Crypto Forum Research Group A. Cope
Internet-Draft Google
Intended status: Informational October 26, 2016
Expires: April 29, 2017

Hash-Encrypt-Hash, a block cipher mode of operation
draft-cope-heh-00
Abstract

This memo describes a block cipher mode of operation known as Hash-
Encrypt-Hash (HEH).

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

This Internet-Draft will expire on April 29, 2017.
Copyright Notice

Copyright (c) 2016 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Cope Expires April 29, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft HEH October 2016

Table of Contents

=

1. Introduction . 2
1.1. Requirements Language 3
2. Notation 3
3. Overview 4
3.1. Key size 4
3.2. Block cipher 4
3.3. Nonce and AAD 4
4. GF(27128) math 4
4.1. GF(2/r128) 4
4.2. Multiplication in GF(2A128) 4
4.3. Addition in GF(2/128) 5
5 Algorithm . 5
5.1. generate_betas 5
5.2. poly_hash 6
5.3 HEH_hash 7
5.4 HEH_hash_inv 8
5.5. CTS_2ECB_encrypt 9
5.6. CTS_2ECB_decrypt 9
5.7. HEH_encrypt 9
5.8. HEH_decrypt 10
6. HEH as an AEAD 10
6.1 HEH_AEAD_encrypt 10
6.2. HEH_AEAD_decrypt 11
7. Security considerations e 11
7.1. Security implementations of nonce use 11
7.2. Authentication 12
8. References e 12
8.1. Normative References 12
8.2. Informative References 12
Appendix A. Test Vectors 13
Author's Address 16

Introduction

This memo describes the implementation of the Hash Encrypt Hash (HEH)
block cipher mode of operation as both an encryption algorithm and an
AEAD. The primary benefit of HEH is that it extends the the strong
pseudorandom permutation property of block ciphers to arbitrary-
length messages. This means that if any bit of the plaintext is
flipped, each bit in the ciphertext will flip with 50% probability.
No block cipher mode of operation that is currently in widespread use
has this property. Additionally, HEH is more resistant to misuse
than commonly-used block cipher modes of operation. For example, if
nonces are reused, CTR fails catastrophically, and CBC will leak
common prefixes of the underlying block size. HEH has neither of
those problems.

Cope Expires April 29, 2017 [Page 2]

Internet-Draft HEH October 2016

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [RFC2119].

2. Notation
blk_key - key for the underlying block cipher.
block - 16 bytes.
buffer[i] - block i of buffer. Defined for 0 <= i < N.

buffer[N+] - bytes 16 * N until the end of buffer. The unpadded
partial block.

EMPTY - buffer of length 0.

GF(27128) - The Galois field of 2A128 elements, as defined in
section 4.1.

msg - shorthand for message, a buffer that is an input to a
function.

N - FLOOR(msg_length / 16), number of full blocks of msg.

out_msg - buffer that is a transformation of msg. out_msg_length =
msg_length unless otherwise explicitly specified

prf_key - pseudo-random function key.

tau_key - 16 byte key used to compute the hash.

XOR - bitwise exclusive-or.

XXXX_length - length of XXXX in bytes.

* - Multiplication in GF(2/2128) as defined in section 4.2.
+ - Addition in GF(27A128) as defined in section 4.3.

0A1 - buffer of 1 zero bytes.

|| - concatenation.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Cope Expires April 29, 2017 [Page 3]

Internet-Draft HEH October 2016

3.

Overview

3.1. Key size

All implementations MUST support a key size of 48 bytes. For a
48-byte key, the first 16 bytes correspond to tau_key. The second 16
bytes correspond to prf_key. The final 16 bytes correspond to
blk_key. Implementations MAY also support key sizes of 64 and 80
bytes, in which case tau_key corresponds to the first 16-byte chunk.
The remainder of the key is split in half, with the first half
corresponding to prf_key and the second half corresponding to
blk_key.

3.2. Block cipher

3.3.

4.

4.1.

4.2.

