the pool policy in place is automatically performed by
 the RSerPool framework in case of a detected failure (e.g. provides
 automatic failover). No application intervention is required.

 Automatic failover may be enabled by setting the appropriate send
 flag when used in conjuction with data channel services (described in

Section 4.6) or explicitly during initialization when data channel
 services are not used.

 FAILOVER_INDICATION, delivered by callback, indicates that a
 failover has occurred and that any required application level
 state recovery should be performed. The newly selected pool
 element handle is provided.

 Business Card services: when automatic failover is used, the
 exchange of business cards for rendezvous services is
 automatically performed by the RSerPool framework (e.g. no
 application intervention is required.

 When automatic failover is not enabled, failover detection and
 selection of an alternate PE must be done by the upper layer/
 application. The following primitives are provided:

 GET_PRIMARY_SERVER, takes as input a pool handle and returns the
 {IP address, transport protocol, transport protocol port} of the
 primary server.

 GET_NEXT_SERVER has a dual meaning. First, it indicates to the
 RSerPool layer the failure of the server returned by a previous

Conrad & Lei Expires May 2, 2003 [Page 10]

Internet-Draft Services Provided by RSerPool November 2002

 GET_PRIMARY_SERVER or GET_NEXT_SERVER call. Second, it provides
 the {IP address, transport protocol, transport protocol port} of
 the next server that should be contacted, according to the best
 information available to the RSerPool layer at the present time.
 The appropriate pool policy for server selection for the pool
 should be used for selecting the next server.

4.5 Upper Layer/Application Level Acknowledgements

 The RSerPool framework provides an upper layer/application level ack
 service. The upper layer protocol may request that the peer
 acknowledge receipt and successful processing of its sent data,
 providing an additional degree of confidence over transport level
 message retrieval. When used in conjuction with the data channel
 services (described in Section 4.6), any unacknowledged data will be
 automatically sent to a new pool element in case of failover, if
 desired (e.g. automatic failover is enabled). The following service
 primitive is used to acknowledge an upper layer acknowledgement
 request.

 ULP_ACK, responds to a received upper layer acknowledgement
 request.

4.6 RSerPool Managed Data Channel

 The RSerPool framework provides these services to send and receive
 application layer data, which are used in place of the direct call of
 transport level system functions (e.g. send/sendto, recv/recvfrom)
 and provides additional functionality to those calls.

 DATA_SEND, to send data to a pool element by using a pool handle,
 specific pool element handle, or by transport address. An upper
 layer acknowledgement may be requested with this service.
 Appropriate error code(s) are returned. When sending to a pool
 handle, the specific pool element handle is returned.

 DATA_INDICATION, delivered by callback, to indicate that data has
 been received from a pool element and to pass that data to the
 application layer protocol. An application layer acknowledgement
 request can be indicated along with the data.

 The application MAY direct that the RSerPool framework multiplex both
 the control and data channels onto the same SCTP association/TCP
 connection/ etc., if desired.

Conrad & Lei Expires May 2, 2003 [Page 11]

Internet-Draft Services Provided by RSerPool November 2002

5. Transport Mappings

 While SCTP is the preferred transport layer protocol for applications
 built for RSerPool failover mode (for reasons explained shortly), it
 is also possible to use other transport protocols as well (e.g. TCP)
 if an SCTP implementation is not available on the client and/or
 server. However, there are certain features present in SCTP that are
 required if the RSerPool framework is to function in failover mode.
 When a transport protocol other than SCTP is used, these features
 must be provided by an "adaption layer" (also called a "shim
 protocol") that sits between the base transport protocol (e.g. TCP)
 and the RSerPool layer. We refer to these "adaptation layers" or
 "shim protocols" as "mappings" as the idea is that the requirements
 of the RSerPool framework are "mapped" onto the capabilities of the
 underlying protocol (e.g. SCTP or TCP).

5.1 Defined Transport Mappings

 In order to support the RSerPool framework over a variety of
 transport protocols and configurations, several mappings are defined
 to provide RSerPool services over a given transport protocol. Each
 mapping translates the requirements of the RSerPool framework onto
 the capabilities of the transport protocol desired (e.g. SCTP, TCP,
 etc.). Initially, three mappings are defined:

 NO_MAPPING (0x00): With this mapping, no RserPool control channel
 is provided and the application specific communication between a
 pool user and the pool element (e.g. data channel) is out of
 scope of RSerPool. However, pool elements can register the
 application specific communication "protocol" and "port", and thus
 can be provided to pool users.

 SCTP (0x01): SCTP transport is used for the RSerPool control
 channel. The data channel MAY be multiplexed onto the same SCTP
 association, if desired. This mapping is the preferred mapping.

 TCP (0x02): TCP transport is used for the RSerPool control
 channel. The data channel MAY be multiplexed onto the same TCP
 connection, if desired.

