
tls                                                            R. Cragie
Internet-Draft                                                  ARM Ltd.
Intended status: Informational                                    F. Hao
Expires: November 12, 2016                     Newcastle University (UK)
                                                            May 11, 2016

Elliptic Curve J-PAKE Cipher Suites for Transport Layer Security (TLS)
draft-cragie-tls-ecjpake-00

Abstract

   This document defines new cipher suites based on an Elliptic Curve
   Cryptography (ECC) variant of Password Authenticated Key Exchange by
   Juggling (J-PAKE) for the Transport Layer Security (TLS) and Datagram
   Transport Layer Security (DTLS) protocols.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on November 12, 2016.

Copyright Notice

   Copyright (c) 2016 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Cragie & Hao            Expires November 12, 2016               [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info


Internet-Draft                   ECJPAKE                        May 2016

Table of Contents

1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
1.1.  Requirements Language . . . . . . . . . . . . . . . . . .   3
1.2.  Terminology . . . . . . . . . . . . . . . . . . . . . . .   4

2.  ECJ-PAKE Based AES-CCM Cipher Suites  . . . . . . . . . . . .   4
3.  Notations . . . . . . . . . . . . . . . . . . . . . . . . . .   5
3.1.  Elliptic Curve Points . . . . . . . . . . . . . . . . . .   5
3.2.  Integers  . . . . . . . . . . . . . . . . . . . . . . . .   6
3.3.  Octet Strings . . . . . . . . . . . . . . . . . . . . . .   6
3.4.  Integer to Octet String Conversion  . . . . . . . . . . .   6
3.5.  Octet String to Integer Conversion  . . . . . . . . . . .   7

4.  Handshake . . . . . . . . . . . . . . . . . . . . . . . . . .   7
5.  Failure processing  . . . . . . . . . . . . . . . . . . . . .   7
6.  ECJ-PAKE TLS Extensions and Modification  . . . . . . . . . .   7
6.1.  New Structure Definitions . . . . . . . . . . . . . . . .   8
6.1.1.  Public Key and Schnorr ZKP Pair . . . . . . . . . . .   8
6.1.2.  Schnorr ZKP . . . . . . . . . . . . . . . . . . . . .   8

6.2.  ClientHello and ServerHello TLS Extensions  . . . . . . .   9
6.2.1.  Existing Extensions . . . . . . . . . . . . . . . . .   9
6.2.2.  Additional Extensions . . . . . . . . . . . . . . . .   9

6.3.  ServerKeyExchange . . . . . . . . . . . . . . . . . . . .  10
6.4.  ClientKeyExchange . . . . . . . . . . . . . . . . . . . .  10

7.  Calculations  . . . . . . . . . . . . . . . . . . . . . . . .  11
7.1.  User Identity Selection . . . . . . . . . . . . . . . . .  11
7.2.  Schnorr ZKP Hash Calculation  . . . . . . . . . . . . . .  11
7.3.  Shared Secret . . . . . . . . . . . . . . . . . . . . . .  12
7.3.1.  Example . . . . . . . . . . . . . . . . . . . . . . .  13

7.4.  ClientHello and ServerHello Calculations  . . . . . . . .  13
7.4.1.  Public Key Generation . . . . . . . . . . . . . . . .  13
7.4.2.  Schnorr ZKP Generation  . . . . . . . . . . . . . . .  14
7.4.3.  Schnorr ZKP Verification  . . . . . . . . . . . . . .  14

7.5.  ServerKeyExchange Calculations  . . . . . . . . . . . . .  15
7.5.1.  Public Key Generation . . . . . . . . . . . . . . . .  15
7.5.2.  Schnorr ZKP Generation  . . . . . . . . . . . . . . .  16
7.5.3.  Schnorr ZKP Verification  . . . . . . . . . . . . . .  17

7.6.  ClientKeyExchange Calculations  . . . . . . . . . . . . .  17
7.6.1.  Public Key Generation . . . . . . . . . . . . . . . .  17
7.6.2.  Schnorr ZKP Generation  . . . . . . . . . . . . . . .  18
7.6.3.  Schnorr ZKP Verification  . . . . . . . . . . . . . .  19

7.7.  Premaster Secret Generation . . . . . . . . . . . . . . .  20
7.7.1.  Server Premaster Secret Generation  . . . . . . . . .  20
7.7.2.  Client Premaster Secret Generation  . . . . . . . . .  20

