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Status of this Memo

    This document is an Internet-Draft and is in full conformance with
    all provisions of Section 10 of RFC2026.

    Internet-Drafts are working documents of the Internet Engineering
    Task Force (IETF), its areas, and its working groups.  Note
    that other groups may also distribute working documents as
    Internet-Drafts.

    Internet-Drafts are draft documents valid for a maximum of six
    months and may be updated, replaced, or obsoleted by other documents
    at any time.  It is inappropriate to use Internet-Drafts as
    reference material or to cite them other than as "work in progress."

    The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

    The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

    Distribution of this document is unlimited.  Please send comments
    to the author at amc@cs.berkeley.edu, or to the idn working
    group at idn@ops.ietf.org.  A non-paginated (and possibly
    newer) version of this specification may be available at

http://www.cs.berkeley.edu/~amc/charset/

Abstract

    AMC-ACE-Z is a simple and efficient ASCII-Compatible Encoding (ACE)
    designed for use with Internationalized Domain Names [IDN] [IDNA].
    It transforms a Unicode string [UNICODE] into a string of characters
    allowed in hostname labels (ASCII letters, digits, and hyphens)
    and back again.  AMC-ACE-Z is an instance of Bootstring that uses
    particular parameter values appropriate for IDNA and uses an IDNA
    signature prefix.  Bootstring allows a string of basic code points
    to uniquely represent any string of code points drawn from a larger
    set.  This document specifies Bootstring and the parameter values
    for AMC-ACE-Z.
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1. Introduction

    The IDNA draft [IDNA] describes an architecture for supporting
    internationalized domain names.  Each label of a domain name may
    begin with a special prefix, in which case the remainder of the
    label is an ASCII-Compatible Encoding (ACE) of a Unicode string
    satisfying certain constraints.  For the details of the constraints,
    see [IDNA] and [NAMEPREP].  The prefix has not yet been specified,
    but see http://www.i-d-n.net/ for prefixes to be used for testing
    and experimentation.

    Bootstring has been designed to have the following features:

      * Completeness:  Every extended string (sequence of arbitrary code
        points) can be represented by a basic string (sequence of basic
        code points).  Restrictions on what strings are allowed, and on
        length, may be imposed by higher layers.

      * Uniqueness:  Every extended string maps to at most one basic
        string.

      * Reversibility:  Any extended string mapped to a basic string can
        be recovered from that basic string.

      * Efficient encoding:  The ratio of extended string length to
        basic string length is small.  This is important in the context
        of domain names because RFC 1034 [RFC1034] restricts the length
        of a domain label to 63 characters.

      * Simplicity:  The encoding and decoding algorithms are reasonably
        simple to implement.  The goals of efficiency and simplicity are
        at odds; Bootstring aims at a good balance between them.

      * Readability:  Basic code points appearing in the extended
        string are represented as themselves in the basic string.  This
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        comes for free because it makes the encoding more efficient on
        average.

    In addition, AMC-ACE-Z can support an optional feature described in
appendix B "Mixed-case annotation".

    AMC-ACE-Z is a working name that should be changed if it is adopted.
    (The Z merely indicates that it is the twenty-sixth ACE devised by
    this author.  Most were not worth releasing.)

2. Terminology

    The key words "must", "shall", "required", "should", "recommended",
    and "may" in this document are to be interpreted as described in RFC

2119 [RFC2119].

    As in the Unicode Standard [UNICODE], Unicode code points are
    denoted by "U+" followed by four to six hexadecimal digits, while a
    range of code points is denoted by two hexadecimal numbers separated
    by "..", with no prefixes.

    The operators div and mod perform integer division; (x div y) is the
    quotient of x divided by y, discarding the remainder, and (x mod y)
    is the remainder, so (x div y) * y + (x mod y) == x.  Bootstring
    uses these operators only with nonnegative operands, so the quotient
    and remainder are always nonnegative.

    The ?: operator is a conditional; (x ? y : z) means y if x is true,
    z if x is false.  It is just like "if x then y else z" except that y
    and z are expressions rather than statements.

    The "break" statement jumps out of the innermost loop (as in C).

3. Bootstring description

    Bootstring represents an arbitrary sequence of code points (the
    "extended string") as a sequence of basic code points (the
    "basic string").  This section describes the representation.

Section 6 "Bootstring algorithms" presents the algorithms as
    pseudocode.  There is also commented C code in appendix C "Sample
    implementation".

3.1 Basic code point segregation

    All basic code points appearing in the extended string are
    represented literally at the beginning of the basic string, in their
    original order, followed by a delimiter if (and only if) the number
    of basic code points is nonzero.  The delimiter is a particular
    basic code point, which never appears in the remainder of the basic
    string.  The decoder can therefore find the end of the literal
    portion (if there is one) by scanning for the last delimiter.
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3.2 Insertion unsort coding

    The remainder of the basic string (after the last delimiter if there
    is one) represents a sequence of nonnegative integral deltas as
    generalized variable-length integers, described in section 3.3.  The
    meaning of the deltas is best understood in terms of the decoder.

