
INTERNET-DRAFT Adam M. Costello
draft-costello-idn-brace-00.txt 2000-Sep-09
Expires 2001-Mar-09

 Bi-mode Row-based ASCII-Compatible Encoding (BRACE), version 0.1.0

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note
 that other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet- Drafts as
 reference material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 Distribution of this document is unlimited. Please send comments to
 the author at amc@cs.berkeley.edu, or to the idn working group at
 idn@ops.ietf.org.

Abstract

 BRACE is a reversible function from Unicode (UTF-16) text strings to
 host name labels. Host name labels are defined by RFCs 952 and 1123
 as case-insensitive strings of ASCII letters, digits, and hyphens,
 neither beginning nor ending with a hyphen. RFC 1034 restricts the
 length of labels to 63 characters.

Contents

 Primary goals
 Secondary goals
 Overview
 Encoding procedure
 Base-32 characters
 Encoding styles
 Decoding procedure
 Comparison with RACE
 Example strings
 References
 Example implementation

https://datatracker.ietf.org/doc/html/draft-costello-idn-brace-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc1034

Primary goals

 Efficient encoding: Small ratio of encoded size to original size,
 for all UTF-16 strings.

 Uniqueness: Every UTF-16 string maps to at most one label.

 Completeness: Every UTF-16 string maps to a label, provided it is
 not too long. Restrictions on which UTF-16 strings are allowed is
 purely a matter of policy.

 Degeneration: All valid host name labels that do not end with the
 BRACE signature "-8Q9" (or "-8q9") are the BRACE encodings of their
 own UTF-16 representations.

Secondary goals

 Conceptual simplicity: This has been somewhat compromised for the
 sake of efficient encoding.

 Readability: ASCII letters and digits in the original string are
 represented literally in the encoded string. This comes for free
 because it is the most efficient encoding anyway.

Overview

 The encoded string alternates between two modes. ASCII letters,
 digits, and hyphens in the Unicode string (which will henceforth be
 called LDH characters) are encoded literally, except that hyphens
 are doubled. Non-LDH codes in the Unicode string are encoded
 using base-32 mode, in which each character of the encoded string
 represents five bits. Single hyphens in the encoded string indicate
 mode changes.

 The base-32 mode uses exactly one of four styles. Half-row style is
 used for Unicode strings in which all the non-LDH codes belong to
 a single half-row (have the same upper 9 bits). Full-row style is
 used for Unicode strings in which all the non-LDH codes belong to a
 single row (have the same upper 8 bits) but not all the same half.
 Mixed style is used when when many of the non-LDH characters (but
 not all of them) belong to the same row. No-row style is used for
 all other strings.

Encoding procedure

 If the UTF-16 string contains more than 63 16-bit codes, it's too
 long, so abort.

 If the upper bytes are all zero, and the string formed by the lower
 bytes is a valid host name label and does not end with "-8Q9" or
 "-8q9", output the low bytes and stop.

 The encoder needs a bit queue capable of holding up to 22 bits, a
 buffer of LDH characters capable of holding up to 124 characters,
 and a 4-value encoding style indicator. The LDH buffer is initially
 empty. The initial contents of the bit queue, and the value of the
 style indicator, depend on which encoding style is chosen (which
 is explained below). Bit strings are enqueued and dequeued in
 big-endian order (most significant bit first).

 After choosing the style and initializing the bit queue, perform the
 following actions:

 while the bit queue contains at least 5 bits
 dequeue 5 bits
 output the corresponding base-32 character
 endwhile

 for each 16-bit code of the UTF-16 string (in order) do
 if the code is 0x002D ("-", ASCII hyphen) then
 append two hyphens to the ASCII buffer
 else if the code is an LDH character then
 if the LDH buffer contains no non-hyphens then
 append one hyphen to the LDH buffer
 endif

 append the code to the LDH buffer
 else (the code is not an LDH character)
 if the LDH buffer contains any non-hyphens then
 append one hyphen to the LDH buffer
 endif

 if the bit queue is empty then
 output the LDH buffer and reset it to empty
 endif

 enqueue the bit string corresponding to the code
 (the bit string depends on the encoding style)
 dequeue 5 bits
 output the corresponding base-32 character
 output the LDH buffer and reset it to empty

 while the bit queue contains at least 5 bits
 dequeue 5 bits
 output the corresponding base-32 character
 endwhile
 endif
 endfor

 if the bit queue is not empty
 enqueue zero bits until it contains 5 bits
 dequeue 5 bits

 output the corresponding base-32 character
 endif

 output the LDH buffer
 output the LDH characters "-8Q9"

 If the total number of characters output was greater than 63, the
 string is too long for a host name label.

