
Network Working Group P. Cordell
Internet-Draft Codalogic
Intended status: Standards Track A. Newton
Expires: September 22, 2016 ARIN
 March 21, 2016

Co-Constraints for JSON Content Rules
draft-cordell-jcr-co-constraints-00

Abstract

 JSON Content Rules (JCR) [JCR] provides a powerful, intuitive and
 concise method for defining the structure of JSON [RFC7159] messages.
 However, modern JSON usage patterns occasionally mean that JCR alone
 is not able to capture the required constraints in a satisfactory
 way. This document describes JCR Co-Constraints (JCRCC) which
 defines additional JCR directives and annotations that can be added
 to a JCR ruleset in order to define more detailed constraints on JSON
 messages.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 22, 2016.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Cordell & Newton Expires September 22, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft JCR Co-Constraints March 2016

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

1. Introduction

 JSON Content Rules [JCR] provides a powerful, intuitive and concise
 method for defining the structure of JSON [RFC7159] messages. In
 addition to describing the overall structure of JSON messages, JCR
 aims to capture the constraints that are imposed on individual items
 within a message. However, modern JSON usage occasionally requires
 constraints that can't be expressed by JCR alone. JCR Co-Constraints
 (JCRCC) defines additional JCR directives and annotations that can be
 added to a JCR ruleset in order to define more detailed constraints
 on items within a JSON message, and also supports specifying
 constraints that depend on the relationship of multiple JSON items.

 JCRCC constraints represent an additional layer of validation on top
 of the validation provided by JCR alone. JCRCC constraints may
 indicate that a JSON instance that was determined to be valid by the
 rules of a JCR ruleset is in fact invalid. However, if the JCR
 ruleset indicates that the JSON instance is invalid, JCRCC
 constraints can not override that and declare the instance to be
 valid. A JCR processor MAY ignore the JCRCC annotations and
 directives, perhaps only issuing a warning for encountering an
 unknown annotation or directive.

 JCRCC uses the annotations @{id}, @{when} and @{assert} along with
 the directive #{constraint}. The @{id} annotation is used to
 identify an item in a JSON message that contributes to the assessment
 of a JSON instance's validity. The other three each include a
 'condition' expression that yields a Boolean true or false result.
 The validity of the JSON instance is dependent on the results of the
 various condition expressions. Condition expressions are made up of
 identifiers, comparators, combiners and functions. Each of these
 aspects is described in more detail below.

2. Definitions

 Assessment -
 The process whereby it is determined whether a JSON instance is
 valid according to a JCR ruleset (which may or may not include
 JCR co-constraints).

 JSON instance -
 A JSON message that is being validated against a JCR ruleset
 (which may augmented using JCRCC).

https://datatracker.ietf.org/doc/html/rfc7159

Cordell & Newton Expires September 22, 2016 [Page 2]

Internet-Draft JCR Co-Constraints March 2016

 JSON instance item -
 An object member or a value in a JSON instance. Often JCRCC
 annotations will define an identifier that will be associated
 with a JSON instance item.

3. Annotations and Directives

 JCRCC uses the annotations @{id}, @{when} and @{assert} plus the
 directive #{constraint}.

3.1. The @{id} Annotation

 The @{id} annotation creates an identifier for a rule in a JCR
 ruleset. A maximum of one @{id} annotation is permitted per rule.
 It has the form:

 @{id name}

 where 'name' corresponds to the 'name' production in the JCR ABNF.

 The @{id} annotation associates an identifier with the rule on which
 it is placed. The identifier can then be used in condition
 expressions to reference the corresponding item in JSON instance
 items that are mapped to the JCR rule during validation.

 For example, a JCR rule of:

 "type" @{id t} : string

 might associate the identifier 't' with a JSON instance item such as:

 "type" : "shutdown"

3.2. The @{when} Annotation

 The @{when} annotation has two similar roles. If a JCR rule
 indicates that a JSON instance item is optional, then it can be used
 to describe the conditions when the item is present or absent.
 Similarly, if a JCR rule indicates that an item has a choice of
 types, then the @{when} annotation can be used to indicate which of
 the possible sub-rules is applicable in the current validation
 instance. Only one @{when} annotation per rule is permitted.

 The @{when} annotation includes a single 'condition'. In the case of
 using the @{when} annotation with an optional instance, if the
 condition yields a 'true' result, then the JSON instance item
 associated with the JCR rule MUST be present, otherwise it MUST be
 absent.