    The decoder builds the extended string incrementally.  Initially,
    the extended string is a copy of the literal portion of the basic
    string (excluding the last delimiter).  Each delta causes the
    decoder to insert a code point into the extended string according
    to the following procedure.  There are two state variables: a
    code point n, and an index i that ranges from zero (which is the
    first position of the extended string) to the current length of
    the extended string (which refers to a potential position beyond
    the current end).  The decoder advances the state monotonically
    (never returning to an earlier state) by taking steps only upward.
    Each step increments i, except when i already equals the length
    of the extended string, in which case a step resets i to zero
    and increments n.  For each delta (in order), the decoder takes
    delta steps upward, then inserts the value n into the extended
    string at position i, then increments i (to skip over the code
    point just inserted).  (An implementation should not take each
    step individually, but should insead use division and remainder
    calculations to advance by delta steps all at once.)

    The encoder's main task is to derive the sequence of deltas that
    will cause the decoder to construct the desired string.  It can do
    this by repeatedly scanning the extended string for the next code
    point that the decoder would need to insert, and counting the number
    of steps the decoder would need to take, mindful of the fact that
    the decoder will be stepping over only those code points that have
    already been inserted.  Section 6.3 "Encoding procedure" gives a
    precise algorithm.

3.3 Generalized variable-length integers

    In a conventional integer representation the base is the number of
    distinct symbols for digits, whose values are 0 through base-1.  Let
    digit_0 denote the least significant digit, digit_1 the next least
    significant, and so on.  The value represented is the sum over j of
    digit_j * w(j), where w(j) = base^j is the weight (scale factor)
    for position j.  For example, in the base 8 integer 437, the digits
    are 7, 3, and 4, and the weights are 1, 8, and 64, so the value is
    7 + 3*8 + 4*64 = 287.  This representation has two disadvantages:
    First, there are multiple encodings of each value (because there
    can be extra zeros in the most significant positions), which
    is inconvenient when unique encodings are required.  Second,
    the integer is not self-delimiting, so if multiple integers are
    concatenated the boundaries between them are lost.



    The generalized variable-length representation solves these two
    problems.  The digit values are still 0 through base-1, but now
    the integer is self-delimiting by means of thresholds t(j), each
    of which is in the range 0 through base-1.  Exactly one digit, the
    most significant, satisfies digit_j < t(j).  Therefore, if several
    integers are concatenated, it is easy to separate them, starting
    with the first if they are little-endian (least significant digit
    first), or starting with the last if they are big-endian (most
    significant digit first).  As before, the value is the sum over j of
    digit_j * w(j), but the weights are different:

        w(0) = 1
        w(j) = w(j-1) * (base - t(j-1)) for j > 0

    For example, consider the little-endian sequence of base 8 digits
    734251...  Suppose the thresholds are 2, 3, 5, 5, 5, 5...  This
    implies that the weights are 1, 1*(8-2) = 6, 6*(8-3) = 30, 30*(8-5)
    = 90, 90*(8-5) = 270, and so on.  7 is not less than 2, and 3 is
    not less than 3, but 4 is less than 5, so 4 must be the last digit.
    The value of 734 is 7*1 + 3*6 + 4*30 = 145.  The next integer is
    251, with value 2*1 + 5*6 + 1*30 = 62.  Decoding this representation
    is very similar to decoding a conventional integer:  Start with a
    current value of N = 0 and a weight w = 1.  Fetch the next digit d
    and increase N by d * w.  If d is less than the current threshold
    (t) then stop, otherwise increase w by a factor of (base - t),
    update t for the next position, and repeat.

    Encoding this representation is similar to encoding a conventional
    integer:  If N < t then output one digit for N and stop, otherwise
    output the digit for t + ((N - t) mod (base - t)), then replace N
    with (N - t) div (base - t), update t for the next position, and
    repeat.

    For any particular set of values of t(j), there is exactly one
    generalized variable-length representation of each nonnegative
    integral value.

    Bootstring uses little-endian ordering so that the deltas can be
    separated starting with the first.  The t(j) values are defined in
    terms of the constants base, tmin, and tmax, and a state variable
    called bias:

        t(j) = base * (j + 1) - bias,
        clamped to the range tmin through tmax

    (The clamping means that if the formula yields a value less than
    tmin or greater than tmax, then t(j) = tmin or tmax, respectively.)
    These t(j) values cause the representation to favor integers within
    a particular range determined by the bias.

3.4 Bias adaptation



    After each delta is encoded or decoded, bias is set for the next
    delta as follows:

     1. Delta is scaled in order to avoid overflow in the next step:

            let delta = delta div 2

        But when this is the very first delta, the divisor is not 2, but
        instead a constant called damp.  This compensates for the fact
        that the second delta is usually much smaller than the first.

     2. Delta is increased to compensate for the fact that the next
        delta will be inserting into a longer string:

            let delta = delta + (delta div numpoints)

        numpoints is the total number of code points encoded/decoded so
        far (including the one corresponding to this delta itself, and
        including the basic code points).

     3. Delta is repeatedly divided until it falls within a threshold,
        to predict the minimum number of digits needed to represent the
        next delta:

            while delta > ((base - tmin) * tmax) div 2
            do let delta = delta div (base - tmin)

     4. The bias is set:

            let bias =
              (base * the number of divisions performed in step 3) +
              (((base - tmin + 1) * delta) div (delta + skew))

    The motivation for this procedure is that the current delta provides
    a hint about the likely size of the next delta, and so t(j) is
    set to tmax for the more significant digits starting with the one
    expected to be last, tmin for the less significant digits up through
    the one expected to be third-last, and somewhere between tmin and
    tmax for the digit expected to be second-last (balancing the hope of
    the expected-last digit being unnecessary against the danger of it
    being insufficient).