 Notice that a group of LDH characters appears in the output as soon
 as all the bits of the preceeding non-LDH codes have appeared. The
 base-32 character that appears just before the switch to literal
 mode may contain at most four bits of information from the first
 non-LDH character that comes after the LDH group.

Base-32 characters

 "2" = 0 = 00000
 "3" = 1 = 00001
 "4" = 2 = 00010
 "5" = 3 = 00011
 "6" = 4 = 00100
 "7" = 5 = 00101
 "8" = 6 = 00110
 "9" = 7 = 00111
 "A" = 8 = 01000
 "B" = 9 = 01001
 "C" = 10 = 01010
 "D" = 11 = 01011
 "E" = 12 = 01100
 "F" = 13 = 01101
 "G" = 14 = 01110
 "H" = 15 = 01111
 "I" = 16 = 10000
 "J" = 17 = 10001
 "K" = 18 = 10010
 "M" = 19 = 10011
 "N" = 20 = 10100
 "P" = 21 = 10101
 "Q" = 22 = 10110
 "R" = 23 = 10111
 "S" = 24 = 11000
 "T" = 25 = 11001
 "U" = 26 = 11010
 "V" = 27 = 11011
 "W" = 28 = 11100
 "X" = 29 = 11101
 "Y" = 30 = 11110
 "Z" = 31 = 11111

 The digits "0" and "1" and the letters "O" and "L" ("l") are not

 used, to avoid transcription errors.

 The base-32 characters, like all characters in host name labels, are
 case-insensitive, so they must be recognized in both upper and lower
 case. However, since existing LDH labels are usually stored in
 lower case, it is recommended that the base-32 portions of encoded
 names be stored in upper case, to help humans easily pick out the
 literal portions.

Encoding styles

 The choice of encoding style depends only on the codes in the UTF-16
 string that are not LDH characters. It in no way depends on any LDH
 codes that may be present.

 Each code belongs to a particular half-row, which is given by its
 upper 9 bits. If all of the non-LDH codes belong to the same
 half-row, use half-row style: Initialize the bit queue by enqueuing
 two 0 bits followed by the designated half-row number (the 9-bit
 half-row number shared by all the codes). During the encoding
 procedure the bit string corresponding to each code is its lower 7
 bits.

 If not all the non-LDH codes belong to the same half-row, but they
 all belong to the same row (same upper 8 bits), use full-row style:
 Initialize the bit queue by enqueuing a 0 bit, then a 1 bit, then
 the designated row number (the 8-bit row number shared by all the
 codes). During the encoding procedure the bit string corresponding
 to each code is its lower 8 bits.

 If not all non-LDH codes belong to the same row, then consider
 using mixed style, which chooses a priviledged half-row. For each
 half-row used by the non-LDH codes, count the number of codes that
 belong to that half-row. Then, for each half-row, calculate M, the
 number of base-32 characters that would be required if that half row
 were chosen:

 N = total number of non-LDH codes
 H = number of non-LDH codes in the candidate half-row
 C = number of non-LDH codes in the complementary half-row (the
 one with the opposite lowest bit)
 M = (2 + 9 + 18*(N - H - C) + 8*H + 9*C + 4) / 5
 = 3 + (18*N - 10*H - 9*C) / 5

 (The division is integer division, which discards any remainder.)

 Choose the half-row with the smallest M, breaking ties in favor of
 lower-numbered half-rows. Compare this M with M', the number of
 base-32 characters that would be required if no-row style were used:

 M' = (2 + 16*N + 4) / 5 = (6 + 16*N) / 5

 If M' <= M, use no-row style: Initialize the bit queue by
 enqueueing two 1 bits. There is no designated row number. During
 the encoding procedure the bit string corresponding to each code is
 the full 16-bit code itself.

 If M < M', use mixed style: Initialize the bit queue by enqueueing
 a 1 bit, then a 0 bit, then the designated 9-bit half-row number
 (the one chosen above). During the encoding procedure the bit
 string corresponding to each code is:

 0 followed by the lower 7 bits if the code belongs to the chosen
 half-row;

 10 followed by the lower 7 bits if the code belongs to the
 complementary half-row;

 11 followed by the whole 16-bit code otherwise.

