
tls R. Cragie
Internet-Draft ARM Ltd.
Intended status: Informational F. Hao
Expires: November 12, 2016 Newcastle University (UK)
 May 11, 2016

Elliptic Curve J-PAKE Cipher Suites for Transport Layer Security (TLS)
draft-cragie-tls-ecjpake-00

Abstract

 This document defines new cipher suites based on an Elliptic Curve
 Cryptography (ECC) variant of Password Authenticated Key Exchange by
 Juggling (J-PAKE) for the Transport Layer Security (TLS) and Datagram
 Transport Layer Security (DTLS) protocols.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 12, 2016.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Cragie & Hao Expires November 12, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft ECJPAKE May 2016

Table of Contents

1. Introduction . 3
1.1. Requirements Language 3
1.2. Terminology . 4

2. ECJ-PAKE Based AES-CCM Cipher Suites 4
3. Notations . 5
3.1. Elliptic Curve Points 5
3.2. Integers . 6
3.3. Octet Strings . 6
3.4. Integer to Octet String Conversion 6
3.5. Octet String to Integer Conversion 7

4. Handshake . 7
5. Failure processing . 7
6. ECJ-PAKE TLS Extensions and Modification 7
6.1. New Structure Definitions 8
6.1.1. Public Key and Schnorr ZKP Pair 8
6.1.2. Schnorr ZKP . 8

6.2. ClientHello and ServerHello TLS Extensions 9
6.2.1. Existing Extensions 9
6.2.2. Additional Extensions 9

6.3. ServerKeyExchange . 10
6.4. ClientKeyExchange . 10

7. Calculations . 11
7.1. User Identity Selection 11
7.2. Schnorr ZKP Hash Calculation 11
7.3. Shared Secret . 12
7.3.1. Example . 13

7.4. ClientHello and ServerHello Calculations 13
7.4.1. Public Key Generation 13
7.4.2. Schnorr ZKP Generation 14
7.4.3. Schnorr ZKP Verification 14

7.5. ServerKeyExchange Calculations 15
7.5.1. Public Key Generation 15
7.5.2. Schnorr ZKP Generation 16
7.5.3. Schnorr ZKP Verification 17

7.6. ClientKeyExchange Calculations 17
7.6.1. Public Key Generation 17
7.6.2. Schnorr ZKP Generation 18
7.6.3. Schnorr ZKP Verification 19

7.7. Premaster Secret Generation 20
7.7.1. Server Premaster Secret Generation 20
7.7.2. Client Premaster Secret Generation 20

8. Acknowledgements . 21
9. IANA Considerations . 21
9.1. Transport Layer Security (TLS) Parameters 21
9.1.1. TLS Cipher Suite Registry 21

9.2. Transport Layer Security (TLS) Extensions 21

Cragie & Hao Expires November 12, 2016 [Page 2]

Internet-Draft ECJPAKE May 2016

9.2.1. ExtensionType Values 21
10. Security Considerations 21
10.1. Security Proof . 21
10.2. Counter Reuse . 22
10.3. Password . 22
10.4. Rate Limiting . 22
10.5. Usage Restrictions 22

11. References . 22
11.1. Normative References 22
11.2. Informative References 24

 Authors' Addresses . 24

1. Introduction

 This document defines new cipher suites based on an Elliptic Curve
 Cryptography (ECC) variant of Password Authenticated Key Exchange by
 Juggling (J-PAKE) for version 1.2 of Transport Layer Security (TLS)
 protocol [RFC5246] as well as version 1.2 of the Datagram Transport
 Layer Security (DTLS) protocol [RFC6347]. The cipher suites are AEAD
 cipher suites using AES-CCM [CCM] based on the cipher suites defined
 in [RFC7251], using ECJ-PAKE as an alternative key establishment
 mechanism.

 The existing set of TLS cipher suites are typically aimed at more
 traditional client-server interactions, for example, a web browser to
 web server. However, TLS and DTLS are increasingly being specified
 for use in Internet-of-Things (IoT) standards for peer-to-peer
 application layer interaction. For example, DTLS is specified as a
 binding to provide security for the CoAP protocol [RFC7252], which is
 widely used in IoT applications.

 J-PAKE is a balanced password-authenticated key exchange (PAKE)
 protocol resistant to off-line dictionary attack designed by Feng Hao
 and Peter Ryan in 2008 [HR08]. The use of a PAKE for IoT devices is
 highly appropriate as it allows a simple method of commissioning IoT
 devices onto a network without requiring certificates to be issued
 and maintained for each device. An ECC variant of J-PAKE [J-PAKE] is
 particularly suited to IoT devices, which are often constrained with
 regard to memory and processing power. The cipher suite
 TLS_ECJPAKE_WITH_AES_128_CCM_8 as defined in this document is
 currently being used in the Thread protocol [THREAD].