4. Bootstring parameters

    Given a set of basic code points, one must be chosen as the
    delimiter.  The base is the number of distinguishable basic code
    points remaining.  They must be associated with the values in the
    range 0 through base-1.  In some cases multiple code points must
    represent the same value; for example, uppercase and lowercase
    versions of a letter must be equivalent if basic strings are
    case-insensitive.



    The initial value of n should be the minimum non-basic code point
    that is allowed in extended strings.

    The remaining five parameters (tmin, tmax, skew, damp, and the
    initial value of bias) must satisfy the following constraints:

        0 <= tmin <= tmax <= base-1
        skew >= 1
        damp >= 2
        initial_bias mod base <= base - tmin

    Provided the constraints are satisfied, these five parameters affect
    efficiency but not correctness.  They should be chosen empirically.

    If support for mixed-case annotation is desired (see appendix B),
    make sure that the code points corresponding to 0 through tmax-1 all
    have both uppercase and lowercase forms.

5. Parameter values for AMC-ACE-Z

    AMC-ACE-Z uses the following values for the Bootstring parameters:

        base         = 36
        tmin         = 1
        tmax         = 26
        skew         = 38
        damp         = 700
        initial_bias = 72
        initial_n    = U+00A1

    In AMC-ACE-Z, code points are Unicode code points [UNICODE], that
    is, integers in the range 0..10FFFF, but not D800..DFFF, which are
    reserved for use by UTF-16.  The basic code points, along with their
    values, are:

        U+002D (-)   = delimiter
        41..5A (A-Z) = 0 to 25, respectively
        61..7A (a-z) = 0 to 25, respectively
        30..39 (0-9) = 26 to 35, respectively

    Using hyphen-minus as the delimiter implies that the ACE can end
    with a hyphen-minus only if the Unicode string consists entirely
    of basic code points, but IDNA forbids such strings from being
    ACE-encoded.  And since IDNA prepends a prefix that does not begin
    with a hyphen-minus, AMC-ACE-Z conforms to the RFC 952 requirement
    that hostname labels neither begin nor end with a hyphen-minus
    [RFC952].

    A decoder must recognize the letters in both uppercase and lowercase
    forms (including mixtures of both forms).  An encoder should output
    only uppercase forms or only lowercase forms, unless it uses
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    mixed-case annotation (see appendix B).

    Presumably most users will not manually copy ACEs by writing or
    typing them (as opposed to letting computers do it via cut & paste),
    but those that do will need to be alert to the potential visual
    ambiguity between the following sets of characters:

        G 6
        I l 1
        O 0
        S 5
        U V
        Z 2

    Such ambiguities are usually resolved by context, but in an ACE
    there is no context apparent to humans.

6. Bootstring algorithms

6.1 Bias adaptation function

    function adapt(delta,numpoints,firsttime):
      let delta = delta div (firsttime ? damp : 2)
      let delta = delta + (delta div numpoints)
      let k = 0
      while delta > ((base - tmin) * tmax) div 2
      do let delta = delta div (base - tmin) and let k = k + base
      return k + (((base - tmin + 1) * delta) div (delta + skew))

6.2 Decoding procedure

    let n = initial_n
    let i = 0
    let bias = initial_bias
    let output = an empty string indexed from 0
    search the input for the last delimiter (do not consume the input)
    if one is found that is not at the very beginning then consume all
      preceeding code points, copy them to output, consume the delimiter
    while the input is not exhausted do begin
      let oldi = i
      let w = 1
      for k = base to infinity in steps of base do begin
        consume a code point, fail on end-of-input or invalid code point
        let digit = the code point's value
        let i = i + digit * w, fail on overflow
        let t = k <= bias ? tmin : k - bias > tmax ? tmax : k - bias
        if digit < t then break
        let w = w * (base - t), fail on overflow
      end
      let bias = adapt(i - oldi, length(output) + 1, oldi == 0)
      let n = n + i div (length(output) + 1), fail on overflow



      let i = i mod (length(output) + 1)
      if n is a basic code point then fail  # see Note1 below
      insert n into output at position i
      increment i
    end

    Note1:  The check for whether n is a basic code point can be omitted
    if initial_n exceeds all basic code points (which is true for
    AMC-ACE-Z), because n only increases from initial_n.

    Because the decoder state can only advance monotonically, and there
    is only one representation of any delta, there is therefore only
    one encoded string that can represent a given sequence of integers.
    The only error conditions are invalid code points, unexpected
    end-of-input, overflow (attempts to compute values that exceed the
    maximum value of an integer variable), and basic code points encoded
    using deltas instead of appearing literally.  If the decoder fails
    on these errors as shown above, then it cannot produce the same
    output for two distinct inputs, and hence it need not re-encode its
    output to verify that it matches the input.

    The assignment of t, where t is clamped to the range tmin through
    tmax, does not handle the case where bias < k < bias + tmin, but
    that is impossible because of the way bias is computed and because
    of the constraints on the parameters.

    If the programming language does not provide overflow detection,
    the following technique can be used.  Suppose A, B, and C are
    representable nonnegative integers and C is nonzero.  Then A + B
    overflows if and only if B > maxint - A, and A + (B * C) overflows
    if and only if B > (maxint - A) div C.  See appendix C "Sample
    implementation" for demonstrations of this technique in AMC-ACE-Z.