Decoding procedure

 The following description assumes that UTF-16 output is desired.

 If the input string does not end with "-8Q9" or "-8q9", output the
 input string (converted from ASCII to UTF-16) and stop.

 The decoder needs a bit queue capable of holding up to 22 bits. It
 is initially empty. It also needs a literal-mode flag, which is
 initially unset, and a 4-value style indicator.

 Perform the following actions:

 read the first character and enqueue its base-32 quintet
 dequeue two bits and use them to set the style indicator

 if the style uses a designated full/half row number then
 while the queue does not contain enough bits to represent it
 read the next character and enqueue its base-32
 endwhile

 dequeue enough bits to set the designated row (or half-row)
 endif

 for each remaining input character except the last four do
 if the character is an ASCII hyphen then
 if the next character is also an ASCII hyphen then
 skip it
 output an ASCII hyphen (converted to UTF-16)
 else
 toggle the literal-mode flag
 endif
 else if the literal-mode flag is set then
 output the character (converted to UTF-16)

 else (the literal-mode flag is clear)
 enqueue the character's base-32 quintet

 if the bit queue contains enough bits to represent a
 UTF-16 code (which depends on the style indicator)
 then
 dequeue just enough bits to represent one code
 output the code
 endif
 endif
 endfor

 At the end the bit queue may contain up to four 0 bits. If it
 contains anything else, the input was invalid.

Comparison with RACE

 BRACE is an extension of RACE. For Unicode strings that contain
 no LDH characters and use the full-row or no-row encoding styles,
 BRACE is virtually identical to RACE. For other strings, BRACE
 produces a smaller encoding than RACE. For example, the encoding
 is substantially more compact for Unicode strings containing a
 substantial number of LDH characters, or containing many Japanese
 kana with some kanji.

 Unlike RACE, any LDH characters present in the Unicode string are
 represented literally in the BRACE-encoded string. This may or may
 not be useful, but it happens to be the most compact way to encode
 LDH characters.

 Whereas RACE uses a signature prefix, BRACE uses a signature suffix.
 This makes it easy to guarantee that the encoded label never ends
 with a hyphen, even if the original UTF-16 string does. (Whether
 such a UTF-16 string should be allowed is a matter of policy, not
 technical capability).

 The main drawback of BRACE is its greater complexity.

Example strings

 All of these examples use Japanese text, merely because that is the
 only kind of non-English text that the author has lying around.

 Example of no-row style:

 An actual music group name coerced into the usual format for
 host name labels:

 AMURONAMIE-with-super-monkeys

 AMURONAMIE stands for five kanji whose Unicode values are (in
 order):

 U+5B89 U+5BA4 U+5948 U+7F8E U+6075

 The BRACE encoding is:

 UVJ7FUAQCAHY982XA---with--super--monkeys-8Q9

 (Note that the RACE encoding would have been 79 characters long,
 and hence unusable.)

 Example of mixed style:

 An actual song title coerced into the usual format for host name
 labels:

 hello-another-way-SOREZORENOBASHO

 SOREZORENOBASHO stands for five hiragana followed by two kanji,
 whose Unicode values are (in order):

 U+305D U+308C U+305E U+308C U+306E U+5834 U+6240

 The BRACE encoding is:

 JI7-hello--another--way---V3JHAEFVD2UFJ62-8Q9

 Example of full-row style:

 An actual song title, SONOSUPIIDODE, which stands for two
 hiragana followed by four katakana followed by one hiragana,
 whose Unicode values are:

 U+305D U+306E U+30B9 U+30D4 U+30FC U+30C9 U+3067

 The BRACE encoding is:

 BIDPRDMP9WT7MI-8Q9

 Example of half-row style:

 An actual song title:

 PAFIIdeRUNBA

 PAFII stands for four katakana whose Unicode values are:

 U+30D1 U+30D5 U+30A3 U+30FC

 RUNBA stands for three katakana whose Unicode values are:

 U+30EB U+30F3 U+30D0

 The BRACE encoding is:

 3IU8PAZT-de-PYGI-8Q9

 Example of an ASCII string that breaks all the rules of host name
 labels:

 -> $1.00 <-

 The BRACE encoding is:

 229--T2B4-1-W-00-I9I---8Q9

References

 See also RACE, SACE, and UTF-5, which are documented at:
http://www.i-d-n.net/

 A newer version of this specification may be available at:
http://www.cs.berkeley.edu/~amc/charset/brace

Example implementation

/* brace.c 0.1.1 (2000-Sep-09-Sat) */
/* Adam M. Costello <amc@cs.berkeley.edu> */

/* This is ANSI C code implementing BRACE version 0.1.*. */

/* Public interface (would normally go in its own .h file): */

enum {
 brace_encoder_in_max = 63,
 brace_encoder_out_max = 4 + (6 + 16 * brace_encoder_in_max) / 5 + 1,
 brace_decoder_in_max = 63 + 1,
 brace_decoder_out_max = brace_decoder_in_max - 1
};

 /* The above constants are the maximum array sizes */
 /* that the encoder/decoder will accept/produce */
 /* (including null terminators for ASCII strings). */

void brace_encode(
 unsigned int input_length,
 unsigned short *input,
 char output[brace_encoder_out_max]);

 /* brace_encode() converts UTF-16 input to null-terminated */
 /* BRACE-encoded ASCII output. The input_length must not */
 /* exceed brace_encoder_in_max, and the output array must */
 /* have at least the size indicated below. Under those */
 /* constraints, this function never fails. */

http://www.i-d-n.net/
http://www.cs.berkeley.edu/~amc/charset/brace

int brace_decode(
 char *input,
 unsigned int *output_length,
 unsigned short output[brace_decoder_out_max]);

 /* brace_decode() converts null-terminated BRACE-encoded ASCII */
 /* input to UTF-16 output. The input length (including the null */
 /* terminator) must not exceed brace_encoder_in_max, and output */
 /* array must have at least the size indicated below. Returns 1 */
 /* on success, 0 if the input was malformed. If 0 is returned */
 /* the output array may contain garbage, but *output_length will */
 /* not have been affected. */

/* Implementation (would normally go in its own .c file): */

#include <assert.h>

static const char base32[] = {
 50, 51, 52, 53, 54, 55, 56, 57, 65, 66, 67, 68, 69, 70, 71, 72,
 73, 74, 75, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90
};

/* We can't use string literals for ASCII characters because */
/* an ANSI C compiler does not necessarily use ASCII. */

enum encoding_style {
 half_row_style = 0,
 full_row_style = 1,
 mixed_style = 2,
 no_row_style = 3
};

/* is_ldh(code) returns 1 if the UTF-16 code represents an LDH */
/* character (ASCII letter, digit, or hyphen), 0 otherwise. */

static int is_ldh(unsigned short code)
{
 if (code == 45) return 1;
 if (code < 48) return 0;
 if (code <= 57) return 1;
 if (code < 65) return 0;
 if (code <= 90) return 1;
 if (code < 97) return 0;
 if (code <= 122) return 1;
 return 0;
}

void brace_encode(
 unsigned int input_length,
 unsigned short *input,

 char output[brace_encoder_out_max])
{
 unsigned long queue;
 enum encoding_style style;
 unsigned short half_rows[brace_encoder_in_max],
 half_row_counts[brace_encoder_in_max];
 unsigned int num_nonldh, num_half_rows, i, half_row, j, queue_length,
 best_half_row, next_literal_position, non_hyphen_flag,
 next_base32_position, code;

 assert(input_length <= brace_encoder_in_max);

 /* Count the non-LDH codes and half-rows: */

 num_nonldh = 0;
 num_half_rows = 0;

 for (i = 0; i < input_length; ++i) {
 if (is_ldh(input[i])) continue;
 ++num_nonldh;
 half_row = input[i] >> 7;

 for (j = 0; j < num_half_rows; ++j) {
 if (half_rows[j] == half_row) {
 ++half_row_counts[j];
 break;
 }
 }

 if (j == num_half_rows) {
 half_rows[num_half_rows] = half_row;
 half_row_counts[num_half_rows] = 1;
 ++num_half_rows;
 }
 }