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc7251
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc2119

Cragie & Hao Expires November 12, 2016 [Page 3]

Internet-Draft ECJPAKE May 2016

1.2. Terminology

 AEAD

 Authenticated Encryption with Associated Data.

 ECJ-PAKE

 Elliptic Curve Cryptography (ECC) variant of Password
 Authenticated Key Exchange by Juggling (J-PAKE).

 ZKP

 Zero-knowledge proof.

2. ECJ-PAKE Based AES-CCM Cipher Suites

 The cipher suites defined in this document are based on the AES-CCM
 Authenticated Encryption with Associated Data (AEAD) algorithms
 AEAD_AES_128_CCM and AEAD_AES_256_CCM described in [RFC5116]. The
 following cipher suites are defined:

 TLS_ECJPAKE_WITH_AES_128_CCM = {0xTBD, 0xTBD}
 TLS_ECJPAKE_WITH_AES_256_CCM = {0xTBD, 0xTBD}
 TLS_ECJPAKE_WITH_AES_128_CCM_8 = {0xTBD, 0xTBD}
 TLS_ECJPAKE_WITH_AES_256_CCM_8 = {0xTBD, 0xTBD}

 These cipher suites make use of the AEAD capability in TLS 1.2
 [RFC5246]. Cipher suites ending with "8" use eight-octet
 authentication tags; the other cipher suites have 16-octet
 authentication tags. The HMAC truncation option described in

Section 7 of [RFC6066] (which negotiates the "truncated_hmac" TLS
 extension) does not have an effect on the cipher suites defined in
 this document, because they do not use HMAC to protect TLS records.

 The "nonce" input to the AEAD algorithm is as defined in [RFC6655].

 These cipher suites make use of the default TLS 1.2 Pseudorandom
 Function (PRF), which uses HMAC with the SHA-256 hash function.

 The following stipulations apply to the use of elliptic curves:

 o Curves with a cofactor equal to one SHOULD be used; this
 simplifies their use.

 o The uncompressed point format MUST be supported. Other point
 formats MAY be used.

https://datatracker.ietf.org/doc/html/rfc5116
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6066#section-7
https://datatracker.ietf.org/doc/html/rfc6655

Cragie & Hao Expires November 12, 2016 [Page 4]

Internet-Draft ECJPAKE May 2016

 o Fundamental ECC algorithms [RFC6090] MAY be used as an
 implementation method.

3. Notations

 This section describes the notations used in this document.

3.1. Elliptic Curve Points

 The generator (base point) of an elliptic curve is represented by the
 letter 'G':

 G

 A modified generator is represented by the letter 'G' concatenated
 with a single uppercase character:

 GB

 Elliptic curve points are represented using a single uppercase
 character or a single uppercase character concatenated with a single
 lowercase character or decimal digit, for example:

 X

 Xc

 X2

 Conversion to and from elliptic curve points to octet strings is as
 specified in Sections 2.3.3 and 2.3.4 of [SEC1].

 Point multiplication is shown as an elliptic curve point multiplied
 by a scalar integer using the '*' operator, for example:

 G*x

 Point addition or subtraction is shown as the addition or subtraction
 of elliptic curve points or scalar multiplied elliptic curve points
 using the '+' and '-' operators respectively, for example:

 X1 + X3 + X4

 X*h + G*r

 Xs - X4*x2*s

https://datatracker.ietf.org/doc/html/rfc6090

Cragie & Hao Expires November 12, 2016 [Page 5]

Internet-Draft ECJPAKE May 2016

3.2. Integers

 Integers are represented using a single lowercase character or a
 single lowercase character followed by a single lowercase character
 or decimal digit, for example:

 x

 xc

 x2

 Where expressed, integers are shown in hexadecimal and/or decimal
 form. Hexadecimal numbers have an '0x' prefix. For example:

 0x12ab34cd

 3132110061

 Integer multiplication is shown as two integers multiplied together
 using the '*' operator:

 x*s

 Integer addition or subtraction is shown as the addition or
 subtraction of integers or multiplied integers using the '+' and '-'
 operators respectively:

 v - x*h

3.3. Octet Strings

 Octet strings are expressed in a hexadecimal form, with no '0x'
 prefix and with a space separator, first octet leftmost, for example:

 12 ab 34 cd

3.4. Integer to Octet String Conversion

 Integer to octet string conversion SHALL be performed as stated in
 Section 2.3.7 of [SEC1]. It is represented as follows:

 M = str(mlen, x)

 where x, mlen, and M are the parameters as stated in Section 2.3.7 of
 [SEC1].