Cordell & Newton Expires September 22, 2016 [Page 3]

Internet-Draft JCR Co-Constraints March 2016

 When the @{when} annotation is used to select the applicable member/
 type rule within a group or type choice, the condition of each
 @{when} annotation is evaluated in turn (from left to right as shown
 in the JCR rule) and the member/type rule that corresponds to the
 first @{when} condition that yields a 'true' result is selected. If
 none of the @{when} annotations on a group or type choice yields
 true, this indicates an invalid instance. When a member/type rule
 within a group or type choice that has @{when} annotations on other
 members/types, but does not itself have an @{when} annotation, this
 indicates the default case. In essence, if a rule contains @{when}
 annotations, then an absent @{when} annotation on a member/type rule
 is equivalent to @{when true}.

 As an example, a @{when} annotation on an optional item may look as
 follows:

 ? @{when $t == "shutdown"} "uptime" : integer

 This indicates that the "uptime" member should be present if the JSON
 instance item associated with a JCR rule with an @{id t} annotation
 has the value "shutdown".

 A @{when} annotation on a group may look as follows:

 details (@{when $t == "boot"} boot-details |
 @{when $t == "shutdown"} shutdown-details |
 default-details)

 This indicates that the JCR rule named 'boot-details' is applicable
 when the JSON instance item associated with an @{id t} annotation has
 the value "boot", the rule 'shutdown-details' is applicable when the
 value of the $t item is "shutdown", otherwise the rule 'default-
 details' is applicable. (The rules identified by 'boot-details',
 'shutdown-details' and 'default-details' might be groups that act as
 mixins for the rule in which the 'details' rule is used.)

 The @{when} annotation can reference identifiers in siblings,
 ancestors, and descendants. To avoid circular or ambiguous
 dependencies, the identifiers in descendants must not be part of
 arrays or descendants of itself or descendants of siblings that have
 @{when} annotations. The latter restriction avoids needing to know
 whether a secondary @{when} annotation yields 'true' in order to
 determine if the @{when} annotation being assessed yields 'true'.
 When seeking identifiers, siblings are inspected first, followed by
 the nearest ancestor, followed by the nearest descendent. If it is
 desired to look for an identifier that is a descendent without first
 looking for an identifier that is an ancestor, then the

Cordell & Newton Expires September 22, 2016 [Page 4]

Internet-Draft JCR Co-Constraints March 2016

 'descendent()' method can be called on the name of the identifier.
 For example:

 ? @{when descendent($s) == "on"} "watts" : integer

3.3. The @{assert} Annotation

 The @{assert} annotation is used to specify additional constraints on
 an item that can't be expressed using JCR alone. The @{assert}
 annotation contains a single condition that must yield 'true' for the
 JSON instance item to be considered valid. A maximum of one
 @{assert} annotations is permitted per rule.

 @{assert} annotations are evaluated after all sibling @{when}
 annotations have been evaluated, and constraints specified by the
 underlying JCR rule have been assessed. An item may have both a
 @{when} annotation and a @{assert} annotation. If the condition in
 the @{when} annotation yields 'false', then the item it corresponds
 to should be absent in the JSON instance, so the @{assert} condition
 is not evaluated. If the JSON instance item is not valid according
 the underlying JCR rule, then validation fails at that point and the
 @{assert} annotation is not assessed.

 When seeking identifiers referenced in an @{assert} annotation,
 siblings are inspected first, followed by the nearest ancestor,
 followed by the nearest descendent. If it is desired to look for an
 identifier that is a descendent without first looking for an
 identifier that is an ancestor, then the 'descendent()' method can be
 called on the name of the identifier.

 An example @{assert} annotation might be:

 "index" @{assert $ % 2 == 0} : integer ; Must be even

3.4. The #{constraint} Directive

 The #{constraint} directive offers a way to express conditions
 external to @{when} and @{assert} annotations. #{constraint}
 directives can be viewed as a macro substitution mechanism. @{when}
 and @{assert} annotations, and other #{constraint} directives can
 reference conditions defined by a #{constraint}. The format of a
 #{constraint} directive is as follows:

 #{constraint name condition}

 where 'name' corresponds to the 'name' production in the JCR ABNF,
 and the 'condition' is the same as used in @{when} and @{assert}
 annotations and is as described below.

Cordell & Newton Expires September 22, 2016 [Page 5]

Internet-Draft JCR Co-Constraints March 2016

 Conceptually at least, the 'condition' in a #{constraint} directive
 is substituted into @{when}, @{assert} annotations and other
 #{constraint} directives wherever the constraint's 'name' is
 referenced. (In practice, for the purposes of efficiency, the result
 of a #{constraint} directive may be cached or memoized, to avoid
 repeated computation of the sub-condition. However, such
 optimizations are beyond the scope of this document.)