HEH MUST use a block cipher with a block size of 128 bits.
Nonce and AAD

HEH SHOULD support a 16-byte nonce. Support for other nonce lengths
between 0 and 2A32-1 (inclusive) bytes is OPTIONAL. Support for
additional authenticated data (AAD) and support for varying AAD
lengths between 0 and 2232-1 (inclusive) bytes is OPTIONAL. Security
implications are discussed in section 7.1

GF(27128) math
GF(21128)

GF(27r128) is the Galois field of 27128 elements defined by the
irreducible polynomial xA128 + xA7 + xA2 + x + 1.

Elements in the field are converted to and from 128-bit strings by
taking the least-significant bit of the first byte to be the
coefficient of x7@, the most-significant bit of the first byte to the
the coefficient of xA7, and so on, until the most-significant bit of
the last byte is the coefficient of x7127 [AES-GCM-SIV].

Examples:
10000111 || 0715 = XA7 + xA2 + x + 1
0/N15 || 00000001 = xN120.
OA15 || 10000000 XN127 .

Multiplication in GF(2/128)

Cope Expires April 29, 2017 [Page 4]

Internet-Draft HEH October 2016

Input
Two 128 bit elements X, Y

Output
128 bit element X * Y

Multiplication is defined on 128 bit blocks by converting them to
polynomials as described above, and then computing the resulting
product modulo xA128 + xA7 + xA2 + x + 1.

4.3. Addition in GF(27128)

Input
Two 128 bit elements X, Y

Output
128 bit element X + Y

For any two 128 bit elements X, Y in the Galois field, X + Y is
defined as X XOR Y.

The operations + and XOR are interchangeable within this document.
For consistency we use + on 128 bit strings and XOR if the arguments
are not 128 bits long.

5. Algorithm

When appropriate, we will explain the output as both a mathematical
formula and in pseudo-code. This information is redundant, and it
exists to provide additional clarity. Implementations need not
implement the exact algorithm specified by the pseudocode, so long as
the output matches what the pseudocode would produce.

5.1. generate_betas

To generate the beta_keys needed by HEH_hash, we take the CMAC as
defined in [CMAC] of the nonce, AAD, nonce_length, AAD_length and
plaintext_length. We use CMAC because it is a pseudorandom function
on variable length inputs.

Cope Expires April 29, 2017 [Page 5]

Internet-Draft HEH October 2016

a1

Input
prf_key, nonce, AAD, plaintext_length

Output
betal_key

CMAC(key = prf_key, message = pad_16(nonce) ||
pad_16(AAD) || pad_16(nonce_length ||
AAD_length || plaintext_length))

beta2_key = x * betal_key

return betal key, beta2_key

Where pad_16(X) = X right-padded with 0's up to a multiple of 16
bytes. If X is already a multiple of 16 bytes (including if X is 0
bytes), this is a no-op.

The following MUST be true in order to generate conformant
ciphertext:

o nonce_length, AAD_length, and plaintext_length MUST be 4 bytes
long.

o nonce_length, AAD_length, and plaintext_length MUST be stored in
little-endian format.

0 The input to CMAC MUST be padded with 0x00 bytes up to a multiple
of 16 bytes.

0 CMAC MUST use the same block cipher that is used in
CTS_2ECB_encrypt.

0 CMAC MUST be implemented as described in [CMAC]. In particular,
if CMAC is being reimplemented for HEH, be advised that there is a
multiply-by-x substep of CMAC that uses a different finite field
representation than the one described in section 4.

poly_hash

Poly_hash treats each block of msg as a coefficient to a polynomial
in GF(27128), and evaluates that polynomial at tau_key to create a
hash. Poly_hash is called as a subroutine of HEH_hash so that any
minor change to msg will result in every block being changed in
HEH_hash with high probability. Note that the coefficients of
m_{N-1} and m_N are flipped. This is done to simplify the
implementation of HEH_hash_inv.