Cragie & Hao Expires November 12, 2016 [Page 6]

Internet-Draft ECJPAKE May 2016

3.5. Octet String to Integer Conversion

 Octet string to integer conversion SHALL be as stated in section
2.3.8 of [SEC1]. It is represented as follows:

 x = int(mlen, M)

 where x, mlen, and M are the parameters as stated in Section 2.3.8 of
 [SEC1].

4. Handshake

 The TLS-ECJ-PAKE handshake is as follows, augmented with parameters
 in braces to show the ECJ-PAKE material conveyed in each case:

 Client Server
 ------ ------
 ClientHello -------->
 {(X1,ZKP(X1)),
 (X2,ZKP(X2))} ServerHello
 {(X3, ZKP(X3)),
 (X4, ZKP(X4))}
 ServerKeyExchange
 {Xs, ZKP(Xs)}
 <-------- ServerHelloDone
 ClientKeyExchange
 {Xc, ZKP(Xc)}
 [ChangeCipherSpec]
 Finished -------->
 [ChangeCipherSpec]
 <-------- Finished
 Application Data <-------> Application Data

 Figure 1: Message flow in a TLS-ECJ-PAKE handshake

5. Failure processing

 If there are failures for any reason on client or server side, for
 example, Schnorr ZKP verification or missing extensions, the
 handshake SHALL abort immediately and send a TLS Error Alert message
 to the peer, using code 40 (handshake_failure) (see Section 7.2 of
 [RFC5246]).

6. ECJ-PAKE TLS Extensions and Modification

 This section describes existing and newly-defined extensions required
 for ECJ-PAKE-TLS.

https://datatracker.ietf.org/doc/html/rfc5246#section-7.2
https://datatracker.ietf.org/doc/html/rfc5246#section-7.2

Cragie & Hao Expires November 12, 2016 [Page 7]

Internet-Draft ECJPAKE May 2016

6.1. New Structure Definitions

 TLS-ECJ-PAKE requires new structure definitions for:

 o Public key and Schnorr ZKP pair

 o Schnorr ZKP

6.1.1. Public Key and Schnorr ZKP Pair

 The TLS structure is as follows:

 struct {
 ECPoint X;
 ECSchnorrZKP zkp;
 } ECJPAKEKeyKP;

 X

 Public key represented as an elliptic curve point. ECPoint is
 defined in [RFC4492].

 zkp

 ECSchnorrZKP is defined in Section 6.1.2.

6.1.2. Schnorr ZKP

 The TLS structure is as follows:

 struct {
 ECPoint V;
 opaque r<1..2^8-1>;
 } ECSchnorrZKP;

 V

 Ephemeral public key represented as an elliptic curve point.
 ECPoint is defined in [RFC4492].

 r

 Schnorr signature.

https://datatracker.ietf.org/doc/html/rfc4492
https://datatracker.ietf.org/doc/html/rfc4492

Cragie & Hao Expires November 12, 2016 [Page 8]

Internet-Draft ECJPAKE May 2016

6.2. ClientHello and ServerHello TLS Extensions

6.2.1. Existing Extensions

 The following TLS extensions defined in Section 4 of [RFC4492] SHALL
 be present in ClientHello:

 o Supported Elliptic Curves Extension (NamedCurve,
 EllipticCurveList)

 o Supported Point Formats Extension (ECPointFormat,
 ECPointFormatList)

 and the following TLS extension defined in Section 4 of [RFC4492]
 SHALL be present in ServerHello:

 o Supported Point Formats Extension (ECPointFormat,
 ECPointFormatList)

6.2.2. Additional Extensions

 The following extension SHALL additionally be present in both
 ClientHello and ServerHello:

 enum { ecjpake_key_kp_pair(TBC) } ExtensionType;

 struct {
 opaque identity<0..2^16-1>;
 ECJPAKEKeyKP ecjpake_key_kp_pair_list[2];
 } ECJPAKEKeyKPPairList;

 identity

 MAY be included if the Client or Server needs to uniquely identify
 themselves to the other party. An identity is used in the Schnorr
 ZKP hash calculation (see Section 7.2).

 ecjpake_key_kp_pair_list

 The list is precisely two elements long. The list in a
 ClientHello extension conveys public keys X1 and X2 and the list
 in a ServerHello extension conveys public keys X3 and X4, with
 associated Schnorr ZKPs.

 Note: When used in conjunction with DTLS and denial-of-service
 countermeasures as described in Section 4.2.1 of [RFC6347], the
 ECJPAKEKeyKPPairList in the subsequent ClientHello message SHALL be
 the same as the ECJPAKEKeyKPPairList in initial ClientHello message,

https://datatracker.ietf.org/doc/html/rfc4492#section-4
https://datatracker.ietf.org/doc/html/rfc4492#section-4
https://datatracker.ietf.org/doc/html/rfc6347#section-4.2.1

Cragie & Hao Expires November 12, 2016 [Page 9]

Internet-Draft ECJPAKE May 2016

 i.e. the public keys X1 and X2 and associated Schnorr ZKPs SHALL be
 the same.