8.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .  21
9.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  21
9.1.  Transport Layer Security (TLS) Parameters . . . . . . . .  21
9.1.1.  TLS Cipher Suite Registry . . . . . . . . . . . . . .  21

9.2.  Transport Layer Security (TLS) Extensions . . . . . . . .  21



Cragie & Hao            Expires November 12, 2016               [Page 2]



Internet-Draft                   ECJPAKE                        May 2016

9.2.1.  ExtensionType Values  . . . . . . . . . . . . . . . .  21
10. Security Considerations . . . . . . . . . . . . . . . . . . .  21
10.1.  Security Proof . . . . . . . . . . . . . . . . . . . . .  21
10.2.  Counter Reuse  . . . . . . . . . . . . . . . . . . . . .  22
10.3.  Password . . . . . . . . . . . . . . . . . . . . . . . .  22
10.4.  Rate Limiting  . . . . . . . . . . . . . . . . . . . . .  22
10.5.  Usage Restrictions . . . . . . . . . . . . . . . . . . .  22

11. References  . . . . . . . . . . . . . . . . . . . . . . . . .  22
11.1.  Normative References . . . . . . . . . . . . . . . . . .  22
11.2.  Informative References . . . . . . . . . . . . . . . . .  24

   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  24

1.  Introduction

   This document defines new cipher suites based on an Elliptic Curve
   Cryptography (ECC) variant of Password Authenticated Key Exchange by
   Juggling (J-PAKE) for version 1.2 of Transport Layer Security (TLS)
   protocol [RFC5246] as well as version 1.2 of the Datagram Transport
   Layer Security (DTLS) protocol [RFC6347].  The cipher suites are AEAD
   cipher suites using AES-CCM [CCM] based on the cipher suites defined
   in [RFC7251], using ECJ-PAKE as an alternative key establishment
   mechanism.

   The existing set of TLS cipher suites are typically aimed at more
   traditional client-server interactions, for example, a web browser to
   web server.  However, TLS and DTLS are increasingly being specified
   for use in Internet-of-Things (IoT) standards for peer-to-peer
   application layer interaction.  For example, DTLS is specified as a
   binding to provide security for the CoAP protocol [RFC7252], which is
   widely used in IoT applications.

   J-PAKE is a balanced password-authenticated key exchange (PAKE)
   protocol resistant to off-line dictionary attack designed by Feng Hao
   and Peter Ryan in 2008 [HR08].  The use of a PAKE for IoT devices is
   highly appropriate as it allows a simple method of commissioning IoT
   devices onto a network without requiring certificates to be issued
   and maintained for each device.  An ECC variant of J-PAKE [J-PAKE] is
   particularly suited to IoT devices, which are often constrained with
   regard to memory and processing power.  The cipher suite
   TLS_ECJPAKE_WITH_AES_128_CCM_8 as defined in this document is
   currently being used in the Thread protocol [THREAD].

1.1.  Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc7251
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc2119
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1.2.  Terminology

   AEAD

      Authenticated Encryption with Associated Data.

   ECJ-PAKE

      Elliptic Curve Cryptography (ECC) variant of Password
      Authenticated Key Exchange by Juggling (J-PAKE).

   ZKP

      Zero-knowledge proof.

2.  ECJ-PAKE Based AES-CCM Cipher Suites

   The cipher suites defined in this document are based on the AES-CCM
   Authenticated Encryption with Associated Data (AEAD) algorithms
   AEAD_AES_128_CCM and AEAD_AES_256_CCM described in [RFC5116].  The
   following cipher suites are defined:

       TLS_ECJPAKE_WITH_AES_128_CCM = {0xTBD, 0xTBD}
       TLS_ECJPAKE_WITH_AES_256_CCM = {0xTBD, 0xTBD}
       TLS_ECJPAKE_WITH_AES_128_CCM_8 = {0xTBD, 0xTBD}
       TLS_ECJPAKE_WITH_AES_256_CCM_8 = {0xTBD, 0xTBD}

   These cipher suites make use of the AEAD capability in TLS 1.2
   [RFC5246].  Cipher suites ending with "8" use eight-octet
   authentication tags; the other cipher suites have 16-octet
   authentication tags.  The HMAC truncation option described in

Section 7 of [RFC6066] (which negotiates the "truncated_hmac" TLS
   extension) does not have an effect on the cipher suites defined in
   this document, because they do not use HMAC to protect TLS records.

   The "nonce" input to the AEAD algorithm is as defined in [RFC6655].