 An example usage, equating to the earlier example, might be:

 #{constraint is_even $ % 2 == 0}
 "index" @{assert @is_even} : integer ; Must be even

4. Conditions

 The @{when} annotation, @{assert} annotation and #{constraint}
 directive contain 'conditions'. These are made up of 'identifiers',
 'comparators', 'combiners' and 'functions' as described below.

4.1. Identifiers

 Identifiers are used to refer to items in the JCR, and #{constraint}
 directives. They have a few different forms.

 '$' on its own refers to the member / type expressed by the current
 JCR rule. For example:

 int-pairs @{assert count($) % 2 == 0} [: integer]

 The form '$name' and '$alias.name' form is an item reference and
 refers to members and types identified by JCR rules by @{id}
 annotations. An 'alias' is set up using the normal JCR #import
 directive and allows members / types outside the current ruleset to
 be identified. For example:

 @{id type} : string, {
 ? "uptime" @{when $type == "shutdown"} : integer }

 An item reference that is not part of an 'operator' or a 'comparator'
 sub-expression yields 'true' if the referenced item is present in the
 JSON instance being validated, and 'false' if not. For example, the
 following says that the 'dob' member must be present if the 'name'
 member is present:

 ? "name" @{id n} : string,
 ? "dob" @{when $n} : full-date

Cordell & Newton Expires September 22, 2016 [Page 6]

Internet-Draft JCR Co-Constraints March 2016

 An item reference that is part of an 'operator' or a 'comparator'
 sub-expression yields the value of the corresponding JSON instance
 item.

 Item references may also be used as arguments to functions.

 The '@name' and '@alias.name' form is a constraint reference and
 refers to a condition expressed in a #{constraint} directive. An
 'alias' is set up using the normal JCR #import directive and allows
 constraints outside the current ruleset to be identified. For
 example:

 #{constraint is_even $ % 2 == 0}
 "index" : @{assert @is_even} integer ; Must be even

4.2. Operators

 The values of JSON instance items identified by identifiers, values
 yielded by other 'operators' and values returned by 'functions' can
 be subject to computations using 'operators'. The supported
 operators are '+', '-', '*', '/' and '%'. They have their usual
 C-family programming language meaning. The precedence of the
 operators is as-per normal mathematics rules. Operators have higher
 precedence than comparators.

4.3. Comparators

 The values of JSON instance items identified by identifiers, values
 yielded by 'operators' and values returned by 'functions' can be
 compared using 'comparators'. The comparators are the usual '<',
 '<=', '==', '!=', '>=' and '>', and have their usual C-family
 language meaning. Comparators yield a 'true' or 'false' result.

 When an identifier referenced by a comparator is absent, then the
 comparison returns 'false'. For example:

 $t == "boot"

 is equivalent to:

 ($t && $t == "boot")

 Similarly:

 $t == "boot" || $other == "close"

 is equivalent to:

Cordell & Newton Expires September 22, 2016 [Page 7]

Internet-Draft JCR Co-Constraints March 2016

 ($t && $t == "boot") || ($other && $other == "close")

 And:

 length($first) > length($second)

 is equivalent to:

 ($first && $second && length($first) > length($second))

 Comparators have higher precedence than combiners.

4.4. Combiners

 Multiple results of 'comparators' or standalone identifiers can be
 combined using 'combiners'. The supported combiners are '&&' and
 '||'. They have their usual C-family programming language meaning.

4.5. Functions

 JCRCC supports a number of functions that can be used to yield
 specific information about a JSON instance item referenced by an
 identifier. Some functions can operate on multiple types of
 argument, such as identifiers or strings. In the function
 descriptions below, arguments that can take multiple different types
 have each type listed, separated by the pipe symbol (|). For
 example, an argument description of "identifier | string" indicates
 that the function can take an identifier or a string as an argument.

 The functions are as follows:

 name(identifier) -
 Returns the member name of the JSON instance item associated
 with the identifier as a string.

 length(identifier | string) -
 If the argument is an identifier, the value of the JSON
 instance item associated with it MUST be represented using a
 JSON string (i.e. it could be defined as a JCR ip4 type that is
 represented in JSON using the string format). The function
 returns the length of the string in Unicode code points. To
 return the length of a JSON instance item's member name, do
 "length(name($t))".

 count(identifier) -
 The JSON instance item associated with the identifier MUST be
 an array. The function returns the number of items in the
 array.

