
INTERNET-DRAFT Cordell
draft-cordell-success-00.txt BT
 Nov 22, 1996
 Expires: 22 May 1997

Simple Universal Call/Conference
Establishment Sequence -

(SUCCESS)

Status of this memo

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its
 areas, and its working groups. Note that other groups may also
 distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other
 documents at any time. It is inappropriate to use Internet-
 Drafts as reference material or to cite them other than as
 ``work in progress.''

 To learn the current status of any Internet-Draft, please check
 the ``1id-abstracts.txt'' listing contained in the Internet-
 Drafts Shadow Directories on ftp.is.co.za (Africa),
 nic.nordu.net (Europe), munnari.oz.au (Pacific Rim),
 ds.internic.net (US East Coast), or ftp.isi.edu (US West Coast).

 Abstract
 Currently in the Internet there are a number of call control
 protocols, each of them tailored to their own special applications.
 This includes SDP for session announcement, SIP and SCIP for
 session invitation and Q.931 used in H.323. None of these is
 likely to be turned into a generic call control protocol. Q.931
 is limited to point-to-point calls. SDP and SIP do not include
 close down phases which are important if calls are being charged
 for on a timed basis or gateways are involved. Nor do they support
 supplementary services such as transfer. This proposal addresses
 these issues by defining a protocol based on a new conference control
 paradigm (referred to as the hello-hello paradigm) that can be used
 to create and control conferences from simple point-to-point calls, to
 large `broadcasts' and all call models in between. Both real-time
 peer-to-peer conversational models and client-server streaming models
 are catered for in the protocol so that all forms of real-time stream
 can feature in a conference.

https://datatracker.ietf.org/doc/html/draft-cordell-success-00.txt

Cordell [Page 1]

INTERNET-DRAFT Nov 1996

Table of Contents
Abstract..1
Table of Contents.......................................2
1. Introduction...2
2. Overview...4
3. Detailed Description.................................5
3.1. Messages..5
3.2. Message Sub Types................................11
3.3. Event processing.................................19
3.4. Main Information.................................28
3.5. Timers...30
4. Capabilities..30
5. Use of the Feature Message..........................32
6. Connecting to Stream Servers........................33
7. Message Encoding....................................34
8. Address of Author...................................40
References...40

1. Introduction
This document describes a call setup procedure for use in
an Internet environment. It allows flexible call setup,
ranging from initiating a point-to-point call in a
tightly coupled fashion, to a multicast conference
announcement in a very loosely coupled fashion, and a
number of conference models in between. It has also been
designed with the intention of allowing gatewaying to
other communications networks to be easily facilitated.
The protocol operates over an unreliable datagram service
such as the Internet's UDP service. Reliability of the
protocol, when desired, is achieved by retransmission of
messages adopting an algorithm similar to that of RTCP to
select the retransmission interval.

The protocol is intended to amalgamate a number of the
features of the IETF SDP, SIP and SCIP protocols and the
ITU Q.931 protocol into a single unified Internet call
setup protocol.

During the design of this protocol the main goals have
been:

 To develop an open standard for seamless end-to-end
 multimedia communication independent of underlying
 network boundaries and transport technology. i.e. the
 protocol used in the Internet should translate cleanly
 and easily into call setup protocols used for ISDN and

 ATM.

 Users should have a consistent set of network services
 independent of the network providing the connection.
 i.e. facilities like transfer and hold should be
 supported (even if they are not implemented in a
 specific product).

Cordell [Page 2]

INTERNET-DRAFT Nov 1996

 The call setup protocol should enable the maximum
 potential and flexibility of the Internet
 infrastructure to be realised. Seamless migration
 between the various call models should also be
 supported directly at the protocol level. i.e. tightly
 coupled and loosely coupled conferences should not be
 explicitly differentiated at the protocol level, and
 migration between these modes should be possible as the
 conference evolves.

 The inclusion of all media streams within a conference
 should be at the control of the call control protocol
 whether they be real-time conversational data, real-
 time live feeds, or pre-stored server fed streams.
 i.e. clients should invite and handle media streams
 within a conference in the same way they handle all
 other real-time feeds.

 Support for capability negotiation should be supported,
 even in large multicast conferences where possible, so
 that systems will automatically select the best media
 transport system available, thus allowing effective
 exploitation of new and evolving coding technologies.

 The protocol should be extensible for the purposes of
 adding new features to the standard protocol, and
 adding extensions for the purpose of evaluating new
 features. This should be done where possible without
 relying on a defined set of version numbers.

It has also been important to design a protocol that is
rich and descriptive, thus enabling terminal designs that
can enhance the user experience, but will at the same
time collapse down to a very simple sub-set by ignoring
certain fields that will allow basic terminals to be
developed as initial product offerings.

Note that throughout this document the terms call and
conference are used interchangeably. For the purposes of

this document, it is NOT necessarily implied from the
term call that the communication is point-to-point, and
it is NOT necessarily implied from the term conference
that the communication is multipoint.

Cordell [Page 3]

INTERNET-DRAFT Nov 1996

2. Overview
To be suitable for use when setting up both point-to-
point calls and multicast conferences the protocol
effectively announces that its associated endpoint is in
a call in the same way that a person uses `Hello' when
greeting another person. This approach differs to the
Request and Acknowledge call setup style used in some
protocols (which is equivalent to the `may I speak to
you/yes you may' paradigm), and the billboard style
advertisement used in other protocols (which is
equivalent to the `big show on Friday' paradigm).

To provide tighter control where required (such as in the
point-to-point case, or even for a small sub-set of a
large multicast) the messages have one or more fields
called Reply fields that allow them to specify who should
acknowledge the message. In a multicast `broadcast' from
a single point the Hello message might not contain a
Reply field. In a multicast conference that contains a
few core people, and then anybody else that wishes to
listen in, the message would contain a number of Reply
fields for each of the endpoints that had to be in the
conference before the conference was worth proceeding
with.

The protocol uses only five main message types. These
are introduced here with a brief description. They are
described further later on.

Hello Used both to initiate a call and answer a call.
 Effectively it announces that an endpoint has
 entered into a point-to-point call or a

 multiparty conference.

Progress This message indicates the progress of a call
 being setup. This is intended primarily to give
 feedback to a user about the progress of call
 setup and does not result in any state changes.
 A number of progress message types exist, such as
 ringing, performing address lookup, transferring
 to POTS network etc. This message can be
 generated by intermediate points if they are
 involved in the call setup process. Feed back
 from the Progress message allows the user and
 application to know that the call/conference is
 progressing, thus preventing a user waiting for
 an answer from a terminal that is not switched
 on.

Bye This message gives an endpoint the option to
 signal that an it has left, or is leaving a
 call/conference.

Cordell [Page 4]

INTERNET-DRAFT Nov 1996

Byebye Is sent to acknowledge a Bye from an endpoint.
 The use of this is described further below.