 /* If the input is already a valid label and does not end */
 /* with the BRACE signature, output it and we're done: */

 if (num_nonldh == 0 && /* all codes are LDH and */
 input[0] != 45 && /* first not hyphen and */
 input[input_length - 1] != 45 && /* last not hyphen and */
 !(input[input_length - 1] == 57 && /* last four not -8Q9 */
 (input[input_length - 2] == 81 ||
 input[input_length - 2] == 113) && /* (or -8q9) */
 input[input_length - 3] == 56 &&
 input[input_length - 4] == 45)) {
 for (i = 0; i < input_length; ++i) output[i] = input[i];
 output[input_length] = 0; /* null terminator */
 return;
 }

 /* Choose an encoding style and initialize the bit queue: */

 if (num_half_rows == 1) {
 style = half_row_style;
 queue_length = 11;
 queue = half_rows[0];
 }
 else if (num_half_rows == 2 &&
 (half_rows[0] >> 1) == (half_rows[1] >> 1)) {
 style = full_row_style;
 queue_length = 10;
 queue = (1 << 8) | (half_rows[0] >> 1);
 }
 else {
 unsigned int M, H, C, Mprime, best_M = 230; /* M is always < 230 */

 /* Find the best half-row for mixed style: */

 best_half_row = 512; /* half_row is always < 512 */

 for (i = 0; i < num_half_rows; ++i) {
 half_row = half_rows[i];
 H = half_row_counts[i];
 C = 0;

 for (j = 0; j < num_half_rows; ++j) {
 if (j != i && (half_rows[j] >> 1) == (half_row >> 1)) {
 C = half_row_counts[j];
 break;
 }
 }

 M = 3 + (18 * num_nonldh - 10*H - 9*C) / 5;

 if (M < best_M || (M == best_M && half_row < best_half_row)) {
 best_M = M;
 best_half_row = half_row;
 }
 }

 /* Compare mixed style to no-row style: */

 Mprime = (6 + 16 * num_nonldh) / 5;

 if (Mprime <= best_M) {
 style = no_row_style;
 queue_length = 2;
 queue = 3;
 }
 else {
 style = mixed_style;

 queue_length = 11;
 queue = (1 << 10) | best_half_row;
 }
 }

 /* Flush the bit queue: */

 next_base32_position = 0;

 while (queue_length >= 5) {
 queue_length -= 5;
 output[next_base32_position++] =
 base32[(queue >> queue_length) & 0x1f];
 }

 /* To avoid unnecessary copies, we use the output */
 /* array itself for the LDH buffer. The following */
 /* equalities should hold whenever the buffer is empty: */

 next_literal_position = next_base32_position + (queue_length > 0);
 non_hyphen_flag = 0; /* set whenever buffer contains a non-hyphen */

 /* Main encoding loop: */

 for (i = 0; i < input_length; ++i) {
 code = input[i];

 if (code == 45) {
 /* Encode a hyphen as two hyphens into the buffer: */
 output[next_literal_position++] = 45;
 output[next_literal_position++] = 45;
 }
 else if (is_ldh(code)) {
 if (!non_hyphen_flag) {
 /* Indicate a change to literal mode: */
 output[next_literal_position++] = 45;
 non_hyphen_flag = 1;
 }

 /* Encode the LDH character literally: */
 output[next_literal_position++] = code;
 }
 else { /* non-LDH code */
 if (non_hyphen_flag) {
 /* Indicate a change to base-32 mode: */
 output[next_literal_position++] = 45;
 non_hyphen_flag = 0; /* we will empty the buffer */
 }

 /* If the bit queue is empty, flush the LDH buffer: */

 if (queue_length == 0) {

 next_base32_position = next_literal_position;
 }

 /* Enqueue the bit string corresponding to the code: */

 if (style == half_row_style) {
 queue = (queue << 7) | (code & 0x7f);
 queue_length += 7;
 }
 else if (style == full_row_style) {
 queue = (queue << 8) | (code & 0xff);
 queue_length += 8;
 }
 else if (style == no_row_style) {
 queue = (queue << 16) | code;
 queue_length += 16;
 }
 else /* style == mixed_style */ {
 if ((code >> 7) == best_half_row) {
 queue = (queue << 8) | (code & 0x7f);
 queue_length += 8;
 }
 else if ((code >> 8) == (best_half_row >> 1)) {
 queue = (queue << 9) | (1 << 8) | (code & 0x7f);
 queue_length += 9;
 }
 else {
 queue = (queue << 18) | (3ul << 16) | code;
 queue_length += 18;
 }
 }