Cope Expires April 29, 2017 [Page 6]

Internet-Draft HEH October 2016

Input
msg, tau_key

Output
KAN * m_0 + ... + kA2 * m_{N-2} + k * m_N + m_{N-1}
Where k = tau_key,
m_i = msg[i], for i = 0@ to N-1,
m_N = msg[N+] padded up to 16 bytes with a 0x01 byte
followed by 0x00 bytes. When msg_length is a multiple of
16, m_N is composed entirely of padding, i.e. 0x0100...00.

pseudo-code:
p = 0/A16
For i = 0 to N - 2
p *= tau_key

p += msg[i]
p *= tau_key
p += m_N // as defined above
p *= tau_key
p += msg[N-1]
return p

5.3. HEH_hash

The Hash step in Hash-Encrypt-Hash. HEH_hash is an invertible hash
function used to ensure any change to the msg will result in every
full block being modified with high probability.

Cope Expires April 29, 2017 [Page 7]

Internet-Draft HEH October 2016

Input
msg, beta_key, tau_key

Output
out_msg = (m_® + R, ..., m_{N-2} + R, R, m_N) +
(xb, xnA2b, ..., xAN{N-1}b, b, 0)
where m_i = msg[i] for 1 = @ to N-1,
m_N = msg[N+],
R = out_msg of poly_hash,
b beta_key,
X 1s the element x in GF(2/128).

pseudo-code:

R = poly_hash(msg, tau_key)

e = beta_key * x

For i = @ to N-2
out_msg[i] = msg[i] + R + e
e=e *x

out_msg[N-1] = R + beta_key

out_msg[N+] = msg[N+]

return out_msg

5.4. HEH_hash_inv

Inverse of HEH_hash

Input

msg, beta_key, tau_key
Output

out_msg

pseudo-code
R msg[N-1] + beta_key
e beta_key * x
For i = 0@ to N-2
out_msg[i] = msg[i] + R + e
e=e *x
out_msg[N+] = msg[N+]
out_msg[N-1] = 0ON16
// now all block in out_msg are correct except for
// out_msg[N-1], which is all zeroes
R_without_constant_term = poly_hash(out_msg, tau_key)
out_msg[N-1] = R + R_without_constant_term
return out_msg

Cope Expires April 29, 2017 [Page 8]

Internet-Draft HEH October 2016

5.5. CTS_2ECB_encrypt

5.6. CTS_2ECB_decrypt

7.

The encryption step of Hash-Encrypt-Hash. Uses a modification of
CTS-ECB. Because HEH_hash is the identity function on partial
blocks, we instead xor the partial block with the final encrypted
full block then re-encrypt the final full block. This technique is
discussed in [TET].

Input

msg, blk_key
Output

out_msg

pseudo-code
For i = 0 to N-1
out_msg[i] = block_cipher_encrypt(blk_key, msg[i])
if msg_length % 16 != 0
// XOR the partial block with the first k bytes of out_msg[N-1]
// where k is the number of bytes in the partial block
out_msg[N+] = msg[N+] XOR out_msg[N-1]
out_msg[N-1] = block_cipher_encrypt(blk_key, out_msg[N-1])
return out_msg

Inverse of CTS_2ECB_encrypt.

Input

msg, blk_key
Output

out_msg

pseudo-code
For i = 0 to N-1
out_msg[i] = block_cipher_decrypt(blk_key, msg[i])
if msg_length % 16 != 0
// XOR the partial block with the first k bytes of out_msg[N-1]
// where k is the number of bytes in the partial block
out_msg[N+] = msg[N+] XOR out_msg[N-1]
out_msg[N-1] = block_cipher_decrypt(blk_key, out_msg[N-1])
return out_msg

HEH_encrypt

Core encryption function of HEH.

Cope Expires April 29, 2017 [Page 9]

Internet-Draft HEH October 2016

Input

prf_key, blk_key, tau_key, nonce, AAD, msg
Output

out_msg

pseudo-code
betal_key, beta2_key = generate_betas(prf_key, nonce, AAD,
msg_length)
out_msg HEH_hash(msg, betal_key, tau_key)
out_msg CTS_2ECB_encrypt(out_msg, blk_key)
out_msg = HEH_hash_inv(out_msg, beta2_key, tau_key)
return out_msg

5.8. HEH_decrypt
Core decryption function of HEH.

Input

prf_key, blk_key, tau_key, nonce, AAD, msg
Output

out_msg

pseudo-code
betal_key, beta2_key = generate_betas(prf_key, nonce, AAD,
msg_length)
out_msg HEH_hash(msg, beta2_key, tau_key)
out_msg CTS_2ECB_decrypt(out_msg, blk_key)
out_msg = HEH_hash_inv(out_msg, betal_key, tau_key)
return out_msg

6. HEH as an AEAD

Because HEH is a strong pseudorandom permutation, it can also provide
authentication with minimal modification. Support for authentication
is OPTIONAL. To provide authentication, append 16 zero bytes to the
end of the plaintext, then encrypt. When decrypting, we can verify
authenticity of the message by asserting that the final 16 bytes of
the plaintext are the expected zero bytes.