Feature Used for additional signalling such as
 transferring calls and putting people on hold.
 The minimum support required for this message is
 to identify when a message has been sent to you,
 and respond with the notSupported element of the
 message. Much of this processing is identical to
 the other messages, and so this does not
 represent a significant burden. The use of this
 message is intended to be the place where extra
 functionality is added into the protocol. The
 idea is to have optional bolt-on
 services/protocols into this message. One such
 bolt-on that has already been specified is for
 control of real-time streams supplied by servers.

The main elements of these messages as far as the
protocol is concerned are the 'from', 'to', 'reply', and
'replyAck' fields. The purpose of the first two should
be quite obvious. The third field indicates which
terminals should send a reply in response to the message
sent. A reply is indicated by putting the name of the
terminal that is being replied to in the replyAck field.

The main rules of the protocol are that if you receive a
Hello message with your endpoint mentioned in the Reply
field, you should send either a Progress message or a
Hello message with the name of the terminal you are
responding to indicated in the replyAck field and the
From field set. When a hello message is received with
your endpoint mentioned in the replyAck field, you should
send a Hello message that does not include the sender in
either the reply or replyAck fields. If you receive a
Bye message with your endpoint mentioned in the Reply
field, you should send a Byebye message with the From and
To fields set. Further description is included below to
show how these messages and rules can be used to setup
and cleardown conferences.

3. Detailed Description
The above outlines the principles of operation. This
section adds more detail.

3.1. Messages
This section indicates the sorts of fields that the
various messages contain. See the section on message
encoding to see how the messages are encoded on the line.

Cordell [Page 5]

INTERNET-DRAFT Nov 1996

Note that the most important fields are `cID`, `from`,
`to', `reply` and `replyAck`.

Hello ::= SEQUENCE
 {
 cID GUID,
 from UserAddress,
 to SET OF UserAddress OPTIONAL,
 reply SET OF UserAddress OPTIONAL,
 replyAck SET OF UserAddress OPTIONAL,
 respondTo NetAddress OPTIONAL,
 refreshX3 INTEGER (1 .. 65535) OPTIONAL,
 description Text OPTIONAL,
 display Text OPTIONAL,
 time SET OF Time OPTIONAL,
 userInfo SET OF UserAddress OPTIONAL,
 capno INTEGER (0..65535) OPTIONAL,
 caps SET OF Capability OPTIONAL,

 sendno INTEGER (0..65535) OPTIONAL,
 sending SET OF Property OPTIONAL,
 ...
 }

cID A unique number specifying the conference.

from A unique name specifying who the message is
 from. This specifies the participant at the
 protocol level. This information should remain
 consistent throughout the conference.

to The primary intended recipient of the message.
 Allows messages to be addressed to a sub-set of
 the conference and for handling by proxy or
 location service.

reply Who should reply to this message. If an
 endpoint finds an alias for itself in this
 list, it must respond with the specified alias
 as opposed to another of its aliases.

replyAck Indicates the terminals to which a reply is
 being sent in response to an earlier reply
 message.

respondTo The address (possible multicast address) to
 which all responses should be sent. This
 allows a terminal to send an invitation to a
 remote terminal using point-to-point
 addressing, but have the remote terminal
 respond to the messages to the conference
 multicast address.

Cordell [Page 6]

INTERNET-DRAFT Nov 1996

refreshX3 Indicates the time in seconds by which a
 minimum of three subsequent hello messages
 should have been received. If one or more
 hello messages (only one is required) have not
 been received in this period, the receiver can
 assume the session has ended. This allows a
 receiver to know that a session has ended
 without explicit notification. An interval of
 three refreshes is specified to allow for lost
 packets.

description Short description of the session.

display Information that might be presented to a remote
 user about the state of this endpoint.

time When the session should take place. If this
 field is not present, then the conference is
 considered to be now.

userInfo Additional information about the person sending
 the message.

capno Specifies the instance of caps set specified in
 the caps part of the message. If the sender
 modifies the data contained in the caps
 section, then it should increment the value
 contained in this field by 1. This is to
 remove the need for the receiver to continually
 parse the caps section looking for changes.

caps The set of capabilities that this terminal can
 receive.

sendno Specifies the instance of sending parameter
 specified in the sending part of the message.
 If the sender modifies the data contained in
 the sending section, then it should increment
 the value contained in this field by 1. This
 is to remove the need for the receiver to
 continually parse the sending section looking
 for changes.

sending Describes information about a stream. Its main
 use is to describe the actual streams which
 are being sent by a sender.

Cordell [Page 7]

INTERNET-DRAFT Nov 1996

Progress ::= SEQUENCE
 {
 cID GUID,
 from UserAddress,
 to SET OF UserAddress OPTIONAL,

 phase ProgressPhase,
 fromEndpoint BOOLEAN,
 capno INTEGER (0..65535) OPTIONAL,
 caps SET OF Capability OPTIONAL,
 display Text OPTIONAL,
 ...
 }

cID A unique number specifying the conference.

from A unique name specifying who the message is
 from.

to The primary intended recipient of the message.

phase Progress status code indicating things like
 looking up address, ringing etc.

fromEndpoint Set to TRUE if message generated by t

capno Specifies the instance of caps set specified in
 the caps part of the message. If the sender
 modifies the data contained in the caps
 section, then it should increment the value
 contained in this field by 1. This is to
 remove the need for the receiver to continually
 parse the caps section looking for changes.

caps The set of capabilities that this terminal can
 receive. By putting caps in the Progress
 message it is possible to do decisions on the
 conference caps used prior to the conference
 starting.

display Information that might be presented to a remote
 user about the state of this endpoint.

Bye ::= SEQUENCE
 {
 cID GUID,
 from UserAddress,
 to SET OF UserAddress OPTIONAL;
 reply SET OF UserAddress OPTIONAL,
 reason ByeReason OPTIONAL,
 display Text OPTIONAL,
 ...
 }

Cordell [Page 8]

INTERNET-DRAFT Nov 1996

cID A unique number specifying the conference.

from A unique name specifying who the message is
 from.

reply Who should reply to this message.

reason Why the connection was closed. These might
 consist of: Normal, Busy, Unknown address,
 Ambiguous address, Redirect, Alternative
 service (see SIP), Join conference, No
 resources, Unspecified, etc.

display Information that might be presented to a remote
 user about the state of this endpoint.

Byebye ::= SEQUENCE
 {
 cID GUID,
 from UserAddress,
 to SET OF UserAddress,
 display Text OPTIONAL,
 ...
 }

cID A unique number specifying the conference.

from A unique name specifying who the message is
 from.

to The primary intended recipient of the message.
 Indicates who the Byebye message is in response
 to.

display Information that might be presented to a remote
 user about the state of this endpoint.