 A particular pool element might support any combination of these
 mappings in order to support a variety of pool users with different
 capabilities (i.e. different mapping support). In this case, pool
 elements should register each mapping that it supports with its
 pool(s).

Conrad & Lei Expires May 2, 2003 [Page 12]

Internet-Draft Services Provided by RSerPool November 2002

5.2 Transport Mappings Requirements

5.2.1 Mappings: Mandatory Requirements

 These features MUST be present in any mapping of the RSerPool
 framework mode to TCP (or any other transport protocol):

 1. Message orientation, which facilitates application re-
 synchronization during failover. Messages must be "framed" in
 order to allow for undelivered message retrieval from the
 transport protocol.

 2. A heartbeat mechanism to monitor the health of an association or
 connection.

 3. A retrieval mechanism to allow an application to retrieve unsent
 or unacknowledged data from the transport layer upon failover.

 4. A mechanism to transport and differentiate between control
 channel messages (e.g. ASAP messages) and data channel messages.
 For example in SCTP, the payload protocol identifier (PPID) may
 be used.

 5. [Open issue TBD: Are there others to be included here?]

5.2.2 Mappings: Optional Requirements

 There are several additional features that are present in SCTP that
 are lacking in TCP. While these features are not crucial to
 RSerPool, providing them in the mapping layer makes it easier for an
 application layer programmer to write to a single API. This single
 API can then be mapped over both SCTP and TCP, as well as any other
 transport protocol for which a mapping is provided. Since these
 features are not essential for RSerPool, they are optional in any
 defined mapping. However, appropriate error messages or indications
 should be provided when these features are not available. These
 features include:

 1. Support for multiple streams

 2. Support for unordered delivery of messages

 3. [Open issue TBD: Are there others to be included here?]

Conrad & Lei Expires May 2, 2003 [Page 13]

Internet-Draft Services Provided by RSerPool November 2002

5.2.3 Mappings: Other Requirements

 There are some features of SCTP that a mapping may not be able to
 provide, because they would require access to transport layer
 internals, or modifications in the transport layer itself. The
 services provided by the RSerPool layer to the application should
 therefore provide mechanisms for the upper layer to access these
 features when present (e.g. in SCTP), but also provide appropriate
 error messages or indications that these features are not available
 when they cannot be provided. These features include:

 1. Application access to the RTT and RTO estimates

 2. Application access to the Path MTU value

 3. [Open issue TBD: Are there others to be included here?]

6. Security Considerations

 [Open Issue TBD: Security issues are not discussed in this memo at
 this time, but will be added in a later version of this draft.]

7. IANA Considerations

 [Open Issue TBD: Will there be an enumeration of the various
 transport layer mappings that must be registered with IANA?]

8. Acknowledgements

 The authors wish to thank Maureen Stillman, Qiaobing Xie, Michael
 Tuexen, Randall Stewart, and many others for their invaluable
 comments.

References

 [1] Ong, L., Shore, M., Stillman, M., Xie, Q., Loughney, J., Tuexen,
 M. and M. Stewart, "Architecture for Reliable Server Pooling",

draft-ietf-rserpool-arch-03 (work in progress), July 2002.

 [2] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [3] Loughney, J., "Comparison of Protocols for Reliable Server
 Pooling", draft-ietf-rserpool-comp-04 (work in progress), July
 2002.

 [4] Stillman, M., Xie, Q. and R. Stewart, "Enpoint Name Resolution

https://datatracker.ietf.org/doc/html/draft-ietf-rserpool-arch-03
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/draft-ietf-rserpool-comp-04

Conrad & Lei Expires May 2, 2003 [Page 14]

Internet-Draft Services Provided by RSerPool November 2002

 Protocol (ENRP)", draft-ietf-rserpool-enrp-04 (work in
 progress), September 2002.

 [5] Stillman, M., Xie, Q., Tuexen, M. and R. Stewart, "Aggregate
 Server Access Protocol (ASAP)", draft-ietf-rserpool-asap-04
 (work in progress), July 2002.

Authors' Addresses

 Phillip T. Conrad
 Temple University
 CIS Department
 Room 303, Computer Building (038-24)
 1805 N. Broad St.
 Philadelphia, PA 19122
 US

 Phone: +1 215 204 7910
 EMail: conrad@acm.org
 URI: http://www.cis.temple.edu/~conrad

 Peter Lei
 Cisco Systems, Inc.
 955 Happfield Dr.
 Arlington Heights, IL 60004
 US

 Phone: +1 847 870 7201
 EMail: peterlei@cisco.com

https://datatracker.ietf.org/doc/html/draft-ietf-rserpool-enrp-04
https://datatracker.ietf.org/doc/html/draft-ietf-rserpool-asap-04
http://www.cis.temple.edu/~conrad

Conrad & Lei Expires May 2, 2003 [Page 15]

Internet-Draft Services Provided by RSerPool November 2002

Full Copyright Statement

 Copyright (C) The Internet Society (2002). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Conrad & Lei Expires May 2, 2003 [Page 16]