6.1. HEH_AEAD_encrypt

Authenticated encryption function of HEH. Returns ciphertext which
is 16 bytes longer than plaintext msg.

Cope Expires April 29, 2017 [Page 10]

Internet-Draft HEH October 2016

Input

prf_key, blk_key, tau_key, nonce, AAD, msg
Output

padded_out_msg

pseudo-code
// append a full block of zeros
padded_msg = msg || 0A16
return HEH_encrypt(prf_key, blk_key, tau_key, nonce, AAD,
padded_msg)

6.2. HEH_AEAD_decrypt

Authenticated decryption function of HEH. Returns either plaintext
which is 16 bytes shorter than msg or indication of inauthenticity
FAIL.

Input

prf_key, blk_key, tau_key, nonce, AAD, msg,
Output

unpadded_out_msg or FAIL

pseudo-code
out_msg = HEH_DECRYPT(prf_key, blk_key, tau_key, nonce, AAD,

msg)

// If final block is not all zeros, FAIL
if out_msg[(out_msg_length - 16):out_msg_length] != 0A16
return FAIL

// Drop the zero-block that was added in HEH_AEAD_encrypt
unpadded_out_msg = out_msg[0: (out_msg_length - 16)]
return unpadded_out_msg

7. Security considerations

The minimum length of the plaintext for HEH is 16 bytes. The maximum
length is 27232 - 1 bytes. When using HEH as an AEAD, this minimum
and maximum apply to padded_msg.

7.1. Security implementations of nonce use

If no nonce is used (or, equivalently, if a 'nonce' is re-used for
multiple messages) then HEH is a strong pseudorandom permutation. 1In
this case the consumer should be aware that if the same plaintext,
nonce, and key combination is used more than once it will result in a
ciphertext collision.

Cope Expires April 29, 2017 [Page 11]

Internet-Draft HEH October 2016

If a unique nonce is used for each plaintext and key combination,
then HEH is semantically secure. We make no claim that using
randomly generated nonces or using longer nonces generates additional

security.

7.2. Authentication

As HEH is a strong pseudorandom permutation, [AUTH] shows that
authentication can be provided by appending a known authentication
code to the plaintext, then encrypting the resulting string.

8. References

8.1. Normative References

[CMAC]

[RFC2119]

National Institute of Standards and Technology, "NIST
Special Publication 800-38B", 2005.

Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,

DOI 10.17487/RFC2119, March 1997,
<http://www.rfc-editor.org/info/rfc2119>.

8.2. Informative References

[AES-GCM-SIV]

[AUTH]

[HEH]

Gueronr, S., Langley, A., and Y. Lindell, "AES-GCM-SIV:
Nonce Misuse-Resistant Authenticated Encryption. draft-
gueron-gcmsiv-03", 2016.

Bellare, M. and P. Rogaway, "Encode-then-encipher
encryption: How to exploit nonces or redundancy in
plaintexts for efficient cryptography", 2000.

Sarkar, P., "Efficient Tweakable Enciphering Schemes from
(Block-Wise) Universal Hash Functions", 2008.

[NIST.500-20.1977]

[TET]

National Institute of Standards and Technology,
"Validating the Correctness of Hardware Implementations of
the NBS Data Encryption Standard", NIST 500-20, November
1977.