Cordell [Page 9]

INTERNET-DRAFT Nov 1996

Feature ::= SEQUENCE
 {
 cID GUID,
 from UserAddress,
 to UserAddress OPTIONAL,
 fID FeatureSeqNo,
 mode CHOICE
 {
 reqAck ServiceType,
 reqNoack ServiceType,
 ack NULL,
 querySupported ServiceList,
 isSupported NULL,
 notSupported NULL,
 ...
 },
 ...
 }

cID A unique number specifying the conference.

from A unique name specifying who the message is
 from.

to The primary intended recipient of the message.

reqAck Request a service that should be acknowledged

reqNoack Request a service that should not be
 acknowledged

ack Acknowledges a feature. The FeatureSeqNo shall
 correspond to the FeatureSeqNo set in the
 request message.

querySupported Asks the remote end if a feature is s
 message.

isSupported Sent in response to a querySupported
 the request message.

notSupported Signals that a requested feature is n
 correspond to the FeatureSeqNo set in the
 request message.

Cordell [Page 10]

INTERNET-DRAFT Nov 1996

3.2. Message Sub Types

-- The root message element

SUCCESSV1 ::= CHOICE
 {
 hello Hello,
 progress Progress,
 bye Bye,
 byebye ByeBye,
 feature Feature,
 ...
 }

GUID ::= OCTET STRING (SIZE(16))
Text ::= BMPString(SIZE(0..511))

UserAddress ::= CHOICE
 {
 email Text,
 locator Text, -- Name meaningful to
 -- location service
 system Text,
 url Text, -- For identifying files on
 -- servers
 ipdotted Text, -- IP dotted notation
 e164 SEQUENCE OF SEQUENCE
 -- Allow multiple E.164 numbers per
 -- single destination
 {
 extension Text,
 remoteAddr Text OPTIONAL,
 remoteSubAddr Text OPTIONAL
 ...
 },
 fax Text,
 title Text, --e.g. `Director of BT Labs'
 tag GUID, --machine assigned address
 commonName Text,
 role Role,
 network NetAddress,
 ...
 }

Cordell [Page 11]

INTERNET-DRAFT Nov 1996

Role ::= CHOICE
 {
 chairperson NULL,
 secretary NULL,
 speaker INTEGER(0..65535),
 panel INTEGER(0..65535),
 controller NULL,
 ...
 }

NetAddress ::= CHOICE
 {
 ip4 SEQUENCE
 {
 ip OCTET STRING (SIZE(4)),
 port INTEGER(0..65535) OPTIONAL,
 ttl INTEGER(0..255) OPTIONAL,
 service CHOICE { UDP NULL, TCP NULL, ...} OPTIONAL,
 route SEQUENCE OF OCTET STRING SIZE(4) OPTIONAL
 -- for source routing
 },
 ip6 SEQUENCE
 {
 ip OCTET STRING (SIZE(16)),
 port INTEGER(0..65535) OPTIONAL,
 ttl INTEGER(0..255) OPTIONAL,
 service CHOICE { UDP NULL, TCP NULL, ...} OPTIONAL,
 route SEQUENCE OF OCTET STRING SIZE(16) OPTIONAL
 -- for source routing
 },
 ...
 }

ProgressPhase ::= CHOICE
 {
 locating NULL, --proxy of some description
 --is locating user
 placed NULL, --Users terminal has
 --received call indication
 ringing NULL, --User terminal is ringing
 gatewaying NULL, --Transferring to POTS or
 --ISDN
 willattend NULL, --Signals that the user
 --will attend a conference taking
 --place in the future that they
 --have been invited to attend
 ...
 }

Cordell [Page 12]

INTERNET-DRAFT Nov 1996

ByeReason ::= CHOICE
 {
 normal NULL,
 unauthorized NULL,
 deferred NULL, -- Do not disturb
 callback NULL, -- User will callback
 -- when free
 busy NULL,
 feature NULL, -- Bye due to
 -- signalled feature
 unknown NULL, -- Person or file not known
 ambiguous NULL, -- Address is incomplete
 deflection SEQUENCE
 {
 cID GUID OPTIONAL,
 user UserAddress,
 conference BOOLEAN OPTIONAL,
 display Text OPTIONAL,
 ...
 }, --must do re-routing end-less
 --loop detection
 noCaps NULL,-- No common capabilities
 noLocation NULL,
 noNetResources NULL,
 noSysResources NULL,
 ...
 }

Time ::= SEQUENCE
 {
 first INTEGER(0..4294967295), --NTP seconds
 --time of first showing
 duration INTEGER(0..4294967295),
 repeat SEQUENCE OF
 {
 delay INTEGER(0..429496795), --seconds
 times INTEGER(0..255), --how many
 --repeats
 ...
 } OPTIONAL,
 ...
 }

Cordell [Page 13]

INTERNET-DRAFT Nov 1996

Capability ::= CHOICE
 {
 --Video modes
 h261 H261,
 h262 H262,
 h263 H263,

 --Audio modes
 gsm AudioParameters,
 g711Alaw AudioParameters,
 g711Ulaw AudioParameters,
 g722-64k AudioParameters,
 g722-56k AudioParameters,
 g722-48k AudioParameters,
 g723 SEQUENCE
 {
 maxAI-sduAudioFrames INTEGER(1..256),
 silenceSuppression BOOLEAN,
 address NetAddress,
 setNum SET OF INTEGER(0..255),
 payloadtype INTEGER(0..127) OPTIONAL,
 description Text OPTIONAL
 },
 g728 AudioParameters,
 g-dsvd AudioParameters,

 --Data modes
 t120 ControlParameters,
 sccp ControlParameters,

 --Control modes
 h323 H323Parameters,
 ...
 }

AudioParameters ::= SEQUENCE
 {
 maxFPP INTEGER(1..2048),
 --Max frames per packet
 address NetAddress,
 setNum SET OF INTEGER(0..255),
 payloadtype INTEGER(0..127) OPTIONAL,
 ssrc INTEGER(0..2^32-1) OPTIONAL,
 -- Only used in sending field
 description Text OPTIONAL,
 ...
 }

Cordell [Page 14]

INTERNET-DRAFT Nov 1996

ControlParameters ::= SEQUENCE
 {
 address NetAddress,
 setNum SET OF INTEGER(0..255) OPTIONAL,
 ...
 }

H323Parameters ::= SEQUENCE
 {
 crv INTEGER(1..65535),
 type EndpointType, -- See H.225 for definition
 activeMC BOOLEAN,
 conferenceGoal CHOICE
 {
 create NULL,
 join NULL,
 invite NULL,
 ...
 } OPTIONAL,
 h245 NetAddress OPTIONAL,
 ...
 }

-- The encoding for the H.261, H.262 and H.263 modes are based on H.245
H261 ::= SEQUENCE
 {
 qcifMPI INTEGER(1..4) OPTIONAL,
 cifMPI INTEGER(1..4) OPTIONAL,
 maxBitRate INTEGER(1..19200),
 stillImage BOOLEAN, --H.261 Annex D

 address NetAddress,
 setNum SET OF INTEGER(0..255) OPTIONAL,
 payloadtype INTEGER(0..127) OPTIONAL,
 ssrc INTEGER(0..2^32-1) OPTIONAL,
 -- Only used in sending field
 description Text OPTIONAL,
 ...
 }