   These cipher suites make use of the default TLS 1.2 Pseudorandom
   Function (PRF), which uses HMAC with the SHA-256 hash function.

   The following stipulations apply to the use of elliptic curves:

   o  Curves with a cofactor equal to one SHOULD be used; this
      simplifies their use.

   o  The uncompressed point format MUST be supported.  Other point
      formats MAY be used.

https://datatracker.ietf.org/doc/html/rfc5116
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6066#section-7
https://datatracker.ietf.org/doc/html/rfc6655
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   o  Fundamental ECC algorithms [RFC6090] MAY be used as an
      implementation method.

3.  Notations

   This section describes the notations used in this document.

3.1.  Elliptic Curve Points

   The generator (base point) of an elliptic curve is represented by the
   letter 'G':

      G

   A modified generator is represented by the letter 'G' concatenated
   with a single uppercase character:

      GB

   Elliptic curve points are represented using a single uppercase
   character or a single uppercase character concatenated with a single
   lowercase character or decimal digit, for example:

      X

      Xc

      X2

   Conversion to and from elliptic curve points to octet strings is as
   specified in Sections 2.3.3 and 2.3.4 of [SEC1].

   Point multiplication is shown as an elliptic curve point multiplied
   by a scalar integer using the '*' operator, for example:

      G*x

   Point addition or subtraction is shown as the addition or subtraction
   of elliptic curve points or scalar multiplied elliptic curve points
   using the '+' and '-' operators respectively, for example:

      X1 + X3 + X4

      X*h + G*r

      Xs - X4*x2*s

https://datatracker.ietf.org/doc/html/rfc6090
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3.2.  Integers

   Integers are represented using a single lowercase character or a
   single lowercase character followed by a single lowercase character
   or decimal digit, for example:

      x

      xc

      x2

   Where expressed, integers are shown in hexadecimal and/or decimal
   form.  Hexadecimal numbers have an '0x' prefix.  For example:

      0x12ab34cd

      3132110061

   Integer multiplication is shown as two integers multiplied together
   using the '*' operator:

      x*s

   Integer addition or subtraction is shown as the addition or
   subtraction of integers or multiplied integers using the '+' and '-'
   operators respectively:

      v - x*h

3.3.  Octet Strings

   Octet strings are expressed in a hexadecimal form, with no '0x'
   prefix and with a space separator, first octet leftmost, for example:

      12 ab 34 cd

3.4.  Integer to Octet String Conversion

   Integer to octet string conversion SHALL be performed as stated in
   Section 2.3.7 of [SEC1].  It is represented as follows:

      M = str(mlen, x)

   where x, mlen, and M are the parameters as stated in Section 2.3.7 of
   [SEC1].
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3.5.  Octet String to Integer Conversion

   Octet string to integer conversion SHALL be as stated in section
2.3.8 of [SEC1].  It is represented as follows:

      x = int(mlen, M)

   where x, mlen, and M are the parameters as stated in Section 2.3.8 of
   [SEC1].

4.  Handshake

   The TLS-ECJ-PAKE handshake is as follows, augmented with parameters
   in braces to show the ECJ-PAKE material conveyed in each case:

          Client                                        Server
          ------                                        ------
          ClientHello          -------->
          {(X1,ZKP(X1)),
          (X2,ZKP(X2))}                            ServerHello
                                               {(X3, ZKP(X3)),
                                                (X4, ZKP(X4))}
                                             ServerKeyExchange
                                                 {Xs, ZKP(Xs)}
                               <--------       ServerHelloDone
          ClientKeyExchange
          {Xc, ZKP(Xc)}
          [ChangeCipherSpec]
          Finished             -------->
                                            [ChangeCipherSpec]
                               <--------              Finished
          Application Data     <------->      Application Data

   Figure 1: Message flow in a TLS-ECJ-PAKE handshake

5.  Failure processing

   If there are failures for any reason on client or server side, for
   example, Schnorr ZKP verification or missing extensions, the
   handshake SHALL abort immediately and send a TLS Error Alert message
   to the peer, using code 40 (handshake_failure) (see Section 7.2 of
   [RFC5246]).