Halevi, S., "Invertible Universal Hashing and the TET
Encryption Mode", 2007.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/draft-gueron-gcmsiv-03
https://datatracker.ietf.org/doc/html/draft-gueron-gcmsiv-03

Cope Expires April 29, 2017 [Page 12]

Internet-Draft HEH October 2016

Appendix A. Test Vectors

AES-128 was used as the block cipher for all of the test vectors

aes_key = 0000000000O0OOOOOEEOEOOOOOOOBEORO
tau_key = 0000000000000000000COOOOOOOBOOA
prf_key = 0000000000000000000000000OOBEOA0
nonce = EMPTY
AAD = EMPTY

plaintext = 00000000000000000000000000000000
ciphertext = 310f55672a44bf35b3320895e90d3f30

aes_key = 000102030405060708090AOBOCODOEOF
tau_key = 000102030405060708090AOBOCODOELF
prf_key = 000102030405060708090A0BOCODOEOF
nonce = EMPTY
AAD = EMPTY

plaintext = 00000000COOCOOOOEOOEOOEOOEOOEOOEO
000000CCOOELEEOONEEOOOEEOOOEEOOO
0000000000000000ONNNOEEEEEOOOOOO
00000000000000000000OBEEEEOONO

ciphertext = 6e20347c7a0609d04cda4fd26ff3b7do
3a2e48b13369671c763c24a010d34bd9
2e2707fce73d89a92ad6f191d9cc38cc
€c9d8e526885730b4835d6d18c3c55d

aes_key = 000102030405060708090ACBOCODOEOF
tau_key = 000102030405060708090ACBOCODOEOF
prf_key = 000102030405060708090AOBOCODOEOF
nonce = EMPTY
AAD = EMPTY

plaintext = 00000000000000000000000000000000
0000000000000000000OOOEEEEOOOOOO
00000000000OEOOEOOOOOOOEONEONOOL
0000000000000000000000000CE00

ciphertext = 77a09f9af01bf2341c8550734e771abc
a41398130c7658d83c075492ece8981d
d5ee21816802chff60e87fb9ab2ch771
d44fabfbf59dacdf46931e49d632c1

Cope Expires April 29, 2017 [Page 13]

Internet-Draft HEH October 2016

aes_key = 000102030405060708090ACBOCODOEOF
tau_key = 000102030405060708090ACBOCODOEOF
prf_key = 000102030405060708090AOBOCODOEOF
nonce = 0000000000000OCOEEOEOOOOOEOEEOR
AAD = EMPTY

plaintext = 00000000COOCOOOOOOOEOOEOOOOOOOEO
0000000000000000000000ONOOOEEEEEO
000000000000000000COEOEOEOEOEOLO
00000000000OOOEOEOEONEOEOEOEOL

ciphertext = fb309047c54eccfdc490a29f7c0363c3
cbaf2eee6218eb206297e49bf28bf33f
763baaabf01954dbb4af2ed9a7e09204
5ae481fc58f2dabf5dc9b147d508b1

aes_key = 000102030405060708090A0BOCODOELF
tau_key = 000102030405060708090AOBOCODOEOF
prf_key = 000102030405060708090AOBOCODOELF
nonce = 00000000000000000000000000COCOLO
AAD = EMPTY

plaintext = 0000000000000000EEOONONOOOOEEEEEOOO
0000000000000000000OOOEEEEOOOOOO
00000OCOCOOELEEOOAEEOOEEEOONEEO00L
00000000000000000NNNNEEEEEENNO

ciphertext = 9cdfa55083e0a3b50d3583346e6e40d6
0181c81a9c4081fbb36eb4bffccac950
cd33fdh34311e632023d3ec6496ecf58
3e14156d392a589983afdd223e7f6¢C

aes_key = a8da249b5efal3c2c194bf32ba38a377
tau_key = 68182787dc3033fd655b8e512e02ff9d
prf_key = 21281e64cd9c3388162c438f 5658
nonce = 4d4761372b478610d647b5c2e8cf8527
AAD = EMPTY

plaintext = b8ee29e4a5d1e755d0fde722637636e2
f80cf8fe6576e7cacl42f5ca5aa8ac2a
d6a67479105440abdc90b166416ce3ch
6119FA19AA99F0265850BD29C49E2436
4d47

ciphertext = 9726afc277e930f3912c976c779927e0
a9b80ee83db1881300c3752a54f07cle
66T89d556bda®d2dc318536ela34e6b7
ab7576469349€a9927cd15429e25d050
9f9a