6.3 Encoding procedure

    let n = initial_n
    let delta = 0
    let bias = initial_bias
    let h = b = the number of basic code points in the input
    copy them to the output in order, followed by a delimiter if b > 0
    if the input contains a non-basic code point < n then fail
    while h < length(input) do begin
      let m = the minimum non-basic code point >= n in the input # Note2
      let delta = delta + (m - n) * (h + 1), fail on overflow
      let n = m
      for each integer m in the input (in order) do begin
        if m is a basic code point  # see Note2 below
        then increment delta, fail on overflow, and continue
        if m < n then increment delta, fail on overflow
        if m == n then begin
          let q = delta



          for k = base to infinity in steps of base do begin
            let t = k <= bias ? tmin : k - bias > tmax ? tmax : k - bias
            if q < t then break
            output the code point for digit t + ((q - t) mod (base - t))
            let q = (q - t) div (base - t)
          end
          output the code point for digit q
          let bias = adapt(delta, h + 1, h == b)
          let delta = 0
          increment h
        end
      end
      increment delta and n
    end

    Note2:  There are two places in the main loop where the encoder
    checks whether a code point is basic.  If initial_n exceeds all
    basic code points (which is true for AMC-ACE-Z) then m and n can
    never be basic code points, and the logic can be simplified.

    The checks for overflow are necessary to avoid producing invalid
    output when the input contains very large values or is very long.
    Wider integer variables can handle more extreme inputs.  For
    AMC-ACE-Z, 26-bit unsigned integers are sufficient, because in
    IDNA code points are limited 0..10FFFF and ACEs are limited to 59
    characters (excluding the prefix).

    The increment of delta at the bottom of the outer loop cannot
    overflow because delta < length(input) before the increment, and
    length(input) is already assumed to be representable.  The increment
    of n could overflow, but only if h == length(input), in which case
    the procedure is finished anyway.

7. AMC-ACE-Z example strings

    In the AMC-ACE-Z encodings below, the IDNA signature prefix is not
    shown.  AMC-ACE-Z is abbreviated AMC-Z.  Backslashes show where line
    breaks have been inserted in strings too long for one line.

    The first several examples are all translations of the sentence "Why
    can't they just speak in <language>?" (courtesy of Michael Kaplan's
    "provincial" page [PROVINCIAL]).  Word breaks and punctuation have
    been removed, as is often done in domain names.

    (A) Arabic (Egyptian):
        u+0644 u+064A u+0647 u+0645 u+0627 u+0628 u+062A u+0643 u+0644
        u+0645 u+0648 u+0634 u+0639 u+0631 u+0628 u+064A u+061F
        AMC-Z:  gfbpdaj6bu4bxfgehfvwxn

    (B) Chinese (simplified):
        u+4ED6 u+4EEC u+4E3A u+4EC0 u+4E48 u+4E0D u+8BF4 u+4E2D u+6587



        AMC-Z:  kgqwcrb4cv8a8dqg056pqjye

    (C) Czech: Pro<ccaron>prost<ecaron>nemluv<iacute><ccaron>esky
        U+0050 u+0072 u+006F u+010D u+0070 u+0072 u+006F u+0073 u+0074
        u+011B u+006E u+0065 u+006D u+006C u+0075 u+0076 u+00ED u+010D
        u+0065 u+0073 u+006B u+0079
        AMC-Z:  Proprostnemluvesky-xgb24dma41a

    (D) Hebrew:
        u+05DC u+05DE u+05D4 u+05D4 u+05DD u+05E4 u+05E9 u+05D5 u+05D8
        u+05DC u+05D0 u+05DE u+05D3 u+05D1 u+05E8 u+05D9 u+05DD u+05E2
        u+05D1 u+05E8 u+05D9 u+05EA
        AMC-Z:  6cbcagdahymbxekheh6e0a7fei0b

    (E) Hindi (Devanagari):
        u+092F u+0939 u+0932 u+094B u+0917 u+0939 u+093F u+0928 u+094D
        u+0926 u+0940 u+0915 u+094D u+092F u+094B u+0902 u+0928 u+0939
        u+0940 u+0902 u+092C u+094B u+0932 u+0938 u+0915 u+0924 u+0947
        u+0939 u+0948 u+0902
        AMC-Z:  k0baa7eci9glrd9b2ae1bj0hfcgg6iyaf8o0a1dig0cd

    (F) Japanese (kanji and hiragana):
        u+306A u+305C u+307F u+3093 u+306A u+65E5 u+672C u+8A9E u+3092
        u+8A71 u+3057 u+3066 u+304F u+308C u+306A u+3044 u+306E u+304B
        AMC-Z:  p7jok5ay5dzabd5bym9f0cm5685rrjetr6pdxa

    (G) Korean (Hangul syllables):
        u+C138 u+ACC4 u+C758 u+BAA8 u+B4E0 u+C0AC u+B78C u+B4E4 u+C774
        u+D55C u+AD6D u+C5B4 u+B97C u+C774 u+D574 u+D55C u+B2E4 u+BA74
        u+C5BC u+B9C8 u+B098 u+C88B u+C744 u+AE4C
        AMC-Z:  c89aomsvi5e83db1d2a355cv1e0vak1dwrv93d5xbh15a0dt30a5jps\
                d879ccm6fea98c

    (H) Russian (Cyrillic):
        U+043F u+043E u+0447 u+0435 u+043C u+0443 u+0436 u+0435 u+043E
        u+043D u+0438 u+043D u+0435 u+0433 u+043E u+0432 u+043E u+0440
        u+044F u+0442 u+043F u+043E u+0440 u+0443 u+0441 u+0441 u+043A
        u+0438
        AMC-Z:  d0abfaaepdrnnbgefbaDotcwatmq2g4l

