
Workgroup: IP Performance Measurement

Internet-Draft:

draft-cpaasch-ippm-responsiveness-01

Published: 25 October 2021

Intended Status: Experimental

Expires: 28 April 2022

Authors: C. Paasch

Apple Inc.

R. Meyer

Apple Inc.

S. Cheshire

Apple Inc.

O. Shapira

Apple Inc.

Responsiveness under Working Conditions

Abstract

For many years, a lack of responsiveness, variously called lag,

latency, or bufferbloat, has been recognized as an unfortunate, but

common symptom in today's networks. Even after a decade of work on

standardizing technical solutions, it remains a common problem for

the end users.

Everyone "knows" that it is "normal" for a video conference to have

problems when somebody else at home is watching a 4K movie or

uploading photos from their phone. However, there is no technical

reason for this to be the case. In fact, various queue management

solutions (fq_codel, cake, PIE) have solved the problem for tens of

thousands of people.

Our networks remain unresponsive, not from a lack of technical

solutions, but rather a lack of awareness of the problem. We believe

that creating a tool whose measurement matches people's every day

experience will create the necessary awareness, and result in a

demand for products that solve the problem.

This document specifies the "RPM Test" for measuring responsiveness.

It uses common protocols and mechanisms to measure user experience

especially when the network is fully loaded ("responsiveness under

working conditions".) The measurement is expressed as "Round-trips

Per Minute" (RPM) and should be included with throughput (up and

down) and idle latency as critical indicators of network quality.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 28 April 2022.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Terminology

2. Design Constraints

3. Goals

4. Measuring Responsiveness Under Working Conditions

4.1. Working Conditions

4.1.1. From single-flow to multi-flow

4.1.2. Parallel vs Sequential Uplink and Downlink

4.1.3. Reaching saturation

4.1.4. Final "Working Conditions" Algorithm

4.2. Measuring Responsiveness

4.2.1. Aggregating the Measurements

4.2.2. Statistical Confidence

5. RPM Test Server API

6. Security Considerations

7. IANA Considerations

8. Acknowledgments

9. Informative References

Authors' Addresses

1. Introduction

For many years, a lack of responsiveness, variously called lag,

latency, or bufferbloat, has been recognized as an unfortunate, but

common symptom in today's networks [Bufferbloat]. Solutions like

fq_codel [RFC8290] or PIE [RFC8033] have been standardized and are

¶

¶

¶

¶

https://trustee.ietf.org/license-info

to some extent widely implemented. Nevertheless, people still suffer

from bufferbloat.

Although significant, the impact on user experience can be

transitory - that is, its effect is not always present. Whenever a

network is actively being used at its full capacity, buffers can

fill up and create latency for traffic. The duration of those full

buffers may be brief: a medium-sized file transfer, like an email

attachment or uploading photos, can create bursts of latency spikes.

An example of this is lag occurring during a videoconference, where

a connection is briefly shown as unstable.

These short-lived disruptions make it hard to narrow down the cause.

We believe that it is necessary to create a standardized way to

measure and express responsiveness.

Existing network measurement tools could incorporate a

responsiveness measurement into their set of metrics. Doing so would

also raise the awareness of the problem and make the standard

"network quality measures" of throughput, idle latency, and

responsiveness.

1.1. Terminology

A word about the term "bufferbloat" - the undesirable latency that

comes from a router or other network equipment buffering too much

data. This document uses the term as a general description of bad

latency, using more precise wording where warranted.

"Latency" is a poor measure of responsiveness, since it can be hard

for the general public to understand. The units are unfamiliar

("what is a millisecond?") and counterintuitive ("100 msec - that

sounds good - it's only a tenth of a second!").

Instead, we create the term "Responsiveness under working

conditions" to make it clear that we are measuring all, not just

idle, conditions, and use "round-trips per minute" as the metric.

The values range from 50 (poor) to 3,000 (excellent), with the added

advantage that "bigger is better." Finally, we abbreviate the

measurement to "RPM", a wink to the "revolutions per minute" that we

use for cars.

This document defines an algorithm for the "RPM Test" that

explicitly measures responsiveness under working conditions.

2. Design Constraints

There are many challenges around measurements on the Internet. They

include the dynamic nature of the Internet, the diverse nature of

¶

¶

¶

¶

¶

¶

¶

¶

the traffic, the large number of devices that affect traffic, and

the difficulty of attaining appropriate measurement conditions.

Internet paths are changing all the time. Daily fluctuations in the

demand make the bottlenecks ebb and flow. To minimize the

variability of routing changes, it's best to keep the test duration

relatively short.