6.  ECJ-PAKE TLS Extensions and Modification

   This section describes existing and newly-defined extensions required
   for ECJ-PAKE-TLS.

https://datatracker.ietf.org/doc/html/rfc5246#section-7.2
https://datatracker.ietf.org/doc/html/rfc5246#section-7.2
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6.1.  New Structure Definitions

   TLS-ECJ-PAKE requires new structure definitions for:

   o  Public key and Schnorr ZKP pair

   o  Schnorr ZKP

6.1.1.  Public Key and Schnorr ZKP Pair

   The TLS structure is as follows:

       struct {
           ECPoint X;
           ECSchnorrZKP zkp;
       } ECJPAKEKeyKP;

   X

      Public key represented as an elliptic curve point.  ECPoint is
      defined in [RFC4492].

   zkp

      ECSchnorrZKP is defined in Section 6.1.2.

6.1.2.  Schnorr ZKP

   The TLS structure is as follows:

       struct {
           ECPoint V;
           opaque r<1..2^8-1>;
       } ECSchnorrZKP;

   V

      Ephemeral public key represented as an elliptic curve point.
      ECPoint is defined in [RFC4492].

   r

      Schnorr signature.

https://datatracker.ietf.org/doc/html/rfc4492
https://datatracker.ietf.org/doc/html/rfc4492
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6.2.  ClientHello and ServerHello TLS Extensions

6.2.1.  Existing Extensions

   The following TLS extensions defined in Section 4 of [RFC4492] SHALL
   be present in ClientHello:

   o  Supported Elliptic Curves Extension (NamedCurve,
      EllipticCurveList)

   o  Supported Point Formats Extension (ECPointFormat,
      ECPointFormatList)

   and the following TLS extension defined in Section 4 of [RFC4492]
   SHALL be present in ServerHello:

   o  Supported Point Formats Extension (ECPointFormat,
      ECPointFormatList)

6.2.2.  Additional Extensions

   The following extension SHALL additionally be present in both
   ClientHello and ServerHello:

       enum { ecjpake_key_kp_pair(TBC) } ExtensionType;

       struct {
           opaque identity<0..2^16-1>;
           ECJPAKEKeyKP ecjpake_key_kp_pair_list[2];
       } ECJPAKEKeyKPPairList;

   identity

      MAY be included if the Client or Server needs to uniquely identify
      themselves to the other party.  An identity is used in the Schnorr
      ZKP hash calculation (see Section 7.2).

   ecjpake_key_kp_pair_list

      The list is precisely two elements long.  The list in a
      ClientHello extension conveys public keys X1 and X2 and the list
      in a ServerHello extension conveys public keys X3 and X4, with
      associated Schnorr ZKPs.

   Note: When used in conjunction with DTLS and denial-of-service
   countermeasures as described in Section 4.2.1 of [RFC6347], the
   ECJPAKEKeyKPPairList in the subsequent ClientHello message SHALL be
   the same as the ECJPAKEKeyKPPairList in initial ClientHello message,

https://datatracker.ietf.org/doc/html/rfc4492#section-4
https://datatracker.ietf.org/doc/html/rfc4492#section-4
https://datatracker.ietf.org/doc/html/rfc6347#section-4.2.1
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   i.e. the public keys X1 and X2 and associated Schnorr ZKPs SHALL be
   the same.

6.3.  ServerKeyExchange

   ServerKeyExchange is extended as follows:

       enum { ecjpake } KeyExchangeAlgorithm;

   ecjpake

      Indicates the ServerKeyExchange message contains
      ServerECJPAKEParams.

   ServerKeyExchange for ecjpake SHALL be formatted as follows:

       struct {
           ECParameters curve_params;
           ECJPAKEKeyKP ecjpake_key_kp;
       } ServerECJPAKEParams;

       select (KeyExchangeAlgorithm) {
           case ecjpake:
               ServerECJPAKEParams params;
       } ServerKeyExchange;

6.4.  ClientKeyExchange

   ClientKeyExchange is extended as follows:

       enum { ecjpake } KeyExchangeAlgorithm;

   ecjpake

      Indicates the ClientKeyExchange message contains
      ClientECJPAKEParams.

   ClientKeyExchange for ecjpake SHALL be formatted as follows:

       struct {
           ECJPAKEKeyKP ecjpake_key_kp;
       } ClientECJPAKEParams;

       select (KeyExchangeAlgorithm) {
           case ecjpake:
               ClientECJPAKEParams params;
       } ClientKeyExchange;
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7.  Calculations

   This section describes the calculations required to populate the data
   conveyed between Client and Server and also calculations required to
   verify knowledge proofs.