 /* Output one base-32 character: */
 queue_length -= 5;
 output[next_base32_position] =
 base32[(queue >> queue_length) & 0x1f];

 if (next_base32_position == next_literal_position) {
 /* LDH buffer is already empty. */
 ++next_base32_position;
 }
 else {
 /* Flush the LDH buffer: */
 next_base32_position = next_literal_position;
 }

 /* next_literal_position is momentarily invalid, */
 /* but we know the LDH buffer is empty. */

 /* Flush the bit queue: */

 while (queue_length >= 5) {
 queue_length -= 5;
 output[next_base32_position++] =
 base32[(queue >> queue_length) & 0x1f];
 }

 /* Fix next_literal_position: */
 next_literal_position = next_base32_position + (queue_length > 0);
 }

 assert(next_literal_position < brace_encoder_out_max);
 }

 /* Flush the bit queue: */

 if (queue_length > 0) {
 assert(queue_length < 5);
 output[next_base32_position] =
 base32[(queue << (5 - queue_length)) & 0x1f];
 }

 /* Flushing the LDH buffer at this point is a no-op. */

 /* Output "-8Q9" and the null terminator: */

 assert(next_literal_position + 4 < brace_encoder_out_max);
 output[next_literal_position++] = 45;
 output[next_literal_position++] = 56;
 output[next_literal_position++] = 81;
 output[next_literal_position++] = 57;
 output[next_literal_position] = 0;
}

/* base32_decode() converts a base-32 character to a value from */
/* 0 to 31. If the character is valid, its value is written to */
/* *quintet and 1 is returned. Otherwise, *value is not changed */
/* and 0 is returned. */

static int base32_decode(char c, unsigned int *quintet)
{
 if (c < 50) return 0;
 if (c <= 57) { *quintet = c - 50; return 1; }
 if (c < 65) return 0;
 if (c >= 97) c -= 32;
 if (c <= 75) { *quintet = c - 57; return 1; }
 if (c == 76) return 0;
 if (c <= 78) { *quintet = c - 58; return 1; }
 if (c == 79) return 0;
 if (c <= 90) { *quintet = c - 59; return 1; }
 return 0;
}

int brace_decode(
 char *input,
 unsigned int *output_length,
 unsigned short output[brace_decoder_out_max])
{
 unsigned long queue;
 unsigned int i, input_length, queue_length, literal_mode_flag,
 quintet, n, next_code_position;
 enum encoding_style style;
 unsigned short common_prefix;
 char c;

 /* Check whether input ends with "-8Q9": */

 for (i = 0; input[i]; ++i) assert(i < brace_decoder_in_max);

 if (!(input[i-1] == 57 && input[i-3] == 56 &&
 input[i-4] == 45 && (input[i-2] == 81 || input[i-2] == 113))) {

 /* Copy input to output and we're done: */

 for (i = 0; input[i]; ++i) output[i] = input[i];
 assert(i <= brace_decoder_out_max);
 *output_length = i;
 return 1;
 }

 /* Initialize using the first base-32 character: */

 input_length = i;
 i = 0;
 if (!base32_decode(input[i], &quintet)) return 0;
 queue = quintet;
 queue_length = 3;
 literal_mode_flag = 0;
 style = quintet >> 3;

 /* Determine common_prefix: */

 if (style == no_row_style) n = 0;
 else if (style == full_row_style) n = 8;
 else n = 9;

 while (queue_length < n) {
 if (!base32_decode(input[++i], &quintet)) return 0;
 queue = (queue << 5) | quintet;
 queue_length += 5;
 }

 common_prefix = (queue >> (queue_length - n)) << (16 - n);
 queue_length -= n;

 /* Main decoding loop: */

 next_code_position = 0;

 while (++i < input_length - 4) {
 c = input[i];

 if (c == 45) {
 if (input[i+1] == 45) {
 ++i;
 output[next_code_position++] = 45; /* "--" means "-" */
 }
 else literal_mode_flag ^= 1; /* "-" toggles literal mode */
 }
 else if (literal_mode_flag) { /* literal non-hyphen */
 output[next_code_position++] = c;
 }
 else { /* base-32 character */
 /* Enqueue the corresponding quintet: */
 if (!base32_decode(c, &quintet)) return 0;
 queue = (queue << 5) | quintet;
 queue_length += 5;