Cordell [Page 15]

INTERNET-DRAFT Nov 1996

H262 ::= SEQUENCE --MPEG1
 {
 profileAndLevel-SPatML BOOLEAN,
 profileAndLevel-MPatLL BOOLEAN,
 profileAndLevel-MPatML BOOLEAN,
 profileAndLevel-MPatH-14 BOOLEAN,
 profileAndLevel-MPatHL BOOLEAN,
 profileAndLevel-SNRatLL BOOLEAN,
 profileAndLevel-SNRatML BOOLEAN,
 profileAndLevel-SpatialatH-14 BOOLEAN,
 profileAndLevel-HPatML BOOLEAN,
 profileAndLevel-HPatH-14 BOOLEAN,
 profileAndLevel-HPatHL BOOLEAN,
 videoBitRate INTEGER (0.. 1073741823)
 OPTIONAL, -- units 400 bits/sec
 vbvBufferSize INTEGER (0.. 262143)
 OPTIONAL, -- units 16384 bits
 samplesPerLine INTEGER (0..16383)
 OPTIONAL, -- units samples/line
 linesPerFrame INTEGER (0..16383)
 OPTIONAL, -- units lines/frame
 framesPerSecond INTEGER (0..15)
 OPTIONAL, -- frame_rate_code
 luminanceSampleRate INTEGER (0..4294967295)
 OPTIONAL, -- units samples/sec

 address NetAddress,
 setNum SET OF INTEGER(0..255) OPTIONAL,
 payloadtype INTEGER(0..127) OPTIONAL,
 ssrc INTEGER(0..2^32-1) OPTIONAL,
 description Text OPTIONAL,
 ...
 }

Cordell [Page 16]

INTERNET-DRAFT Nov 1996

H263 ::= SEQUENCE
 {
 sqcifMPI INTEGER (1..32) OPTIONAL,
 -- units 1/29.97 Hz
 qcifMPI INTEGER (1..32) OPTIONAL,
 -- units 1/29.97 Hz
 cifMPI INTEGER (1..32) OPTIONAL,
 -- units 1/29.97 Hz
 cif4MPI INTEGER (1..32) OPTIONAL,
 -- units 1/29.97 Hz
 cif16MPI INTEGER (1..32) OPTIONAL,
 -- units 1/29.97 Hz
 maxBitRate INTEGER (1..19200),
 -- units 100 bits/s
 unrestrictedVector BOOLEAN,
 arithmeticCoding BOOLEAN,
 advancedPrediction BOOLEAN,
 pbFrames BOOLEAN,
 hrd-B INTEGER (0..524287) OPTIONAL,
 -- units 128 bits
 bPPmaxKb INTEGER (0..65535) OPTIONAL,
 -- units 1024 bits

 address NetAddress,
 setNum SET OF INTEGER(0..255) OPTIONAL,
 payloadtype INTEGER(0..127) OPTIONAL,
 ssrc INTEGER(0..2^32-1) OPTIONAL,
 description Text OPTIONAL,
 ...
 }

FeatureSeqNo ::= INTEGER(0..255)

ServiceList ::= CHOICE
 {
 call NULL,
 authen NULL,
 message NULL,
 assignRole NULL,
 rtsp NULL,
 apps NULL,
 ...
 }

Cordell [Page 17]

INTERNET-DRAFT Nov 1996

ServiceType ::= CHOICE
 {
 call CallControl,
 authen Authentication,
 message SEQUENCE OF Text,
 assignRole Role,
 rtsp NetAddress,
 apps Appshare,
 ...
 }

CallControl ::= CHOICE
 {
 hold NULL,
 holdack NULL,
 holdrej NULL,
 resume NULL,
 resumeack NULL,
 resumerej NULL,
 transfer SEQUENCE
 {
 cID GUID OPTIONAL,
 user UserAddress,
 conference BOOLEAN OPTIONAL,
 display Text OPTIONAL,
 ...
 },
 transferack NULL,
 transferrej NULL,
 ...
 }

Authentication ::= CHOICE
 {
 challenge OCTET STRING SIZE(0..64),
 cresponse OCTET STRING SIZE (0..64),
 ...
 }

Appshare ::= CHOICE
 {
 reqList NULL,
 list SET OF Application,
 reqAddr Application,
 addrAck NetAddress,
 addrRej NULL,
 ...
 }

Cordell [Page 18]

INTERNET-DRAFT Nov 1996

Application ::= CHOICE
 {
 t126 NULL, -- Example
 word6.microsoft.com NULL, -- Example
 notes.lotus.com NULL, -- Example
 ...
 }

Property ::= SEQUENCE
 {
 stream SET OF Capability,
 title Text OPTIONAL,
 director SET OF Text OPTIONAL,
 producer SET OF Text OPTIONAL,
 actor SET OF Text OPTIONAL,
 actress SET OF Text OPTIONAL,
 created Time OPTIONAL,
 duration INTEGER(0..2^32) OPTIONAL,
 -- in milliseconds
 fastfrwd INTEGER(1..255) OPTIONAL,
 -- Max fast frwd factor
 rewind INTEGER(1..255) OPTIONAL,
 -- Max rewind factor,
 pause BOOLEAN OPTIONAL,
 nudgeFrwd BOOLEAN OPTIONAL, -- single frame advance
 nudgeBack BOOLEAN OPTIONAL, -- single frame back
 live BOOLEAN OPTIONAL,
 indexable BOOLEAN OPTIONAL,
 ...
 }

3.3. Event processing
This section gives an example of the sequences that take
place for each of the main events. As mentioned above,
it is intended mainly for illustrative purposes.

For clarity, each event is presented in the form of C
style pseudo-code. Due to the detailed nature of this
description, its accuracy can not be guaranteed, and
it might change in future versions.

The principle of the pseudo-code is that in a conference
there a set of terminals that you want in the conference
and a set of terminals that want you in the conference.
As the conference evolves, this information is stored in
two lists, 'my-reply' and 'reply-to' respectively. As
much of this information is multicast, information can

also be obtained on other terminals in the conference
that you are not directly interested in. When Hello
messages are sent, you copy the contents of the my-reply
list to the message reply field, and the reply-to list to

Cordell [Page 19]

INTERNET-DRAFT Nov 1996

the replyAck field. The message is then sent to the
super-set of the my-reply list and the reply-to list.
For these two lists, as you receive replys from the
specified endpoints, you remove them from the list
appropriately (see Hello pseudo code below). If you
receive a Hello message with your name in the reply then
you add the name of the sender to the reply-to list.
When the conference is stable, both lists should be
empty. The frequency with which Hello messages are sent
is controlled by two timers, Tfast and Tslow. Tfast is
used as the time base to generate hello messages when the
conference is undergoing a state change from the terminal
perspective, i.e. when either the 'my-reply' contains
entries marked as not progressing or the 'reply-to' lists
is not empty. Tslow is used as the generator of hello
messages when the conference is stable from the point of
view of the endpoint, or the use of the Tfast timer
doesn't seem to be progressing the conference state.