   The following notation is used throughout this section:

      Order of the base point: n

7.1.  User Identity Selection

   The Schnorr ZKP hash calculation requires non-confidential user
   identities.  These identities need to be unique in the context of a
   transaction and be different for each party.  In a peer-to-peer
   transaction where there is no ambiguity of identity, the identities
   can be a simple string representing the Client and Server
   respectively:

    +------------+----------+-------------------+--------------------+
    | Originator | Name     | Identity          | Length of identity |
    +------------+----------+-------------------+--------------------+
    | Client     | "client" | 63 6c 69 65 6e 74 | 6                  |
    | Server     | "server" | 73 65 72 76 65 72 | 6                  |
    +------------+----------+-------------------+--------------------+

               Table 1: Simple Client and Server identities

   In a multi-party transaction, each party SHOULD additionally provide
   an identity in the ClientHello and/or ServerHello to uniquely
   distinguish their user identity.

7.2.  Schnorr ZKP Hash Calculation

   The hash calculation is defined as follows:

         +-------------------+-----------------------------------+
         | Public Key        | Calculation                       |
         +-------------------+-----------------------------------+
         | X1, X2, X3 and X4 | h = SHA-256(G, V, X, ID) mod n    |
         | Xs                | h = SHA-256(GB, V, Xs, IDs) mod n |
         | Xc                | h = SHA-256(GA, V, Xc, IDc) mod n |
         +-------------------+-----------------------------------+

                   Table 2: Schnorr ZKP Hash Calculation

   Each item in the hash calculation is prepended with its length in
   octets represented an octet (length 4), formed by applying integer to
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   octet string conversion as defined in Section 3.4.  For example, the
   length of an uncompressed octet string representation of a public key
   is 65 (decimal) therefore the octet string (length 4) representation
   of 65 in hexadecimal is:

   o  00 00 00 41

   Each public key (elliptic curve point) is first converted to an octet
   string according to Section 2.3.3 of [SEC1].

   The concatentation order of the hash is as follows:

   1.  G (or GA, GB): Generator

   2.  V: ZKP ephemeral public key

   3.  X (or Xs, Xc): Public key to be verified

   4.  ID (or IDc, IDs): User ID (see Section 7.1)

   The hash is therefore performed on the concatenation as follows:

   o  H = SHA-256(lenG || G || lenV || V || lenX || X || lenID || ID)

   An integer representation of the hash (see Section 3.5) is produced:

   o  h = int(H)

7.3.  Shared Secret

   The shared secret for the ServerKeyExchange and ClientKeyExchange
   calculations is required to be an integer in the range 1 to n-1.
   This section shows an example of how this could be practically
   accomplished using an initial password.  The initial password is
   usually represented visually as a variable length character string
   using a subset of internationally recognized characters from the
   UTF-8 character set, which prevents the possibility of the resulting
   shared secret having the value 0.  The initial password is then be
   converted into an octet string <password> using UTF-8 conversion.
   The integer shared secret calculation is thus defined as follows,
   using the function defined in Section 3.5:

      s = int(<password>) mod n
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7.3.1.  Example

   Password:

      "d45yj8e"

   Equivalent octet string M using UTF-8 conversion (no null
   termination):

      64 34 35 79 6a 38 65

   Length mlen:

      7

   Shared secret:

      0x643435796a3865

      28204901945981028 (decimal)

7.4.  ClientHello and ServerHello Calculations

   The structure ECJPAKEKeyKPPairList conveys the public key and
   associated Schnorr ZKP for ClientHello (X1 and X2) and ServerHello
   (X3 and X4).

7.4.1.  Public Key Generation

   For X1, X2, X3 and X4, the value for the public key part X of the
   ECJPAKEKeyKP structure is generated as follows:

   The inputs are:

   o  Base point: G

   o  Order of the base point: n

   The public key of the key pair is calculated as follows:

   1.  A random integer in the range 1 to n-1 is assigned to private key
       x.

   2.  A public key associated with x is generated and assigned to X:

          X = G*x
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   3.  X is assigned to the public key part X of the ECJPAKEKeyKP
       structure.