TCP and UDP traffic, or traffic on ports 80 and 443, may take

significantly different paths on the Internet and be subject to

entirely different Quality of Service (QoS) treatment. A good test

will use standard transport layer traffic - typical for people's use

of the network - that is subject to the transport's congestion

control that might reduce the traffic's rate and thus its buffering

in the network.

Traditionally, one thinks of bufferbloat happening on the routers

and switches of the Internet. However, the networking stacks of the

clients and servers can have huge buffers. Data sitting in TCP

sockets or waiting for the application to send or read causes

artificial latency, and affects user experience the same way as

"traditional" bufferbloat.

Finally, it is important to note that queueing only happens behind a

slow "bottleneck" link in the network, and only occurs when

sufficient traffic is present. The RPM Test must ensure that buffers

are actually full for a sustained period, and only then make

repeated latency measurements in this particular state.

3. Goals

The algorithm described here defines an RPM Test that serves as a

good proxy for user experience. This means:

Today's Internet traffic primarily uses HTTP/2 over TLS. Thus,

the algorithm should use that protocol.

As a side note: other types of traffic are gaining in

popularity (HTTP/3) and/or are already being used widely (RTP).

Traffic prioritization and QoS rules on the Internet may

subject traffic to completely different paths:

these could also be measured separately.

The Internet is marked by the deployment of countless

middleboxes like transparent TCP proxies or traffic

prioritization for certain types of traffic. The RPM Test must

take into account their effect on DNS-request [RFC1035], TCP-

handshake [RFC0793], TLS-handshake, and request/response.

¶

¶

¶

¶

¶

¶

1.

¶

¶

¶

2.

¶

The test result should be expressed in an intuitive,

nontechnical form.

Finally, to be useful to a wide audience, the measurement

should finish within a short time frame. Our target is 20

seconds.

4. Measuring Responsiveness Under Working Conditions

To make an accurate measurement, the algorithm must reliably put the

network in a state that represents those "working conditions". Once

the network has reached that state, the algorithm can measure its

responsiveness. The following explains how the former and the latter

are achieved.

4.1. Working Conditions

For the purpose of this methodology, typical "working conditions"

represent a state of the network in which the bottleneck node is

experiencing ingress and egress flows similar to those created by

humans in the typical day-to-day pattern.

While a single HTTP transaction might briefly put a network into

working conditions, making reliable measurements requires

maintaining the state over sufficient time.

The algorithm must also detect when the network is in a persistent

working condition, also called "saturation".

Desired properties of "working condition":

Should not waste traffic, since the person may be paying for it

Should finish within a short time to avoid impacting other people

on the same network, to avoid varying network conditions, and not

try the person's patience.

4.1.1. From single-flow to multi-flow

A single TCP connection may not be sufficient to saturate a path.

For example, the 4MB constraints on TCP window size constraints may

not fill the pipe. Additionally, traditional loss-based TCP

congestion control algorithms react aggressively to packet loss by

reducing the congestion window. This reaction (intended by the

protocol design) decreases the queueing within the network, making

it hard to reach saturation.

The goal of the RPM Test is to keep the network as busy as possible

in a sustained and persistent way. It uses multiple TCP connections

and gradually adds more TCP flows until saturation is reached.

3.

¶

4.

¶

¶

¶

¶

¶

¶

* ¶

*

¶

¶

¶

4.1.2. Parallel vs Sequential Uplink and Downlink

Poor responsiveness can be caused by queues in either (or both) the

upstream and the downstream direction. Furthermore, both paths may

differ significantly due to access link conditions (e.g., 5G

downstream and LTE upstream) or the routing changes within the ISPs.

To measure responsiveness under working conditions, the algorithm

must saturate both directions.

Measuring in parallel achieves more data samples for a given

duration. Given the desired test duration of 20 seconds, sequential

uplink and downlink tests would only yield half the data. The RPM

Test specifies parallel, concurrent measurements.

However, a number of caveats come with measuring in parallel:

Half-duplex links may not permit simultaneous uplink and downlink

traffic. This means the test might not saturate both directions

at once.

Debuggability of the results becomes harder: During parallel

measurement it is impossible to differentiate whether the

observed latency happens in the uplink or the downlink direction.

Consequently, the test should have an option for sequential

testing.

4.1.3. Reaching saturation

The RPM Test gradually increases the number of TCP connections and

measures "goodput" - the sum of actual data transferred across all

connections in a unit of time. When the goodput stops increasing, it

means that saturation has been reached.

Saturation has two criteria: a) the load bearing connections are

utilizing all the capacity of the bottleneck, b) the buffers in the

bottleneck are completely filled.