6.3. ServerKeyExchange

 ServerKeyExchange is extended as follows:

 enum { ecjpake } KeyExchangeAlgorithm;

 ecjpake

 Indicates the ServerKeyExchange message contains
 ServerECJPAKEParams.

 ServerKeyExchange for ecjpake SHALL be formatted as follows:

 struct {
 ECParameters curve_params;
 ECJPAKEKeyKP ecjpake_key_kp;
 } ServerECJPAKEParams;

 select (KeyExchangeAlgorithm) {
 case ecjpake:
 ServerECJPAKEParams params;
 } ServerKeyExchange;

6.4. ClientKeyExchange

 ClientKeyExchange is extended as follows:

 enum { ecjpake } KeyExchangeAlgorithm;

 ecjpake

 Indicates the ClientKeyExchange message contains
 ClientECJPAKEParams.

 ClientKeyExchange for ecjpake SHALL be formatted as follows:

 struct {
 ECJPAKEKeyKP ecjpake_key_kp;
 } ClientECJPAKEParams;

 select (KeyExchangeAlgorithm) {
 case ecjpake:
 ClientECJPAKEParams params;
 } ClientKeyExchange;

Cragie & Hao Expires November 12, 2016 [Page 10]

Internet-Draft ECJPAKE May 2016

7. Calculations

 This section describes the calculations required to populate the data
 conveyed between Client and Server and also calculations required to
 verify knowledge proofs.

 The following notation is used throughout this section:

 Order of the base point: n

7.1. User Identity Selection

 The Schnorr ZKP hash calculation requires non-confidential user
 identities. These identities need to be unique in the context of a
 transaction and be different for each party. In a peer-to-peer
 transaction where there is no ambiguity of identity, the identities
 can be a simple string representing the Client and Server
 respectively:

 +------------+----------+-------------------+--------------------+
 | Originator | Name | Identity | Length of identity |
 +------------+----------+-------------------+--------------------+
 | Client | "client" | 63 6c 69 65 6e 74 | 6 |
 | Server | "server" | 73 65 72 76 65 72 | 6 |
 +------------+----------+-------------------+--------------------+

 Table 1: Simple Client and Server identities

 In a multi-party transaction, each party SHOULD additionally provide
 an identity in the ClientHello and/or ServerHello to uniquely
 distinguish their user identity.

7.2. Schnorr ZKP Hash Calculation

 The hash calculation is defined as follows:

 +-------------------+-----------------------------------+
 | Public Key | Calculation |
 +-------------------+-----------------------------------+
 | X1, X2, X3 and X4 | h = SHA-256(G, V, X, ID) mod n |
 | Xs | h = SHA-256(GB, V, Xs, IDs) mod n |
 | Xc | h = SHA-256(GA, V, Xc, IDc) mod n |
 +-------------------+-----------------------------------+

 Table 2: Schnorr ZKP Hash Calculation

 Each item in the hash calculation is prepended with its length in
 octets represented an octet (length 4), formed by applying integer to

Cragie & Hao Expires November 12, 2016 [Page 11]

Internet-Draft ECJPAKE May 2016

 octet string conversion as defined in Section 3.4. For example, the
 length of an uncompressed octet string representation of a public key
 is 65 (decimal) therefore the octet string (length 4) representation
 of 65 in hexadecimal is:

 o 00 00 00 41

 Each public key (elliptic curve point) is first converted to an octet
 string according to Section 2.3.3 of [SEC1].

 The concatentation order of the hash is as follows:

 1. G (or GA, GB): Generator

 2. V: ZKP ephemeral public key

 3. X (or Xs, Xc): Public key to be verified

 4. ID (or IDc, IDs): User ID (see Section 7.1)

 The hash is therefore performed on the concatenation as follows:

 o H = SHA-256(lenG || G || lenV || V || lenX || X || lenID || ID)

 An integer representation of the hash (see Section 3.5) is produced:

 o h = int(H)

7.3. Shared Secret

 The shared secret for the ServerKeyExchange and ClientKeyExchange
 calculations is required to be an integer in the range 1 to n-1.
 This section shows an example of how this could be practically
 accomplished using an initial password. The initial password is
 usually represented visually as a variable length character string
 using a subset of internationally recognized characters from the
 UTF-8 character set, which prevents the possibility of the resulting
 shared secret having the value 0. The initial password is then be
 converted into an octet string <password> using UTF-8 conversion.
 The integer shared secret calculation is thus defined as follows,
 using the function defined in Section 3.5:

 s = int(<password>) mod n

Cragie & Hao Expires November 12, 2016 [Page 12]