    (I) Spanish: Porqu<eacute>nopuedensimplementehablarenEspa<ntilde>ol
        U+0050 u+006F u+0072 u+0071 u+0075 u+00E9 u+006E u+006F u+0070
        u+0075 u+0065 u+0064 u+0065 u+006E u+0073 u+0069 u+006D u+0070
        u+006C u+0065 u+006D u+0065 u+006E u+0074 u+0065 u+0068 u+0061
        u+0062 u+006C u+0061 u+0072 u+0065 u+006E U+0045 u+0073 u+0070
        u+0061 u+00F1 u+006F u+006C
        AMC-Z:  PorqunopuedensimplementehablarenEspaol-nkc56a

    (J) Taiwanese:
        u+4ED6 u+5011 u+7232 u+4EC0 u+9EBD u+4E0D u+8AAA u+4E2D u+6587
        AMC-Z:  kgqwctvzc91f659drss3x8bo0yb



    (K) Vietnamese:
        T<adotbelow>isaoh<odotbelow>kh<ocirc>ngth<ecirchookabove>ch\
        <ihookabove>n<oacute>iti<ecircacute>ngVi<ecircdotbelow>t
        U+0054 u+1EA1 u+0069 u+0073 u+0061 u+006F u+0068 u+1ECD u+006B
        u+0068 u+00F4 u+006E u+0067 u+0074 u+0068 u+1EC3 u+0063 u+0068
        u+1EC9 u+006E u+00F3 u+0069 u+0074 u+0069 u+1EBF u+006E u+0067
        U+0056 u+0069 u+1EC7 u+0074
        AMC-Z:  TisaohkhngthchnitingVit-xvbr8268qyxafd2f1b9g

    The next several examples are all names of Japanese music artists,
    song titles, and TV programs, just because the author happens to
    have them handy (but Japanese is useful for providing examples
    of single-row text, two-row text, ideographic text, and various
    mixtures thereof).

    (L) 3<nen>B<gumi><kinpachi><sensei>
        u+0033 u+5E74 U+0042 u+7D44 u+91D1 u+516B u+5148 u+751F
        AMC-Z:  3B-2t4c5e180e575a65lsy2b

    (M) <amuro><namie>-with-SUPER-MONKEYS
        u+5B89 u+5BA4 u+5948 u+7F8E u+6075 u+002D u+0077 u+0069 u+0074
        u+0068 u+002D U+0053 U+0055 U+0050 U+0045 U+0052 u+002D U+004D
        U+004F U+004E U+004B U+0045 U+0059 U+0053
        AMC-Z:  -with-SUPER-MONKEYS-us48ag80a8qai00g7n9n

    (N) Hello-Another-Way-<sorezore><no><basho>
        U+0048 u+0065 u+006C u+006C u+006F u+002D U+0041 u+006E u+006F
        u+0074 u+0068 u+0065 u+0072 u+002D U+0057 u+0061 u+0079 u+002D
        u+305D u+308C u+305E u+308C u+306E u+5834 u+6240
        AMC-Z:  Hello-Another-Way--it3qua05auwb3674vfr0b

    (O) <hitotsu><yane><no><shita>2
        u+3072 u+3068 u+3064 u+5C4B u+6839 u+306E u+4E0B u+0032
        AMC-Z:  2-y7tlzr9756bt3uc0v

    (P) Maji<de>Koi<suru>5<byou><mae>
        U+004D u+0061 u+006A u+0069 u+3067 U+004B u+006F u+0069 u+3059
        u+308B u+0035 u+79D2 u+524D
        AMC-Z:  MajiKoi5-q03gue6qz075azm5e

    (Q) <pafii>de<runba>
        u+30D1 u+30D5 u+30A3 u+30FC u+0064 u+0065 u+30EB u+30F3 u+30D0
        AMC-Z:  de-pd4avhby1noc0d

    (R) <sono><supiido><de>
        u+305D u+306E u+30B9 u+30D4 u+30FC u+30C9 u+3067
        AMC-Z:  f8juau41awczczp

8. Security considerations

    Users expect each domain name in DNS to be controlled by a single



    authority.  If a Unicode string intended for use as a domain label
    could map to multiple ACE labels, then an internationalized domain
    name could map to multiple ACE domain names, each controlled by
    a different authority, some of which could be spoofs that hijack
    service requests intended for another.  Therefore AMC-ACE-Z is
    designed so that each Unicode string has a unique encoding.

    However, there can still be multiple Unicode representations of the
    "same" text, for various definitions of "same".  This problem is
    addressed to some extent by the Unicode standard under the topic of
    canonicalization, and this work is leveraged for domain names by
    "nameprep" [NAMEPREP03].
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    mixed case directly.  Each non-basic code point is represented by
    a delta, which is represented by a sequence of basic code points,
    the last of which provides the annotation.  If it is uppercase,
    it is a suggestion to map the non-basic code point to uppercase
    (if possible); if it is lowercase, it is a suggestion to map the
    non-basic code point to lowercase (if possible).

    AMC-ACE-Z encoders and decoders are not required to support these
    annotations, and higher layers need not use them.