The algorithm notes that throughput gradually increases until TCP

connections complete their TCP slow-start phase. At that point,

throughput eventually stalls usually due to receive window

limitations. The only means to further increase throughput is by

adding more TCP connections to the pool of load bearing connections.

If new connections leave the throughput the same, saturation has

been reached and - more importantly - the working condition is

stable.

Filling buffers at the bottleneck depends on the congestion control

deployed on the sender side. Congestion control algorithms like BBR

may reach high throughput without causing queueing because the

¶

¶

¶

*

¶

*

¶

*

¶

¶

¶

¶

bandwidth detection portion of BBR effectively seeks the bottleneck

capacity.

RPM Test clients and servers should use loss-based congestion

controls like Cubic to fill queues reliably.

The RPM Test detects saturation when the observed goodput is not

increasing even as connections are being added, or it detects packet

loss or ECN marks signaling congestion or a full buffer of the

bottleneck link.

4.1.4. Final "Working Conditions" Algorithm

The following algorithm reaches working conditions (saturation) of a

network by using HTTP/2 upload (POST) or download (GET) requests of

infinitely large files. The algorithm is the same for upload and

download and uses the same term "load bearing connection" for each.

The steps of the algorithm are:

Create 4 load bearing connections

At each 1 second interval:

Compute "instantaneous aggregate" goodput which is the number

of bytes transferred within the last second.

Compute a moving average of the last 4 "instantaneous

aggregate goodput" measurements

If moving average > "previous" moving average + 5%:

Network did not yet reach saturation. If no flows added

within the last 4 seconds, add 4 more flows

Else, network reached saturation for the current flow count.

If new flows added and for 4 seconds the moving average

throughput did not change: network reached stable

saturation

Else, add four more flows

Note: It is tempting to envision an initial base RTT measurement and

adjust the intervals as a function of that RTT. However, experiments

have shown that this makes the saturation detection extremely

unstable in low RTT environments. In the situation where the

"unloaded" RTT is in the single-digit millisecond range, yet the

network's RTT increases under load to more than a hundred

¶

¶

¶

¶

¶

* ¶

* ¶

-

¶

-

¶

- ¶

o

¶

- ¶

o

¶

o ¶

milliseconds, the intervals become much too low to accurately drive

the algorithm.

4.2. Measuring Responsiveness

Once the network is in a consistent working conditions, the RPM Test

must "probe" the network multiple times to measure its

responsiveness.

Each RPM Test probe measures:

The responsiveness of the different steps to create a new

connection, all during working conditions.

To do this, the test measures the time needed to make a DNS

request, establish a TCP connection on port 443, establish a

TLS context using TLS1.3 [RFC8446], and send and receive a one-

byte object with a HTTP/2 GET request. It repeats these steps

multiple times for accuracy.

The responsiveness of the network and the client/server

networking stacks for the load bearing connections themselves.

To do this, the load bearing connections multiplex an HTTP/2

GET request for a one-byte object to get the end-to-end latency

on the connections that are using the network at full speed.

4.2.1. Aggregating the Measurements

The algorithm produces sets of 5 times for each probe, namely: DNS

handshake, TCP handshake, TLS handshake, HTTP/2 request/response on

separate (idle) connections, HTTP/2 request/response on load bearing

connections. This fine-grained data is useful, but not necessary for

creating a useful metric.

To create a single "Responsiveness" (e.g., RPM) number, this first

iteration of the algorithm gives an equal weight to each of these

values. That is, it sums the five time values for each probe, and

divides by the total number of probes to compute an average probe

duration. The reciprocal of this, normalized to 60 seconds, gives

the Round-trips Per Minute (RPM).

4.2.2. Statistical Confidence

The number of probes necessary for statistical confidence is an open

question. One could imagine a computation of the variance and

confidence interval that would drive the number of measurements and

balance the accuracy with the speed of the measurement itself.

¶

¶

¶

1.

¶

¶

2.

¶

¶

¶

¶

¶

5. RPM Test Server API

The RPM measurement uses standard protocols: no new protocol is

defined.

Both the client and the server MUST support HTTP/2 over TLS 1.3. The

client MUST be able to send a GET request and a POST. The server

MUST be able to respond to both of these HTTP commands. Further, the

server endpoint MUST be accessible through a hostname that can be

resolved through DNS. The server MUST have the ability to provide

content upon a GET request. Both client and server SHOULD use loss-

based congestion controls like Cubic. The server MUST use a packet

scheduling algorithm that minimizes internal queueing to avoid

affecting the client's measurement.

The server MUST respond to 4 URLs:

A "small" URL/response: The server must respond with a status

code of 200 and 1 byte in the body. The actual body content is

irrelevant.