Internet-Draft ECJPAKE May 2016

7.3.1. Example

 Password:

 "d45yj8e"

 Equivalent octet string M using UTF-8 conversion (no null
 termination):

 64 34 35 79 6a 38 65

 Length mlen:

 7

 Shared secret:

 0x643435796a3865

 28204901945981028 (decimal)

7.4. ClientHello and ServerHello Calculations

 The structure ECJPAKEKeyKPPairList conveys the public key and
 associated Schnorr ZKP for ClientHello (X1 and X2) and ServerHello
 (X3 and X4).

7.4.1. Public Key Generation

 For X1, X2, X3 and X4, the value for the public key part X of the
 ECJPAKEKeyKP structure is generated as follows:

 The inputs are:

 o Base point: G

 o Order of the base point: n

 The public key of the key pair is calculated as follows:

 1. A random integer in the range 1 to n-1 is assigned to private key
 x.

 2. A public key associated with x is generated and assigned to X:

 X = G*x

Cragie & Hao Expires November 12, 2016 [Page 13]

Internet-Draft ECJPAKE May 2016

 3. X is assigned to the public key part X of the ECJPAKEKeyKP
 structure.

7.4.2. Schnorr ZKP Generation

 For X1, X2, X3 and X4, the values for the ZKP part zkp.V and zkp.r of
 the ECJPAKEKeyKP structure are generated as follows:

 The inputs are:

 o Base point: G

 o Order of the base point: n

 o Identity of originator: ID (IDc or IDs depending on context)

 o Key pair to provide a ZKP of: (X,x) (public key: X, private key:
 x), where X is X1, X2, X3, or X4 and x is x1, x2, x3, or x4,
 depending on context

 The ZKP is generated as follows:

 1. A random integer in the range 1 to n-1 is assigned to ephemeral
 private key v.

 2. An ephemeral public key associated with v is generated and
 assigned to V:

 V = G*v

 3. An integer representation of a hash (see Section 7.2) is
 generated and assigned to h:

 h = int(SHA-256(G, V, X, ID)) mod n

 4. A signature is generated and assigned to r:

 r = v - x*h mod n

 5. V and r are assigned to the ZKP part zkp.V and zkp.r of the
 ECJPAKEKeyKP structure respectively.

7.4.3. Schnorr ZKP Verification

 For X1, X2, X3 and X4, the ECJPAKEKeyKP structure is verified as
 follows:

 The inputs are:

Cragie & Hao Expires November 12, 2016 [Page 14]

Internet-Draft ECJPAKE May 2016

 o Base point: G

 o Order of the base point: n

 o Identity of originator: ID (IDc or IDs depending on context)

 o Public key to be verified: X (X1, X2, X3, or X4 depending on
 context)

 o ZKP ephemeral public key: V

 o ZKP signature: r

 The ZKP is verified as follows:

 1. An integer representation of a hash (see Section 7.2) is
 generated and assigned to h:

 h = int(SHA-256(G, V, X, ID)) mod n

 2. A check point is generated and assigned to V':

 V'= X*h + G*r

 3. The points V' and V are compared. If equal then the ZKP
 verifies, otherwise it does not verify.

7.5. ServerKeyExchange Calculations

 The structure ECJPAKEKeyKP conveys the public key and associated
 Schnorr ZKP for Xs.

7.5.1. Public Key Generation

 For Xs, the value for the public key part X of the ECJPAKEKeyKP
 structure is generated as follows:

 The inputs are:

 o Public keys: X1, X2 and X3

 o Private key: x4

 o Shared secret: s (integer format, see Section 7.3)

 o Order of the base point: n

 The public key of the key pair is calculated as follows:

Cragie & Hao Expires November 12, 2016 [Page 15]

Internet-Draft ECJPAKE May 2016

 1. A new generator is generated and assigned to GB:

 GB = X1 + X2 + X3

 2. A private key is generated and assigned to xs:

 xs = x4*s mod n

 3. A public key associated with xs is generated and assigned to Xs:

 Xs = GB*xs

 4. Xs is assigned to the public key part X of the ECJPAKEKeyKP
 structure.

7.5.2. Schnorr ZKP Generation

 For Xs, the values for the ZKP part zkp.V and zkp.r of the
 ECJPAKEKeyKP structure are generated as follows:

 The inputs are:

 o New generator: GB

 o Order of the base point: n

 o Identity of originator: IDs

 o Key pair to provide a ZKP of: (Xs,xs) (public key: Xs, private
 key: xs)

 The ZKP is generated as follows:

 1. A random integer in the range 1 to n-1 is assigned to ephemeral
 private key v.

 2. An ephemeral public key associated with v is generated and
 assigned to V:

 V = GB*v

 3. An integer representation of a hash (see Section 7.2) is
 generated and assigned to h:

 h = int(SHA-256(GB, V, Xs, IDs)) mod n

 4. A signature is generated and assigned to r:

Cragie & Hao Expires November 12, 2016 [Page 16]

Internet-Draft ECJPAKE May 2016

 r = v - xs*h mod n

 5. V and r are assigned to the ZKP part zkp.V and zkp.r of the
 ECJPAKEKeyKP structure respectively.

7.5.3. Schnorr ZKP Verification

 For Xs, the ECJPAKEKeyKP structure is verified as follows:

 The inputs are:

 o New generator: GB

 o Order of the base point: n

 o Identity of originator: IDs

 o Public key to be verified: Xs

 o ZKP ephemeral public key: V

 o ZKP signature: r

 The ZKP is verified as follows:

 1. An integer representation of a hash (see Section 7.2) is
 generated and assigned to h:

 h = int(SHA-256(GB, V, Xs, IDs)) mod n

 2. A check point is generated and assigned to V':

 V'= X*h + GB*r

 3. The points V' and V are compared. If equal then the ZKP
 verifies, otherwise it does not verify.

7.6. ClientKeyExchange Calculations

 The structure ECJPAKEKeyKP conveys the public key and associated
 Schnorr ZKP for Xc.

7.6.1. Public Key Generation

 For Xc, the value for the public key part X of the ECJPAKEKeyKP
 structure is generated as follows:

 The inputs are:

Cragie & Hao Expires November 12, 2016 [Page 17]

Internet-Draft ECJPAKE May 2016

 o Public keys: X1, X3 and X4

 o Private key: x2

 o Shared secret: s (integer format, see Section 7.3)

 o Order of the base point: n

 The public key of the key pair is calculated as follows:

 1. A new generator is generated and assigned to GA:

 GA = X1 + X3 + X4

 2. A private key is generated and assigned to xc:

 xc = x2*s mod n

 3. A public key associated with xs is generated and assigned to Xc:

 Xc = GA*xc

 4. Xc is assigned to the public key part X of the ECJPAKEKeyKP
 structure.

7.6.2. Schnorr ZKP Generation

 For Xc, the values for the ZKP part zkp.V and zkp.r of the
 ECJPAKEKeyKP structure are generated as follows:

 The inputs are:

 o New generator: GA

 o Order of the base point: n

 o Identity of originator: IDc

 o Key pair to provide a ZKP of: (Xc,xc) (public key: Xc, private
 key: xc)

 The ZKP is generated as follows:

 1. A random integer in the range 1 to n-1 is assigned to ephemeral
 private key v.

 2. An ephemeral public key associated with v is generated and
 assigned to V:

Cragie & Hao Expires November 12, 2016 [Page 18]

Internet-Draft ECJPAKE May 2016

 V = GA*v

 3. An integer representation of a hash (see Section 7.2) is
 generated and assigned to h:

 h = int(SHA-256(GA, V, Xc, IDc)) mod n

 4. A signature is generated and assigned to r:

 r = v - xc*h mod n

 5. V and r are assigned to the ZKP part zkp.V and zkp.r of the
 ECJPAKEKeyKP structure respectively.

7.6.3. Schnorr ZKP Verification

 For Xc, the ECJPAKEKeyKP structure is verified as follows:

 The inputs are:

 o New generator: GA

 o Order of the base point: n

 o Identity of originator: IDc

 o Public key to be verified: Xc

 o ZKP ephemeral public key: V

 o ZKP signature: r

 The ZKP is verified as follows:

 1. An integer representation of a hash (see Section 7.2) is
 generated and assigned to h:

 h = int(SHA-256(GA, V, Xc, IDc)) mod n

 2. A check point is generated and assigned to V':

 V'= X*h + GA*r

 3. The points V' and V are compared. If equal then the ZKP
 verifies, otherwise it does not verify.

Cragie & Hao Expires November 12, 2016 [Page 19]

Internet-Draft ECJPAKE May 2016

7.7. Premaster Secret Generation

 The TLS-ECJ-PAKE handshake relies on the generation of identical
 premaster secrets at the client and server to verify the key
 establishment. The use of the protected Finished messages is
 therefore used for key confirmation purposes and to verify the
 handshake.