C. Sample implementation

/******************************************/
/* amc-ace-z.c 0.2.1 (2001-Jul-11-Wed)    */
/* Adam M. Costello <amc@cs.berkeley.edu> */
/******************************************/

/* This is ANSI C code (C89) implementing AMC-ACE-Z version 0.2.x. */

/************************************************************/
/* Public interface (would normally go in its own .h file): */

#include <limits.h>

enum amc_ace_status {
  amc_ace_success,
  amc_ace_bad_input,   /* Input is invalid.                         */
  amc_ace_big_output,  /* Output would exceed the space provided.   */
  amc_ace_overflow     /* Input requires wider integers to process. */
};

#if UINT_MAX >= (1 << 26) - 1
typedef unsigned int amc_ace_z_uint;
#else
typedef unsigned long amc_ace_z_uint;
#endif

enum amc_ace_status amc_ace_z_encode(
  amc_ace_z_uint input_length,
  const amc_ace_z_uint input[],
  const unsigned char uppercase_flags[],
  amc_ace_z_uint *output_size,
  char output[] );

    /* amc_ace_z_encode() converts Unicode to AMC-ACE-Z (without      */
    /* any signature).  The input must be represented as an array     */
    /* of Unicode code points (not code units; surrogate pairs        */
    /* are not allowed), and the output will be represented as        */
    /* null-terminated ASCII.  The input_length is the number of      */



    /* code points in the input.  The output_size is an in/out        */
    /* argument: the caller must pass in the maximum number of        */
    /* characters that may be output (including the terminating       */
    /* null), and on successful return it will contain the number of  */
    /* characters actually output (including the terminating null,    */
    /* so it will be one more than strlen() would return, which is    */
    /* why it is called output_size rather than output_length).  The  */
    /* uppercase_flags array must hold input_length boolean values,   */
    /* where nonzero means the corresponding Unicode character should */
    /* be forced to uppercase after being decoded, and zero means it  */
    /* is caseless or should be forced to lowercase.  Alternatively,  */
    /* uppercase_flags may be a null pointer, which is equivalent     */
    /* to all zeros.  The letters a-z and A-Z are always encoded      */
    /* literally, regardless of the corresponding flags.  The return  */
    /* value may be any of the amc_ace_status values defined above;   */
    /* if not amc_ace_success, then output_size and output may        */
    /* contain garbage.                                               */

enum amc_ace_status amc_ace_z_decode(
  const char input[],
  amc_ace_z_uint *output_length,
  amc_ace_z_uint output[],
  unsigned char uppercase_flags[] );

    /* amc_ace_z_decode() converts AMC-ACE-Z (without any signature)  */
    /* to Unicode.  The input must be represented as null-terminated  */
    /* ASCII, and the output will be represented as an array of       */
    /* Unicode code points.  The output_length is an in/out argument: */
    /* the caller must pass in the maximum number of code points      */
    /* that may be output, and on successful return it will contain   */
    /* the actual number of code points output.  The uppercase_flags  */
    /* array must have room for at least output_length values, or it  */
    /* may be a null pointer if the case information is not needed.   */
    /* A nonzero flag indicates that the corresponding Unicode        */
    /* character should be forced to uppercase by the caller, while   */
    /* zero means it is caseless or should be forced to lowercase.    */
    /* The letters a-z and A-Z are output already in the proper case, */
    /* but their flags will be set appropriately so that applying the */
    /* flags would be harmless.  The return value may be any of the   */
    /* amc_ace_status values defined above; if not amc_ace_success,   */
    /* then output_length, output, and uppercase_flags may contain    */
    /* garbage.  On success, the decoder will never need to write     */
    /* an output_length greater than the length of the input (not     */
    /* counting the null terminator), because of how the encoding is  */
    /* defined.                                                       */

/**********************************************************/
/* Implementation (would normally go in its own .c file): */

#include <string.h>



/*** Bootstring parameters for AMC-ACE-Z ***/

enum { base = 36, tmin = 1, tmax = 26, skew = 38, damp = 700,
       initial_bias = 72, initial_n = 0xA1, delimiter = 0x2D };

/* encode_digit(d) returns the basic code point whose value  */
/* (when used for representing integers) is d, which must be */
/* in the range 0 to base-1.  The lowercase form is used.    */

static char encode_digit(amc_ace_z_uint d)
{
  return d + 22 + 75 * (d < 26);
  /*  0..25 map to ASCII a..z */
  /* 26..35 map to ASCII 0..9 */
}

/* decode_digit(cp) returns the numeric value of a basic code point */
/* (for use in representing integers) in the range 0 to base-1, or  */
/* base if cp is the delimiter, or base+1 otherwise.                */

static amc_ace_z_uint decode_digit(amc_ace_z_uint cp)
{
  return  cp - 48 < 10 ? cp - 22 :  cp - 65 < 26 ? cp - 65 :
          cp - 97 < 26 ? cp - 97 :  cp == delimiter ? base :  base + 1;
}

/*** Useful constants ***/

/* maxint is the maximum value of an amc_ace_z_uint variable: */
static const amc_ace_z_uint maxint = -1;

/* lobase and cutoff are used in the calculation of bias: */
enum { lobase = base - tmin, cutoff = lobase * tmax / 2 };

/*** Main encode function ***/

enum amc_ace_status amc_ace_z_encode(
  amc_ace_z_uint input_length,
  const amc_ace_z_uint input[],
  const unsigned char uppercase_flags[],
  amc_ace_z_uint *output_size,
  char output[] )
{
  amc_ace_z_uint n, delta, h, b, out, max_out, bias, j, m, q, k, t;
  char shift;