A "large" URL/response: The server must respond with a status

code of 200 and a body size of at least 8GB. The body can be

bigger, and may need to grow as network speeds increases over

time. The actual body content is irrelevant. The client will

probably never completely download the object, but will instead

close the connection after reaching working condition and

making its measurements.

An "upload" URL/response: The server must handle a POST request

with an arbitrary body size. The server should discard the

payload.

A configuration URL that returns a JSON [RFC8259] object with

the information the client uses to run the test (sample below).

Sample JSON:

The client begins the responsiveness measurement by querying for the

JSON configuration. This supplies the URLs for creating the load

bearing connections in the upstream and downstream direction as well

as the small object for the latency measurements.

¶

¶

¶

1.

¶

2.

¶

3.

¶

4.

¶

{

 "version": 1,

 "urls": {

 "small_https_download_url": "https://networkquality.example.com/api/v1/small",

 "large_https_download_url": "https://networkquality.example.com/api/v1/large",

 "https_upload_url": "https://networkquality.example.com/api/v1/upload"

 }

}

¶

¶

[Bufferbloat]

[RFC0793]

[RFC1035]

[RFC8033]

[RFC8259]

[RFC8290]

[RFC8446]

6. Security Considerations

TBD

7. IANA Considerations

TBD

8. Acknowledgments

We would like to thank Rich Brown for his editorial pass over this

I-D. We also thank Erik Auerswald for his constructive feedback on

the I-D.

9. Informative References

Gettys, J. and K. Nichols, "Bufferbloat: Dark Buffers

in the Internet", Communications of the ACM, Volume 55,

Number 1 (2012) , n.d..

Postel, J., "Transmission Control Protocol", STD 7, RFC

793, DOI 10.17487/RFC0793, September 1981, <https://

www.rfc-editor.org/info/rfc793>.

Mockapetris, P., "Domain names - implementation and

specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,

November 1987, <https://www.rfc-editor.org/info/rfc1035>.

Pan, R., Natarajan, P., Baker, F., and G. White,

"Proportional Integral Controller Enhanced (PIE): A

Lightweight Control Scheme to Address the Bufferbloat

Problem", RFC 8033, DOI 10.17487/RFC8033, February 2017,

<https://www.rfc-editor.org/info/rfc8033>.

Bray, T., Ed., "The JavaScript Object Notation (JSON)

Data Interchange Format", STD 90, RFC 8259, DOI 10.17487/

RFC8259, December 2017, <https://www.rfc-editor.org/info/

rfc8259>.

Hoeiland-Joergensen, T., McKenney, P., Taht, D., Gettys,

J., and E. Dumazet, "The Flow Queue CoDel Packet

Scheduler and Active Queue Management Algorithm", RFC

8290, DOI 10.17487/RFC8290, January 2018, <https://

www.rfc-editor.org/info/rfc8290>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

¶

¶

¶

https://www.rfc-editor.org/info/rfc793
https://www.rfc-editor.org/info/rfc793
https://www.rfc-editor.org/info/rfc1035
https://www.rfc-editor.org/info/rfc8033
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8290
https://www.rfc-editor.org/info/rfc8290
https://www.rfc-editor.org/info/rfc8446

Authors' Addresses

Christoph Paasch

Apple Inc.

One Apple Park Way

Cupertino, California 95014,

United States of America

Email: cpaasch@apple.com

Randall Meyer

Apple Inc.

One Apple Park Way

Cupertino, California 95014,

United States of America

Email: rrm@apple.com

Stuart Cheshire

Apple Inc.

One Apple Park Way

Cupertino, California 95014,

United States of America

Email: cheshire@apple.com

Omer Shapira

Apple Inc.

One Apple Park Way

Cupertino, California 95014,

United States of America

Email: oesh@apple.com

mailto:cpaasch@apple.com
mailto:rrm@apple.com
mailto:cheshire@apple.com
mailto:oesh@apple.com

	Responsiveness under Working Conditions
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology

	2. Design Constraints
	3. Goals
	4. Measuring Responsiveness Under Working Conditions
	4.1. Working Conditions
	4.1.1. From single-flow to multi-flow
	4.1.2. Parallel vs Sequential Uplink and Downlink
	4.1.3. Reaching saturation
	4.1.4. Final "Working Conditions" Algorithm

	4.2. Measuring Responsiveness
	4.2.1. Aggregating the Measurements
	4.2.2. Statistical Confidence

	5. RPM Test Server API
	6. Security Considerations
	7. IANA Considerations
	8. Acknowledgments
	9. Informative References
	Authors' Addresses