7.7.1. Server Premaster Secret Generation

 The inputs are:

 o Public key of the client: Xc

 o Public key: X2

 o Private key: x4

 o Shared secret: s (integer format, see Section 7.3)

 The premaster secret is generated as follows:

 1. Compute PMSK:

 PMSK = (Xc - X2*x4*s)*x4

 2. Compute PMS:

 PMS = SHA-256(str(32, X coordinate of PMSK))

 3. The master secret and key expansion is generated according to
Section 8.1 and Section 6.3 of [RFC5246].

7.7.2. Client Premaster Secret Generation

 The inputs are:

 o Public key of the server: Xs

 o Public key: X4

 o Private key: x2

 o Shared secret: s (integer format, see Section 7.3)

 The premaster secret is generated as follows:

 1. Compute PMSK:

https://datatracker.ietf.org/doc/html/rfc5246#section-6.3

Cragie & Hao Expires November 12, 2016 [Page 20]

Internet-Draft ECJPAKE May 2016

 PMSK = (Xs - X4*x2*s)*x2

 2. Compute PMS:

 PMS = SHA-256(str(32, X coordinate of PMSK))

 3. The master secret and key expansion is generated according to
Section 8.1 and Section 6.3 of [RFC5246].

8. Acknowledgements

 The authors would like to thank Sorin Aliciuc, Richard Kelsey,
 Maurizio Nanni, Manuel Pegourie-Gonnard and Martin Turon for their
 helpful comments and assistance.

9. IANA Considerations

9.1. Transport Layer Security (TLS) Parameters

9.1.1. TLS Cipher Suite Registry

 IANA is requested to add the following entries in the TLS Cipher
 Suite Registry:

 TLS_ECJPAKE_WITH_AES_128_CCM = {0xTBD, 0xTBD}
 TLS_ECJPAKE_WITH_AES_256_CCM = {0xTBD, 0xTBD}
 TLS_ECJPAKE_WITH_AES_128_CCM_8 = {0xTBD, 0xTBD}
 TLS_ECJPAKE_WITH_AES_256_CCM_8 = {0xTBD, 0xTBD}

9.2. Transport Layer Security (TLS) Extensions

9.2.1. ExtensionType Values

 IANA is requested to add the following entries in the ExtensionType
 Values:

 ecjpake_key_kp_pair = TBD

10. Security Considerations

10.1. Security Proof

 An independent study that proves security of J-PAKE in a model with
 algebraic adversaries and random oracles can be found in [ABM15].

https://datatracker.ietf.org/doc/html/rfc5246#section-6.3

Cragie & Hao Expires November 12, 2016 [Page 21]

Internet-Draft ECJPAKE May 2016

10.2. Counter Reuse

 The cipher suites described in this document are AES-CCM-based AEAD
 cipher suites, therefore the security considerations for counter
 reuse described in [RFC6655] also apply to these cipher suites.

10.3. Password

 The password forming the basis of the shared secret SHOULD be
 distributed in a secure out-of-band channel. In the specific case of
 [THREAD], this is achieved by the user enabling the use of the
 password only through a commissioning session where the user is in
 control of adding details of devices they wish to add to the Thread
 network.

10.4. Rate Limiting

 An attacker could attempt to engage repeatedly with a ECJ-PAKE server
 in an attempt to guess the password. Servers SHOULD take steps to
 ensure the opportunity for repeated contact is limited.

10.5. Usage Restrictions

 The cipher suites described in this document have primarily been
 developed to enable authentication and authorization for network
 access for IoT devices, as described in [THREAD]. It is therefore
 RECOMMENDED that the use of these cipher suite is restricted to
 similar uses and SHOULD NOT be used in conjunction with web servers
 and web browsers unless consideration is given to secure entry of
 passwords in a browser.

11. References

11.1. Normative References

 [CCM] National Institute of Standards and Technology,
 "Recommendation for Block Cipher Modes of Operation: The
 CCM Mode for Authentication and Confidentiality", SP
 800-38C, May 2004, <http://csrc.nist.gov/publications/

nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf>.

 [SEC1] Standards for Efficient Cryptography Group, "Standards for
 Efficient Cryptography: SEC 1: Elliptic Curve
 Cryptography", SECG SEC1-v2, May 2004,
 <http://www.secg.org/sec1-v2.pdf>.

https://datatracker.ietf.org/doc/html/rfc6655
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
http://www.secg.org/sec1-v2.pdf

Cragie & Hao Expires November 12, 2016 [Page 22]

Internet-Draft ECJPAKE May 2016

 [THREAD] Thread Group, "Thread Commissioning", July 2015,
 <http://threadgroup.org/Portals/0/documents/whitepapers/

Thread%20Commissioning%20white%20paper_v2_public.pdf>.

 [HR08] Hao, F. and P. Ryan, "Password Authenticated Key Exchange
 by Juggling", 16th Workshop on Security Protocols
 (SPW'08), May 2008,
 <http://grouper.ieee.org/groups/1363/Research/

contributions/hao-ryan-2008.pdf>.