  /* Initialize the state: */

  n = initial_n;
  delta = out = 0;
  max_out = *output_size;
  bias = initial_bias;



  /* Handle the basic code points, and make sure     */
  /* that all code points < n are basic code points: */

  for (j = 0;  j < input_length;  ++j) {
    if (decode_digit(input[j]) <= base) {
      if (max_out - out < 2) return amc_ace_big_output;
      output[out++] = input[j];
    }
    else if (input[j] < n) return amc_ace_bad_input;
  }

  h = b = out;

  /* h is the number of code points that have been handled, b is the  */
  /* number of basic code points, and out is the number of characters */
  /* that have been output.                                           */

  if (b > 0) output[out++] = delimiter;

  /* Main encoding loop: */

  while (h < input_length) {
    /* All non-basic code points < n have been     */
    /* handled already.  Find the next larger one: */

    for (m = maxint, j = 0;  j < input_length;  ++j) {
      /* not needed for AMC-ACE-Z: */
      /* if (decode_digit(input[j]) <= base) continue; */
      if (input[j] >= n && input[j] < m) m = input[j];
    }

    /* Increase delta enough to advance the decoder's    */
    /* <n,i> state to <m,0>, but guard against overflow: */

    if (m - n > (maxint - delta) / (h + 1)) return amc_ace_overflow;
    delta += (m - n) * (h + 1);
    n = m;

    for (j = 0;  j < input_length;  ++j) {
      /* Not needed for AMC-ACE-Z: */
      #if 0
      if (decode_digit(input[j]) <= base) {
        if (++delta == 0) return amc_ace_overflow;
        continue;
      }
      #endif

      if (input[j] < n && ++delta == 0) return amc_ace_overflow;

      if (input[j] == n) {
        /* Represent delta as a generalized variable-length integer: */



        for (q = delta, k = base;  ;  k += base) {
          if (out >= max_out) return amc_ace_big_output;
          t = k <= bias ? tmin : k - bias >= tmax ? tmax : k - bias;
          if (q < t) break;
          output[out++] = encode_digit(t + (q - t) % (base - t));
          q = (q - t) / (base - t);
        }

        shift = uppercase_flags && uppercase_flags[j] ? 32 : 0;
        /* shift controls the case of the terminal character: */
        output[out++] = encode_digit(q) - shift;

        /* Adapt the bias: */
        delta = h == b ? delta / damp : delta >> 1;
        delta += delta / (h + 1);
        for (bias = 0;  delta > cutoff;  bias += base) delta /= lobase;
        bias += (lobase + 1) * delta / (delta + skew);

        delta = 0;
        ++h;
      }
    }

    ++delta, ++n;
  }

  /* Append the null terminator: */
  if (out >= max_out) return amc_ace_big_output;
  output[out++] = 0;

  *output_size = out;
  return amc_ace_success;
}

/*** Main decode function ***/

enum amc_ace_status amc_ace_z_decode(
  const char input[],
  amc_ace_z_uint *output_length,
  amc_ace_z_uint output[],
  unsigned char uppercase_flags[] )
{
  amc_ace_z_uint n, out, i, oldi, max_out, bias, w, k, delta, digit, t;
  const char *in, *p;

  /* Initialize the state: */

  n = initial_n;
  out = i = 0;
  max_out = *output_length;
  bias = initial_bias;



  /* Handle the basic code points:  Let p point to the last */
  /* delimiter, or to the start if there is none, then copy */
  /* everything before p to the output.                     */

  for (p = in = input;  *in;  ++in) if (*in == delimiter) p = in;
  if (p - input > max_out) return amc_ace_big_output;

  for (in = input;  in < p;  ++in) {
    if (uppercase_flags) uppercase_flags[out] = *in >= 65 && *in <= 90;
    output[out++] = *in;
  }

  /* Main decoding loop:  Start just after p if any basic code */
  /* points were copied; start at the beginning otherwise.     */

  for (in = p > input ? p + 1 : input;  *in != 0;  ++out) {

    /* in points to the next character to be consumed, and   */
    /* out is the number of code points in the output array. */

    /* Decode a generalized variable-length integer into delta,  */
    /* which gets added to i.  The overflow checking is easier   */
    /* if we increase i as we go, then subtract off its starting */
    /* value at the end to obtain delta.                         */

    for (oldi = i, w = 1, k = base;  ;  k += base) {
      digit = decode_digit(*in++);
      if (digit >= base) return amc_ace_bad_input;
      if (digit > (maxint - i) / w) return amc_ace_overflow;
      i += digit * w;
      t = k <= bias ? tmin : k - bias >= tmax ? tmax : k - bias;
      if (digit < t) break;
      if (w > maxint / (base - t)) return amc_ace_overflow;
      w *= (base - t);
    }

    /* Adapt the bias: */
    delta = oldi == 0 ? i / damp : (i - oldi) >> 1;
    delta += delta / (out + 1);
    for (bias = 0;  delta > cutoff;  bias += base) delta /= lobase;
    bias += (lobase + 1) * delta / (delta + skew);

    /* i was supposed to wrap around from out+1 to 0,   */
    /* incrementing n each time, so we'll fix that now: */

    if (i / (out + 1) > maxint - n) return amc_ace_overflow;
    n += i / (out + 1);
    i %= (out + 1);