The result of this is that a three way handshake of Hello
messages is set up, that can be interrupted a Progress
message. Three stages are required (as opposed to two)
because on receiving a progress message (from the remote
user rather than an intermediary such as a proxy) the
invitor will switch to using a slower timer for
generating Hello messages. This does not allow for
suitable response when the remote user answers the call
as the Hello message generated in this instance may get
lost. If this were to happen, the invitor would not send
another Hello message inviting a response for many
seconds, hence the invitor would not know that the remote
user had entered the call. Therefore, rather than
waiting for another Hello message, the remote user takes
responsibility for ensuring that the invitor is aware
they are in the conference by repeatedly sending Hello
messages with the invitor indicated in the replyAck field
until the invitor responds by sending a Hello message
with the remote user absent from its reply list. Note
that it is important to switch to using the slower timer
when a Progress message is received as it may take a
remote user many minutes to answer a call, during which
time it is unacceptable to send multiple Hello messages
at a high repetition rate.

A third list ('interested-in') stores the total of the
'my-reply' list and 'reply-to' list. This is used to
copy to the 'my-reply' list when the conference is being
closed down, thus informing all those that invited you
and all those that you invited, that you are leaving the

conference. (N.B. in practice these lists would probably
be implemented as one list with a set of flags, but it's
easier to describe in this way). A final detail on top
of all this is whether the user is in or out of the

Cordell [Page 20]

INTERNET-DRAFT Nov 1996

conference, whether they are listen-only, or whether they
have expressed an explicit desire to not be in the
conference (e.g. they were in, but have since left).
This generally affects how the reception of the hello and
bye messages are handled.

In addition to the two timer mentioned above, there are
two other timers, Trefresh and Tleaving. Tleaving
generates Bye messages when the conference is being
closed down. Its characteristics will probably be much
the same as Tfast (but will expire after N time-outs
rather than switching to Tslow). Trefresh is aimed at
picking up terminals that have silently left the
conference or failed. A field in the hello message
indicates the period over which the sender intends to
send 3 more hello messages. Trefresh is started, and all
endpoints in the 'active-endpoint' list are marked as
'not refreshed'. As each hello message comes in, the
endpoint that it is from is marked as refreshed. Also, a
variable collects the maximum value presented in any of
the hello messages refresh field during the refresh
period. When Trefresh expires, it goes through the
'interested-in' list and knocks out all the endpoints
that haven't refreshed thus assuming they have left the
conference. Trefresh is then restarted with the value
that has been calculated as the maximum refresh time.

Cordell [Page 21]

INTERNET-DRAFT Nov 1996

Receive Hello:

 if(refresh time > auto refresh time)
 Update auto refresh time;
 Update `active-endpoints' list and set endpoint
 refreshed flag;

 if(message directed to me or to all)
 {
 if(User-mode is active or listening)
 {
 // IF sender asking me to reply
 if(I'm in `message-reply' list && sender not in
 `reply-to' list)
 {
 Add sender to `reply-to' list; // Hello will be
 // sent later
 Set User-mode to active;
 }

 // IF sender acknowledges my reply
 if(sender in `reply-to' list && I'm not in
 `message-reply' list)
 Remove sender from `reply-to' list;

 // IF sender responds to my reply request
 if(sender in `my-reply' list)
 Remove sender from `my-reply' list;

 if(User-mode is active)
 {
 if(`my-reply' list does not contain any
 entries marked as not progressing &&
 `reply-to' list is empty &&
 I'm not in 'message-replyAck' list)
 Ensure Tslow is running and Tfast is not;
 else
 Ensure Tfast is running and Tslow is not;
 }
 }

 else if(user not yet in conference)
 {
 Inform user of conference;
 if(I'm in `message-reply' list)
 {
 Add sender to `reply-to' list;
 Add sender to `interested-in' list;

 Progress message;
 }
 }

Cordell [Page 22]

INTERNET-DRAFT Nov 1996

 else if(user indicated not interested in
 conference)
 if(I'm in `message-reply' list)
 Send Bye message with appropriate reason;
 }

Receive Progress:

 Record state against terminal;
 Inform user conference state changed;
 if(message is from sender [as opposed to an
 intermediary])
 Mark sender as progressing in 'my-reply' list;

Receive Bye:

 Remove endpoint from active-endpoints list;

 if(sender in `interested-in' list)
 {
 Remove from `interested-in' list;
 if(sender in `my-reply' list)
 {
 Remove sender from `my-reply' list;
 if(User-mode is active)
 {
 if(reason specifies alternative address)
 {
 Put new address in `interested-in' list;
 Put new address in `my-reply' list;
 if(Tslow is running)
 Cancel Tslow timer;
 if(Tfast is not running)
 Start Tfast and reset retransmission count;
 }
 }

 // ELSE allow for both endpoints to say bye at same time
 else if(User-mode is leaving)
 {
 if(`my-reply' list empty)
 {
 Inform user;
 Stop Tleaving;
 }
 }
 }

 }

 if(I'm in `message-reply' list)
 Send ByeBye message;

Cordell [Page 23]

INTERNET-DRAFT Nov 1996

Receive ByeBye:

 if(message directed to me)
 {
 Remove remote sender from `my-reply' list;
 if(`my-reply' list is empty)
 {
 Inform user;
 Stop Tleaving;
 }
 }

User initiates call:

 Select conference ID;
 Put desired endpoints in `my-reply' list and mark as
 not progressing;
 Put desired endpoints in `interested-in' list;
 Send Hello message to all endpoints in 'interested-in'
 list copying 'my-reply' list to message
 'reply' field, and copying 'reply-to'
 list to message 'replyAck' field;
 Start Tfast and reset retransmission count;
 Set User-mode to active;

User invites new endpoints:

 Put desired endpoints in `my-reply' list and mark as
 not progressing;
 Put desired endpoints in `interested-in' list;
 Send Hello message to all endpoints in 'interested-in' list
 copying 'my-reply' list to message 'reply'
 field, and copying 'reply-to' list to message
 'replyAck' field;
 if(Tslow is running)
 Cancel Tslow timer;
 if(Tfast is not running)
 Start Tfast and reset retransmission count;
 Set User-mode to active;

Cordell [Page 24]

INTERNET-DRAFT Nov 1996

User answers call:

 if(`reply-to' list is not empty)
 {
 Send Hello message to all endpoints in
 'interested-in' list copying 'my-reply'
 list to message 'reply' field, and copying
 'reply-to' list to message 'replyAck' field;
 if(Tslow is running)
 Cancel Tslow timer;
 if(Tfast is not running)
 Start Tfast and reset retransmission count;
 Start auto refresh timer (Trefresh) and set next period
 time to zero;
 Set User-mode to active;
 }
 else
 Set User-mode to listening;

User leaves call:

 Stop Tfast and Tslow;
 Copy `interested-in' list to `my-reply' list;
 if(`my-reply' list not empty)
 {
 Send Bye message with Reply fields set and
 appropriate disconnect reason;
 Initiate Bye closing retransmission timer logic (Tleaving);
 Reset Bye closing retransmission count (Nleaving);
 }
 else
 {
 if(it is desired to signal this endpoint leaving conference)
 Send Bye with Reply list empty and appropriate
 disconnect reason;
 }

Cordell [Page 25]

INTERNET-DRAFT Nov 1996

Timer Tfast times out:

 Decrement fast retransmission count (Nfast);
 if(retransmission count is not zero)
 {
 Send Hello message to all endpoints in 'interested-in'
 list copying 'my-reply' list to message
 'reply' field, and copying 'reply-to'
 list to message 'replyAck' field;
 if(`my-reply' list does not contain any entries
 marked as not progressing && `reply-to'
 list is empty &&
 I'm not in 'message-replyAck' list)
 Ensure Tslow is running and Tfast is not;
 else
 Ensure Tfast is running and Tslow is not;
 }
 else
 { // Call is failing to progress
 if(`active-endpoints' list is not empty)
 Start TSlow;
 else
 {
 Inform user;
 Send Bye message with empty Reply list;
 }
 }

Timer Tslow times out:

 Send Hello message to all endpoints in 'interested-in'
 list copying 'my-reply' list to message
 'reply' field, and copying 'reply-to' list
 to message 'replyAck' field;
 Re-evaluate and restart Tslow;

Timer Tleaving times out:

 if(`my-reply' list is not empty)
 {
 Send Bye message with Reply list;
 Decrement re-transmission count:
 if(retransmission count is not zero)
 Re-evaluate and restart Tleaving;
 else
 inform user;

 }
 else
 Inform user;

Cordell [Page 26]

INTERNET-DRAFT Nov 1996

Timer Trefresh times out:

 Remove items from `interested-in' list, `my-reply'
 list and `reply-to' list that have
 not been marked as refreshed;
 if(next period refresh time is not zero)
 {
 Re-start Trefresh;
 Clear next period refresh count to zero;
 }

Cordell [Page 27]

INTERNET-DRAFT Nov 1996

3.4. Main Information

3.4.1. Per conference information:

User-mode Whether the user is not in conference, only
 listening to the conference, actively involved
 in the conference, or not interested in the
 conference.
interested-in Stores the list of endpoints that that this endpoint
list has either replied to or asked for replys from during
 the conference.
my-reply list Implemented as part of interested-in list. Stores the
 list of endpoints this endpoint wants to receive a
 reply from.
reply-to list Implemented as part of interested-in list. Stores the
 list of endpoints this endpoint should reply to.
endpoint-list List of all the terminals in the conference, or as many
 as the application is prepared to store.
Mcast-Address The call control session multicast address. This may not
 be used in some circumstances.

Cordell [Page 28]

INTERNET-DRAFT Nov 1996

3.4.2. Information stored per endpoint in the interested-
in list:

Quantity Type Description
-------- ---- -----------
name String and The name of the endpoint.
 type
my-reply Flag Indicates whether this endpoint
 wants a reply from the remote
 endpoint
reply-to Flag Indicates whether this endpoint
 should send a reply to the remote
 endpoint
progressing Flag Set to FALSE when an
 endpoint is initially invited to a
 call. When a Progress or Hello
 message is received from the
 endpoint, the flag is set to TRUE.
refreshed Flag Indicates whether the remote
 endpoint has sent a new Hello
 message within the refresh period
address IP Addr/Port The address and port to send
 messages to the remote endpoint.
 Maybe a unicast or multicast address
 depending on the conference phase
 and type
go-mcast Flag If True, indicates that if a
 terminal was invited to a conference
 using unicast, it should be
 signalled to use the conference
 multicast address. When a reply
 from the endpoint has been received
 on the conference multicast address,
 the address field above will be
 changed to the conference multicast
 address.
last-cap-no Integer The number of the last
 capability set sent by the terminal.
last-send-no Integer The number of the last send
 no set by the sender.

Cordell [Page 29]

INTERNET-DRAFT Nov 1996

3.5. Timers
The protocol defines a numbers of timers. These are
described here.

Timer value Repeats Description
----------- ------- -----------
Tfast Nfast Used as the time base to generate Hello
 messages when the endpoint is changing
 its membership lists
Tslow Infinite Used as the time base to generate Hello
 messages when the endpoint has a stable
 membership list
Tleaving Nleaving Used as a timebase to generate Bye messages
 when an endpoint is leaving a conference
Trefresh Infinite Used to detect endpoints that have silently
 left a conference

4. Capabilities
The capabilities in the hello message allows the sender
of the message to specify media that the receiving
endpoints can transmit. In addition to standard audio,
video, and data capabilities, control capabilities are
defined. This allows a protocol to be used on top of
this protocol for setting up media streams such as H.323,
SCCP and T.120.

Capabilities do not need to be present in every Hello
message sent. If they are not present the previously
specified capabilities are taken to be still valid. If
one or more capabilities are changed, then a complete set
of capabilities needs to be specified, thus overwriting
the previous set. When the capability set is changed the
sender should increment the capno parameter sent in the
hello message to let the receiver know that a change has
been made without the receiver having to parse the whole
message.

When defining the set of capabilities that can be
received, each declared capability is assigned to one or
more 'sets'. These sets are numbered zero to 255. A
maximum of one mode can be active from a given set at any
one time. Thus, if GSM and G.723 are assigned to the
same set, only one of them can be active at a time. If
G.723 is defined in two sets, then two G.723 streams can
be used simultaneously perhaps with different languages.
This is thought to be the simplest mechanism possible
that allows multiple options to be specified for multiple
streams of the same media type. To specify more

complicated capability sets, higher layer protocols such
as SCCP, H.245, or T.120 should be used.

Cordell [Page 30]

INTERNET-DRAFT Nov 1996

The method of defining proprietry extensions defined under
the Use of the Feature Message can also be used to define
proprietry codecs in the capability sets.

Note that when inviting a new terminal into a conference
(i.e. when the hello message specifies a reply), the
capabilities expressed should be that of the inviting
terminals view of the conferences aggregated common
capabilities and not solely those of the inviting
terminal.

It is recommended that a mandatory set of base
capabilities be defined that must be supported by all
terminals. This will ensure that there will always be
some degree of compatibility. An example is G.723, and
if video is present, QCIF H.261. This base set would
allow effective use over dial-up modem links.

This scheme works well for point-to-point cases and for
large multicasts where negotiation is not allowed or not
possible. However, it is desirable to extend the scheme
such that effective mode negotiation can take place for
at least a dozen terminals. This requires further work.
Currently negotiation is looked upon as a two stage
process; finding the common capabilities and then
deciding which capabilities to use within that set. Over
time it should be possible to establish the common
capabilities of the terminals in the conference using a
logical ANDing process of all the capabilities received.
Deciding which mode to use of the resulting set seems
more problematic as a consistent notion of which mode is
the best of the ones available needs to be established
between all of the members in the conference. For video
algorithms this may be a relatively straight forward
process, but for audio this may vary depending on the
application environment and personal preference. One
possibility might be to employ the observation that in
general, only one person will be talking at the same
time. Also each RTP packet is tagged with the coding
mode. By loading all the common decoders in use in the
conference into system memory a terminal may be able to
select the appropriate decoder as each audio packet
arrives. This will require a larger memory foot print,
but should not require extra processing power. To
simplify this situation, new speakers may be able to
implement heuristics such as using the coding algorithm
of the previous speaker.