 [ABM15] Abdalla, M., Benhamouda, F., and P. MacKenzie, "Security
 of the J-PAKE Password-Authenticated Key Exchange
 Protocol", IEEE Symposium on Security and Privacy, May
 2015,
 <https://www.normalesup.org/~fbenhamo/files/publications/

SP_AbdBenMac15.pdf>.

 [J-PAKE] Hao, F., "J-PAKE: Password Authenticated Key Exchange by
 Juggling", draft-hao-jpake-03 (work in progress), February
 2016, <http://tools.ietf.org/id/draft-hao-jpake-03.txt>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC4492] Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C., and B.
 Moeller, "Elliptic Curve Cryptography (ECC) Cipher Suites
 for Transport Layer Security (TLS)", RFC 4492,
 DOI 10.17487/RFC4492, May 2006,
 <http://www.rfc-editor.org/info/rfc4492>.

 [RFC5116] McGrew, D., "An Interface and Algorithms for Authenticated
 Encryption", RFC 5116, DOI 10.17487/RFC5116, January 2008,
 <http://www.rfc-editor.org/info/rfc5116>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

 [RFC6066] Eastlake 3rd, D., "Transport Layer Security (TLS)
 Extensions: Extension Definitions", RFC 6066,
 DOI 10.17487/RFC6066, January 2011,
 <http://www.rfc-editor.org/info/rfc6066>.

http://threadgroup.org/Portals/0/documents/whitepapers/Thread%20Commissioning%20white%20paper_v2_public.pdf
http://threadgroup.org/Portals/0/documents/whitepapers/Thread%20Commissioning%20white%20paper_v2_public.pdf
http://grouper.ieee.org/groups/1363/Research/contributions/hao-ryan-2008.pdf
http://grouper.ieee.org/groups/1363/Research/contributions/hao-ryan-2008.pdf
https://www.normalesup.org/~fbenhamo/files/publications/SP_AbdBenMac15.pdf
https://www.normalesup.org/~fbenhamo/files/publications/SP_AbdBenMac15.pdf
https://datatracker.ietf.org/doc/html/draft-hao-jpake-03
http://tools.ietf.org/id/draft-hao-jpake-03.txt
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc4492
http://www.rfc-editor.org/info/rfc4492
https://datatracker.ietf.org/doc/html/rfc5116
http://www.rfc-editor.org/info/rfc5116
https://datatracker.ietf.org/doc/html/rfc5246
http://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc6066
http://www.rfc-editor.org/info/rfc6066

Cragie & Hao Expires November 12, 2016 [Page 23]

Internet-Draft ECJPAKE May 2016

 [RFC6655] McGrew, D. and D. Bailey, "AES-CCM Cipher Suites for
 Transport Layer Security (TLS)", RFC 6655,
 DOI 10.17487/RFC6655, July 2012,
 <http://www.rfc-editor.org/info/rfc6655>.

 [RFC7251] McGrew, D., Bailey, D., Campagna, M., and R. Dugal, "AES-
 CCM Elliptic Curve Cryptography (ECC) Cipher Suites for
 TLS", RFC 7251, DOI 10.17487/RFC7251, June 2014,
 <http://www.rfc-editor.org/info/rfc7251>.

11.2. Informative References

 [RFC6090] McGrew, D., Igoe, K., and M. Salter, "Fundamental Elliptic
 Curve Cryptography Algorithms", RFC 6090,
 DOI 10.17487/RFC6090, February 2011,
 <http://www.rfc-editor.org/info/rfc6090>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <http://www.rfc-editor.org/info/rfc6347>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <http://www.rfc-editor.org/info/rfc7252>.

Authors' Addresses

 Robert Cragie
 ARM Ltd.
 110 Fulbourn Road
 Cambridge CB1 9NJ
 UK

 Email: robert.cragie@arm.com

 Feng Hao
 Newcastle University (UK)
 Claremont Tower, School of Computing Science, Newcastle University
 Newcastle upon Tyne NE1 7RU
 UK

 Email: feng.hao@ncl.ac.uk

https://datatracker.ietf.org/doc/html/rfc6655
http://www.rfc-editor.org/info/rfc6655
https://datatracker.ietf.org/doc/html/rfc7251
http://www.rfc-editor.org/info/rfc7251
https://datatracker.ietf.org/doc/html/rfc6090
http://www.rfc-editor.org/info/rfc6090
https://datatracker.ietf.org/doc/html/rfc6347
http://www.rfc-editor.org/info/rfc6347
https://datatracker.ietf.org/doc/html/rfc7252
http://www.rfc-editor.org/info/rfc7252

Cragie & Hao Expires November 12, 2016 [Page 24]