Cope Expires April 29, 2017 [Page 14]

Internet-Draft

aes_key
tau_key
prf_key
nonce =
AAD =

plaintext =

ciphertext =

aes_key
tau_key
prf_key
nonce =

AAD =
plaintext =

ciphertext =

aes_key
tau_key
prf_key
nonce =
AAD =

plaintext =

ciphertext =

HEH

000102030405060708090AOBOCODOEOF
000102030405060708090AOBOCODOEOF
000102030405060708090AOBOCODOEOF
000102030405060708090AOBOCODOERF
000102030405060708090AOBOCODOEOF
0000000000ENRONEOOEOEENBENEEORAO
0000000000000OOOOOEEEEEOOOELEEEO
7f5eac36fl1fee71cc79e4046¢c1d11f94
€d9219968157de2b3¢c23¢c139ff671914

000102030405060708090ACBOCODOEOF
000102030405060708090ACBOCODOEOF
000102030405060708090ACBOCODOEOF
000102030405060708090A0BOCODOEOF
000102030405
0102030405060708090A0BOCODOEOFOO
010203
00000000000000000000000000O0BCOA0
000000000000OOOOEEOEOOOOOEOEEOR
a4f3f9507f6f07b892248655a9bc88262
87f7f81312a2a6408d0ad2bed078202a

36DAF975AAE45061AF88079422E5E6A9
DOABCBEGB3FDC335C4E98C9BBB1310E4
AA2610D3A619A8F8A222D3DBFBO82D17
4164A1FFAEEF4B23324C47279AFBO2ES8
948F6DO3EAOBDE71A0233AC87753F10E
6A2EDABEO7C10918507FOB5E4F32053C
335D179A8F476ED1DO8A458C00726F63
6365BF26A7003F43C0270BBB44EC780E
6119FA19AA99F0265850BD29C49E2436
A9

a962d37c10b43303a522aac165230d67
2cabebfa385d2c7b21468d0af9cab3a7
5bb5c1c332el1afd77b1b98697672¢c36b
bd05ab6b0f47c759f464689831d3ce9e
93

October 2016

Cope Expires April 29, 2017 [Page 15]

Internet-Draft HEH October 2016

aes_key = 880D8B115BA55842FF4505C5E45F78F6
tau_key = F83B77EE7445C4190B326489ECA17CF8
prf_key = 9F8BF70E528CC1344300AE428506A937
nonce = 131D6E569B5CCB6E563D2CED8616EGAC
AAD = 01BD52F7065A35A07EE7OD9A881EDDB4

plaintext = 00000000000000000000ONOOOOEEEEOOO
B1EOCC8A07264432823C68B2EF59E592
D271271029F6364CEEES577D9FDASESC4
131D6E569B5CCB6ES563D2CED8616EGAC
C6

ciphertext = a8da249b5efal3c2c194bf32ba38a377
21281e64cd9c3388f62c438f 56T 58T
68f82787dc3033fd655b8e512e02ff9d
c4fb5c2937d3c85c5¢ch1196¢c3b0e99af

42
aes_key = 880D8B115BA55842FF4505C5E45F78F6
tau_key = F83B77EE7445C4190B326489ECA17CF8
prf_key = 9F8BF70E528CC1344300AE428506A937
nonce = 131D6E569B5CCB6E563D2CED8616EGAC
AAD = 01BD52F7065A35A07EE7OD9A881EDDB4

plaintext = 0100000000000000000000000OOCOOEO
B1EOCC8A07264432823C68B2EF59E592
D271271029F6364CEEE577D9FDA8SESC4
131D6E569B5CCB6E563D2CED8616EBAC
C6

ciphertext = b8ee29ed4a5dl1e755d0fde722637636€e2
f80cf8fe6576e7cacld2f5cabaa8ac2a
d6a67479105440abdc90b166416ce3ch
4d4761372b4786f0d647b5c2e8¢cf8527
4b

Author's Address

Alex Cope

Google

747 6th St S
Kirkland, WA 98033
USA

Email: alexcope@google.com

Cope Expires April 29, 2017 [Page 16]