Cordell [Page 31]

INTERNET-DRAFT Nov 1996

5. Use of the Feature Message
The Feature message is used for additional signalling
such as transferring calls and putting people on hold.
The minimum support required for this message is to
identify when a message has been sent to you, and to
respond with the notSupported form of the message. Much
of this processing is identical to the other messages,
and so this does not represent a significant burden.

This message is intended to be the mechanism by which the
protocol is extended. The concept is to have optional
services/protocols that bolt-on to the message. Bolt-on
services have already been specified for call transfer
and control of real-time streams supplied by servers.

It is expected that software modules providing services
to the call control protocol will register with the
feature handling components in the core layer. When a
service wants to send a message, it will tell the feature
handler to do so. The feature handler will keep
retransmitting the feature message until it gets an ack
back from the remote feature handler, or a not supported
indication. The feature handler will then tell the
service that the message has been sent. At the receive
side, the feature handler will extract the service for
who the message is intended. If a service of that type
has been registered, then the message will be sent to
that service and an acknowledgement will be sent. If no
service of the specified name is registered, then a
notSupported message will be returned. The
querySupported form of the message is supported in a
similar way.

Proprietary extensions to the protocol should also be
made using the feature message. To ensure that
proprietary extensions do not overlap with those from
different vendors or future standardised messages, they
should use the naming convention of:

 <service number>.<DNS domain name>

For example:

 myService.products.mycompany.com

The entire string should not exceed 255 characters in
length.

Cordell [Page 32]

INTERNET-DRAFT Nov 1996

6. Connecting to Stream Servers
Accessing different kinds of media within a conference in
a consistent way is an important issue for call control
as it simplifies the client code, but also makes the user
experience more consistent. This should also apply to
material introduced into a conference which is pre-stored
on servers. This is especially the case if a remote user
is invited to a conference who is away from their machine
and has left a pre-recorded message.

Equally important is, if a server is introduced into a
conference, a mechanism for making full use of the server
features should be available. Extending the protocol to
include a full set of media control options is not
desirable, but a number of possibilities are available
within the framework of SUCCESS for achieving this. The
method chosen here is to make use of the feature message.
Assuming that the server supports RTSP or a similar
protocol, the resulting sequence of events would occur.

The user invites the server to the conference using the
standard Hello message handshakes. When the server is in
the conference, it sends a feature message to the user's
client indicating that it supports RTSP, and what the
appropriate address is.

If the user client does not have an RTSP feature
registered, then the client will send back a feature
notSupported message. This tells the server that RTSP
control is not available. In this instance the server
should proceed to play it's pre-stored material, and then
exit the conference using the Bye sequence.

If the user client has registered an RTSP feature
controller with the SUCCESS layer, then the client will
acknowledge the feature message and pass the contents of
the incoming RTSP feature message to the RTSP control
mechanism. This event could be used to launch the
display of a set of VCR style control buttons on the user
display. The client would connect to the server
specified address and issue appropriate server control
messages such as HELLO and PLAY_RANGE. When the client
had finished with the server it would send the GOODBYE
message. At this point the server should send the
SUCCESS Bye message indicating that it is leaving the
conference.

Using this strategy facilitates a consistent user
experience, but also allows the maximum flexibility of

the invited streams to be exploited.

Cordell [Page 33]

INTERNET-DRAFT Nov 1996

7. Message Encoding
SD is described using a limited set of tokens which are
intended not to be extensible. Hence, its impossible to
describe SUCCESS as a set of extensions to SD as is
perhaps desirable.

Although the protocol described above is orthogonal to
the underlying message transportation mechanism, some
thoughts on message encoding are perhaps justified. An
important consideration is that the message set should be
extensible over time, with older terminals simply
ignoring fields they do not understand. As new message
elements are introduced they will likely contain multiple
associated pieces of information. An efficient way of
grouping these is important so that an entire message
element can be ignored if required. Hence some concept
of structure in messages is required..

ASN.1 is now the method of choice for encoding messages
in ITU standards. The benefits of ASN.1 is that it
describes messages in a powerful expressive high level
way. It is similar to writing code in Pascal or C as
opposed to Assembler. The downside is that it typically
requires the use of a compiler to compile the messages
into a rather esoteric line format.

The IETF community have a preference for encoding
messages in ASCII (or equivalent). This is partly
because it easily solves the problem of data
representation when moving from machine to machine (ASN.1
also does this), and because it allows the data to be
generated and read by humans.

Observing that it is unlikely that the ITU will want to
depart from using ASN.1 and the IETF would still like to
maintain a line format which is ASCII based, and there is
mutual benefit from the two bodies defining standards
that (if not the same) are interworkable, this section
describes a mechanism for compiling ASN.1 messages into
ASCII text.

The benefits of this would be that a common method of
expressing high level messages could be adopted, and
interworking between the standards would be trivial.

The first requirement to providing a simplified ASCII
encoding is to select a sub-set of the total ASN.1
capabilities. To this end, the following keywords have
been selected. All other keywords are ignored.

Cordell [Page 34]

INTERNET-DRAFT Nov 1996

 INTEGER OCTET IA5String BMPString
 STRING SIZE SEQUENCE OF SET OF
 SEQUENCE CHOICE BOOLEAN NULL
 OPTIONAL

 Subset of ASN.1 keywords

To demonstrate the scheme an example is given.

A typical definition for an (complicated) ASN.1 message
may look as follows:

startup ::= SEQUENCE
{
 sequence_no INTEGER(1..65536),
 name IA5String(SIZE(0..128)),
 gUID OCTET STRING (SIZE(16)),
 activated BOOLEAN
 modes SEQUENCE
 {
 highmodeBOOLEAN,
 lowmode BOOLEAN,
 ...
 },
 response CHOICE
 {
 acknowledge NULL, -- NULL indicates no further data
 silent NULL,
 informGroup INTEGER(0..65536), -- Address to send
 --group response to
 ...
 },
 id INTEGER(1..256) OPTIONAL,
 node_alerts SEQUENCE OF INTEGER(0..65535),
 complex SEQUENCE OF SEQUENCE
 {
 admin_node INTEGER(0..256),
 user_id INTEGER(0..256),
 mode SEQUENCE
 {
 video BOOLEAN,
 audio BOOLEAN,
 data BOOLEAN,
 ...
 } OPTIONAL,
 ...

 }
 ...
}

Cordell [Page 35]

INTERNET-DRAFT Nov 1996

From this it can be seen that there are some basic types
including: INTEGER, IA5String, OCTET STRING and BOOLEAN.