 /* If the queue contains enough bits for a UTF-16 code, */
 /* dequeue them, decode them, and output the code: */

 if (style == no_row_style && queue_length >= 16) {
 output[next_code_position++] =
 (queue >> (queue_length - 16)) & 0xffff;
 queue_length -= 16;
 }
 else if (style == full_row_style && queue_length >= 8) {
 output[next_code_position++] =
 common_prefix | ((queue >> (queue_length - 8)) & 0xff);
 queue_length -= 8;
 }
 else if (style == half_row_style && queue_length >= 7) {
 output[next_code_position++] =
 common_prefix | ((queue >> (queue_length - 7)) & 0x7f);
 queue_length -= 7;
 }
 else if (style == mixed_style) {
 n = (queue >> (queue_length - 2)) & 3; /* top 2 bits */

 if (n <= 1 && queue_length >= 8) {
 output[next_code_position++] =
 common_prefix | ((queue >> (queue_length - 8)) & 0x7f);
 queue_length -= 8;
 }
 else if (n == 2 && queue_length >= 9) {
 output[next_code_position++] = (common_prefix ^ 0x80) |

 ((queue >> (queue_length - 9)) & 0x7f);
 queue_length -= 9;
 }
 else if (n == 3 && queue_length >= 18) {
 output[next_code_position++] =
 (queue >> (queue_length - 18)) & 0xffff;
 queue_length -= 18;
 }
 }
 }
 }

 assert(next_code_position <= brace_decoder_out_max);

 /* Check that the bit queue contains only zeros, at most four: */

 if (queue_length > 4) return 0;
 if ((queue & ((1 << queue_length) - 1)) != 0) return 0;

 /* Set the output length and we're done: */

 *output_length = next_code_position;
 return 1;
}

/* Wrapper for testing (would normally go in a separate .c file): */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

static void usage(char **argv)
{
 fprintf(stderr,
 "%s -e reads big-endian UTF-16 and writes BRACE-format ASCII.\n"
 "%s -d reads BRACE-format ASCII and writes big-endian UTF-16.\n"
 , argv[0], argv[0]);
 exit(EXIT_FAILURE);
}

static void fail(const char *msg)
{
 fputs(msg,stderr);
 exit(EXIT_FAILURE);
}

static const char input_too_large[] = "input is too large\n";

int main(int argc, char **argv)
{
 unsigned int input_length;

 if (argc != 2) usage(argv);
 if (argv[1][0] != '-') usage(argv);
 if (argv[1][2] != '\0') usage(argv);

 if (argv[1][1] == 'e') {
 unsigned short input[brace_encoder_in_max];
 char output[brace_encoder_out_max];
 int hi, lo;

 /* Read the UTF-16 input string: */

 input_length = 0;

 for (;;) {
 hi = getchar();
 lo = getchar();

 if (lo == EOF) {
 if (hi != EOF) fail("input contained an odd number of bytes\n");
 break;
 }

 if (input_length == brace_encoder_in_max) fail(input_too_large);

 if (hi > 0xff || lo > 0xff) {
 fail("input bytes do not fit in 8 bits\n");
 }

 input[input_length++] =
 (unsigned short) hi << 8 | (unsigned short) lo;
 }

 /* Encode, and output the result: */

 brace_encode(input_length, input, output);
 if (strlen(output) > brace_decoder_in_max) fail(input_too_large);
 fputs(output,stdout);
 return EXIT_SUCCESS;
 }

 if (argv[1][1] == 'd') {
 char input[brace_decoder_in_max];
 unsigned short output[brace_decoder_out_max];
 unsigned int output_length, i;
 size_t n;

 /* Read the BRACE-encoded ASCII input string: */

 n = fread(input, 1, brace_decoder_in_max, stdin);
 if (n == brace_decoder_in_max) fail(input_too_large);
 input[n] = 0;

 /* Decode, and output the result: */

 if (!brace_decode(input, &output_length, output)) {
 fail("input was malformed\n");
 }

 for (i = 0; i < output_length; ++i) {
 putchar(output[i] >> 8);
 putchar(output[i] & 0xff);
 }

 return EXIT_SUCCESS;
 }

 usage(argv);
 return EXIT_SUCCESS; /* not reached, but quiets compiler warning */
}

 INTERNET-DRAFT expires 2001-Mar-09