Cordell & Newton Expires September 22, 2016 [Page 8]

Internet-Draft JCR Co-Constraints March 2016

 capture(identifier | string, regex) -
 The regex in the capture function MUST include a capture
 expression (i.e. a suitable term in brackets). The regex is
 applied to the input string, or the string value of the JSON
 instance item associated with the identifier, and the sub-
 string captured by the regex capture expression is returned.

 descendent(identifier) -
 The normal order of identifier look up is, siblings, followed
 by ancestors, followed by descendents. This function will
 cause the lookup to be in the order siblings followed by
 descendents. It returns a reference to a JSON instance item
 that can be used in place of an identifier. For example,
 "length(name(descendent($t)))".

 error(q_string) -
 This function can be used for reporting error messages. The
 text in the q_string may be subject to value interpolation and
 internationalization by an implementation, but this is not
 required. It always returns false. For example: @{assert
 $%2==0 || error("value must be even")} :integer

 is_null(identifier), is_boolean(identifier), is_string(
 identifier), is_float(identifier), is_integer(identifier),
 is_ip4(identifier), is_ip6(identifier), is_fqdn(identifier),
 is_idn(identifier), is_uri(identifier), is_phone(identifier),
 is_email(identifier), is_full-date(identifier), is_full-time(
 identifier), is_date-time(identifier), is_base64(identifier) -
 This set of functions return true if the JSON instance item
 associated with the identifier has the corresponding type, and
 false otherwise.

4.6. If-Then-Else

5. ABNF

 The ABNF is 'work in progress'. It currently looks as below. This
 does not capture where spaces are permitted.

Cordell & Newton Expires September 22, 2016 [Page 9]

Internet-Draft JCR Co-Constraints March 2016

 condition = relational (* ("&&" relational) /
 * ("||" relational))

 relational = ["!"] value / value comparator value /
 ["!"] condition-group / ternary

 value = identifier / constant / function / "@" [alias "."] name

 identifier = "$" / "$" [alias "."] name

 constant = "null" / "true" / "false" / integer / float /
 q_string / regex

 comparator = "==" / "!=" / "<" / "<=" / ">=" / ">"

 condition-group = "(" condition ")"

 ternary = "if" "(" condition ")" "then" "(" condition ")"
 "else" "(" condition ")"

 function = "name" "(" identifier ")" /
 "length" "(" identifier ")" /
 "count" "(" identifier ")" /
 "capture" "(" regex "," identifier ")" /
 "descendent" "(" identifier ")" /
 "error" "(" q_string ")" /
 "is_integer" "(" identifier ")" /
 "is_float" "(" identifier ")" /
 etc...

6. References

6.1. Normative References

 [JCR] Newton, A. and P. Cordell, "A Language for Rules
 Describing JSON Content", October 2015,
 <https://www.ietf.org/id/draft-newton-json-content-rules-

05.txt>.

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <http://www.rfc-editor.org/info/rfc7159>.

6.2. Infomative References

https://www.ietf.org/id/draft-newton-json-content-rules-05.txt
https://www.ietf.org/id/draft-newton-json-content-rules-05.txt
https://datatracker.ietf.org/doc/html/rfc7159
http://www.rfc-editor.org/info/rfc7159

Cordell & Newton Expires September 22, 2016 [Page 10]

Internet-Draft JCR Co-Constraints March 2016

 [ARIN_JCR_VALIDATOR]
 American Registry for Internet Numbers, "JSON Content
 Rules Validator (Work In Progress)",
 <https://github.com/arineng/jcrvalidator>.

 [CODALOGIC_JCR_VALIDATOR]
 Codalogic, "cl-jcr-parser (Work In Progress)",
 <https://github.com/codalogic/cl-jcr-parser>.

Appendix A. JCR Implementations

 The following implementations, [ARIN_JCR_VALIDATOR] and
 [CODALOGIC_JCR_VALIDATOR] have influenced the development of this
 document.

Authors' Addresses

 Pete Cordell
 Codalogic
 PO Box 30
 Ipswitch IP5 2WY
 UK

 Email: pete.cordell@codalogic.com
 URI: http://www.codalogic.com

 Andrew Lee Newton
 American Registry for Internet Numbers
 3635 Concorde Parkway
 Chantilly, VA 20151
 US

 Email: andy@arin.net
 URI: http://www.arin.net

https://github.com/arineng/jcrvalidator
https://github.com/codalogic/cl-jcr-parser
http://www.codalogic.com
http://www.arin.net

Cordell & Newton Expires September 22, 2016 [Page 11]