There are also two `complex' structures, these being
SEQUENCE and CHOICE. A SEQUENCE is similar to a
structure (struct) in C and a CHOICE is similar to a
union (however, the chosen option in the CHOICE is also
recorded, which is not the case for a C union).

A final consideration is that you can have a SEQUENCE OF
or SET OF the above types, and elements can be OPTIONAL.

In a SEQUENCE OF or SET OF construct there can be more
than one of the specified component. The number of items
may be constrained or unconstrained.

Elements that are marked OPTIONAL can be absent in a
correctly formed message. All other elements must be
present for the message to be valid.

Now lets consider how these can be represented in
Unicode.

The basic mechanism is to encode all items as:

<name of item> <optional white space> = <optional white
space> <value> <white space>

By doing this consistently, parsers can skip fields they
don't understand.

Therefore the INTEGER can simply be represented as a
printable string of the number, (the range of the number
is not so important to the line format when represented
in this way. However, the number range is probably
important to the application.) e.g.

sequence_no = 125

An IA5String can be represented as a string in quotes,
e.g.

name = "Pete"

... the usual back slash escapes can also be included.

Cordell [Page 36]

INTERNET-DRAFT Nov 1996

OCTET STRINGs are represented using the following
representation:

gUID = x0f1b6c0d

...here, each OCTET is coded as two hexadecimal digits.
The leading x indicates that this is in OCTET
representation.

Booleans can be coded simply as TRUE and FALSE, as in:

activated = TRUE

The SEQUENCE can be coded by including the elements of
the sequence in brackets (), for example:

modes = (highmode = TRUE lowmode = FALSE)

...doing this allows the complete sequence to be skipped
if the parameter is not understood, or it is of no
interest. This is important for backwards compatibility.
(N.B. the ellipsis are important for coding messages
using the ITU method, but they have no significance for
this coding method. However, to ensure compatibility,
they should be included in the message definition where
appropriate.) Also note that the complete message is
itself a SEQUENCE. This explains the example of the
complete message shown below.

A CHOICE can be encoded using a similar scheme to the
SEQUENCE, as in:

response = (acknowledge = NULL)

... or:

response = (informGroup = 137)

... many choice options map to NULL, (an example of which
is shown above) which is inefficient in terms of
characters sent and tedious to write by hand.
Conversely, this presents little problem to a program
scanning and generating the text as it consistently
maintains the X=Y format. However, on the whole a
shorthand notation for the above of:

response = (acknowledge)

... seems preferable. Note that the brackets are still
important as this highlights that acknowledge comes from

a CHOICE statement. An implementation should recognise
both formats.

Cordell [Page 37]

INTERNET-DRAFT Nov 1996

The OPTIONAL items is either present or not present.
Unfortunately an example makes no sense.

When multiple items of the same type are included in a
message using the SEQUENCE OF or SET OF encoding, this
can be done simply by including the item multiple times,
as in:

node_alerts = 0 node_alerts = 5000 node_alerts = 12

... this is quite wasteful in terms of characters, and so
the following compacted encoding could be used:

node_alerts = 0 = 5000 = 12

... the rule that allows this is that if you get the =
token when you expected to receive an item name, you
should use the most recently collected item name, subject
to the level of parenthesis.

As a final, complicated example, the `complex' component
shown above can be encoded as:

complex = (admin_node = 20
 user_id = 6
 mode = (video = TRUE audio = TRUE data = FALSE)
)

 = (admin_node = 5
 user_id = 5
)

To sum up, a complete example of the message would be:

startup = (
 sequence_no = 125
 name = "Pete"
 gUID = x0f1b6c0d
 activated = TRUE
 modes = (highmode = TRUE lowmode = FALSE)
 response = (informGroup = 137)
 id = 12
 node_alerts = 0 = 5000 = 12
 complex = (
 admin_node = 20
 user_id = 6
 mode = (video = TRUE audio = TRUE data = FALSE)
)
 = (
 admin_node = 5

 user_id = 5
)
)

Cordell [Page 38]

INTERNET-DRAFT Nov 1996

Note that because each element is tagged, there order is
not important. Therefore, the above message could
equally be represented as:

startup = (
 name = "Pete"
 activated = TRUE
 node_alerts = 0
 sequence_no = 125
 modes = (highmode = TRUE lowmode = FALSE)
 id = 12
 node_alerts = 5000 = 12
 complex = (
 admin_node = 20
 user_id = 6
 mode = (video = TRUE audio = TRUE data = FALSE)
)
 response = (informGroup = 137)
 complex = (
 admin_node = 5
 user_id = 5
)
 gUID = x0f1b6c0d // We can have comments too
)

A final comment is that message definitions rarely map
directly to the base (INTEGER, OCTET) types. I.e. the
definition above might be encoded as:

startup ::= SEQUENCE
{
 sequence_no Seq_no,
 name IA5String(SIZE(0..128)),
 gUID conference_ID,
 activated BOOLEAN,
 modes Modes,
 .
 .
 .

elsewhere the following definitions would appear:

Seq_no INTEGER(1..65536),
conference_ID ::= OCTET STRING (SIZE(16)),
Modes ::= SEQUENCE
 {
 highmode BOOLEAN,
 lowmode BOOLEAN,

 ...
 }

Cordell [Page 39]

INTERNET-DRAFT Nov 1996

This is a better way to do the message definition, for
all the reasons that you would do the same in any piece
of software. The coding method is not affected by this
as it is a process of macro expansion to get to the
message definition we started with.

8. Address of Author

Peter Cordell
BT Labs
MLB 4/40
Martlesham Heath
Ipswich IP5 7RE
e-mail: pete.cordell@bt-sys.bt.co.uk

References

This document has drawn heavily on the following sources:

SDP M. Handley, V. Jacobson "SDP: Session Description Protocol"
 Internet Draft, draft-ietf-mmusic-sdp-02.txt, Work in Progress,
 Feb 1996.

SIP M. Handley, E. Schooler "SIP: Session Invitation Protocol"
 Internet draft, draft-ietf-mmusic-sip-01.txt, June 1996

SCIP H. Schulzrinne, "Simple Conference Invitation Protocol",
 Internet draft, draft-ietf-mmusic-scip-00.txt, Feb 1996

H.245 ITU-T, "Control Protocol for Multimedia Communication" Nov 1995

H.225 ITU-T, "Media Stream Packetisation and Synchronisation on Non-
 Guarenteed Quality of Service LANs", May 1996

X.680 ITU-T, "Abstract Syntax Notation One (ASN.1): Specification of
 Basic Notation", July 1994

To Do
Add scenarios.
Check centralised control such as used in call centres.
Write text on how the e164 address field should be used.
Re-visit how properties of streams are transmitted.
Re-visit gateway connectivity now that new pseudo-code
has been put in.

https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-sdp-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-sip-01.txt
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-scip-00.txt

Cordell [Page 39]