    /* Insert n at position i of the output: */



    /* not needed for AMC-ACE-Z: */
    /* if (decode_digit(n) <= base) return amc_ace_invalid_input; */
    if (out >= max_out) return amc_ace_big_output;

    if (uppercase_flags) {
      memmove(uppercase_flags + i + 1, uppercase_flags + i, out - i);
      /* Case of last character determines uppercase flag: */
      uppercase_flags[i] = in[-1] >= 65 && in[-1] <= 90;
    }

    memmove(output + i + 1, output + i, (out - i) * sizeof *output);
    output[i++] = n;
  }

  *output_length = out;
  return amc_ace_success;
}

/******************************************************************/
/* Wrapper for testing (would normally go in a separate .c file): */

#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/* For testing, we'll just set some compile-time limits rather than */
/* use malloc(), and set a compile-time option rather than using a  */
/* command-line option.                                             */

enum {
  unicode_max_length = 256,
  ace_max_size = 256
};

static void usage(char **argv)
{
  fprintf(stderr,
    "%s -e reads code points and writes an AMC-ACE-Z string.\n"
    "%s -d reads an AMC-ACE-Z string and writes code points.\n"
    "Input and output are plain text in the native character set.\n"
    "Code points are in the form u+hex separated by whitespace.\n"
    "An AMC-ACE-Z string is a newline-terminated sequence of LDH\n"
    "characters (without any signature).\n"
    "The case of the u in u+hex is the force-to-uppercase flag.\n"
    , argv[0], argv[0]);
  exit(EXIT_FAILURE);
}



static void fail(const char *msg)
{
  fputs(msg,stderr);
  exit(EXIT_FAILURE);
}

static const char too_big[] =
  "input or output is too large, recompile with larger limits\n";
static const char invalid_input[] = "invalid input\n";
static const char overflow[] = "arithmetic overflow\n";
static const char io_error[] = "I/O error\n";

/* The following string is used to convert LDH      */
/* characters between ASCII and the native charset: */

static const char ldh_ascii[] =
  "................"
  "................"
  ".............-.."
  "0123456789......"
  ".ABCDEFGHIJKLMNO"
  "PQRSTUVWXYZ....."
  ".abcdefghijklmno"
  "pqrstuvwxyz";

int main(int argc, char **argv)
{
  enum amc_ace_status status;
  int r;
  char *p;

  if (argc != 2) usage(argv);
  if (argv[1][0] != '-') usage(argv);
  if (argv[1][2] != 0) usage(argv);

  if (argv[1][1] == 'e') {
    amc_ace_z_uint input[unicode_max_length];
    unsigned long codept;
    unsigned char uppercase_flags[unicode_max_length];
    char output[ace_max_size], uplus[3];
    unsigned int input_length, output_size, i;

    /* Read the input code points: */

    input_length = 0;

    for (;;) {
      r = scanf("%2s%lx", uplus, &codept);
      if (ferror(stdin)) fail(io_error);
      if (r == EOF || r == 0) break;



      if (r != 2 || uplus[1] != '+' || codept > (amc_ace_z_uint)-1) {
        fail(invalid_input);
      }

      if (input_length == unicode_max_length) fail(too_big);

      if (uplus[0] == 'u') uppercase_flags[input_length] = 0;
      else if (uplus[0] == 'U') uppercase_flags[input_length] = 1;
      else fail(invalid_input);

      input[input_length++] = codept;
    }

    /* Encode: */

    output_size = ace_max_size;
    status = amc_ace_z_encode(input_length, input, uppercase_flags,
                              &output_size, output);
    if (status == amc_ace_bad_input) fail(invalid_input);
    if (status == amc_ace_big_output) fail(too_big);
    if (status == amc_ace_overflow) fail(overflow);
    assert(status == amc_ace_success);

    /* Convert to native charset and output: */

    for (p = output;  *p != 0;  ++p) {
      i = *p;
      assert(i <= 122 && ldh_ascii[i] != '.');
      *p = ldh_ascii[i];
    }

    r = puts(output);
    if (r == EOF) fail(io_error);
    return EXIT_SUCCESS;
  }

  if (argv[1][1] == 'd') {
    char input[ace_max_size], *pp;
    amc_ace_z_uint output[unicode_max_length];
    unsigned char uppercase_flags[unicode_max_length];
    unsigned int input_length, output_length, i;

    /* Read the AMC-ACE-Z input string and convert to ASCII: */

    fgets(input, ace_max_size, stdin);
    if (ferror(stdin)) fail(io_error);
    if (feof(stdin)) fail(invalid_input);
    input_length = strlen(input);
    if (input[input_length - 1] != '\n') fail(too_big);
    input[--input_length] = 0;



    for (p = input;  *p != 0;  ++p) {
      pp = strchr(ldh_ascii, *p);
      if (pp == 0) fail(invalid_input);
      *p = pp - ldh_ascii;
    }

    /* Decode: */

    output_length = unicode_max_length;
    status = amc_ace_z_decode(input, &output_length,
                              output, uppercase_flags);
    if (status == amc_ace_bad_input) fail(invalid_input);
    if (status == amc_ace_big_output) fail(too_big);
    if (status == amc_ace_overflow) fail(overflow);
    assert(status == amc_ace_success);

    /* Output the result: */

    for (i = 0;  i < output_length;  ++i) {
      r = printf("%s+%04lX\n",
                 uppercase_flags[i] ? "U" : "u",
                 (unsigned long) output[i] );
      if (r < 0) fail(io_error);
    }

    return EXIT_SUCCESS;
  }

  usage(argv);
  return EXIT_SUCCESS;  /* not reached, but quiets compiler warning */
}
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