7.4.2.  Schnorr ZKP Generation

   For X1, X2, X3 and X4, the values for the ZKP part zkp.V and zkp.r of
   the ECJPAKEKeyKP structure are generated as follows:

   The inputs are:

   o  Base point: G

   o  Order of the base point: n

   o  Identity of originator: ID (IDc or IDs depending on context)

   o  Key pair to provide a ZKP of: (X,x) (public key: X, private key:
      x), where X is X1, X2, X3, or X4 and x is x1, x2, x3, or x4,
      depending on context

   The ZKP is generated as follows:

   1.  A random integer in the range 1 to n-1 is assigned to ephemeral
       private key v.

   2.  An ephemeral public key associated with v is generated and
       assigned to V:

          V = G*v

   3.  An integer representation of a hash (see Section 7.2) is
       generated and assigned to h:

          h = int(SHA-256(G, V, X, ID)) mod n

   4.  A signature is generated and assigned to r:

          r = v - x*h mod n

   5.  V and r are assigned to the ZKP part zkp.V and zkp.r of the
       ECJPAKEKeyKP structure respectively.

7.4.3.  Schnorr ZKP Verification

   For X1, X2, X3 and X4, the ECJPAKEKeyKP structure is verified as
   follows:

   The inputs are:
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   o  Base point: G

   o  Order of the base point: n

   o  Identity of originator: ID (IDc or IDs depending on context)

   o  Public key to be verified: X (X1, X2, X3, or X4 depending on
      context)

   o  ZKP ephemeral public key: V

   o  ZKP signature: r

   The ZKP is verified as follows:

   1.  An integer representation of a hash (see Section 7.2) is
       generated and assigned to h:

          h = int(SHA-256(G, V, X, ID)) mod n

   2.  A check point is generated and assigned to V':

          V'= X*h + G*r

   3.  The points V' and V are compared.  If equal then the ZKP
       verifies, otherwise it does not verify.

7.5.  ServerKeyExchange Calculations

   The structure ECJPAKEKeyKP conveys the public key and associated
   Schnorr ZKP for Xs.

7.5.1.  Public Key Generation

   For Xs, the value for the public key part X of the ECJPAKEKeyKP
   structure is generated as follows:

   The inputs are:

   o  Public keys: X1, X2 and X3

   o  Private key: x4

   o  Shared secret: s (integer format, see Section 7.3)

   o  Order of the base point: n

   The public key of the key pair is calculated as follows:
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   1.  A new generator is generated and assigned to GB:

          GB = X1 + X2 + X3

   2.  A private key is generated and assigned to xs:

          xs = x4*s mod n

   3.  A public key associated with xs is generated and assigned to Xs:

          Xs = GB*xs

   4.  Xs is assigned to the public key part X of the ECJPAKEKeyKP
       structure.

7.5.2.  Schnorr ZKP Generation

   For Xs, the values for the ZKP part zkp.V and zkp.r of the
   ECJPAKEKeyKP structure are generated as follows:

   The inputs are:

   o  New generator: GB

   o  Order of the base point: n

   o  Identity of originator: IDs

   o  Key pair to provide a ZKP of: (Xs,xs) (public key: Xs, private
      key: xs)

   The ZKP is generated as follows:

   1.  A random integer in the range 1 to n-1 is assigned to ephemeral
       private key v.

   2.  An ephemeral public key associated with v is generated and
       assigned to V:

          V = GB*v

   3.  An integer representation of a hash (see Section 7.2) is
       generated and assigned to h:

          h = int(SHA-256(GB, V, Xs, IDs)) mod n

   4.  A signature is generated and assigned to r:
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          r = v - xs*h mod n

   5.  V and r are assigned to the ZKP part zkp.V and zkp.r of the
       ECJPAKEKeyKP structure respectively.

7.5.3.  Schnorr ZKP Verification

   For Xs, the ECJPAKEKeyKP structure is verified as follows:

   The inputs are:

   o  New generator: GB

   o  Order of the base point: n

   o  Identity of originator: IDs

   o  Public key to be verified: Xs

   o  ZKP ephemeral public key: V

   o  ZKP signature: r

   The ZKP is verified as follows:

   1.  An integer representation of a hash (see Section 7.2) is
       generated and assigned to h:

          h = int(SHA-256(GB, V, Xs, IDs)) mod n

   2.  A check point is generated and assigned to V':

          V'= X*h + GB*r

   3.  The points V' and V are compared.  If equal then the ZKP
       verifies, otherwise it does not verify.

7.6.  ClientKeyExchange Calculations

   The structure ECJPAKEKeyKP conveys the public key and associated
   Schnorr ZKP for Xc.

7.6.1.  Public Key Generation

   For Xc, the value for the public key part X of the ECJPAKEKeyKP
   structure is generated as follows:

   The inputs are:
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   o  Public keys: X1, X3 and X4

   o  Private key: x2

   o  Shared secret: s (integer format, see Section 7.3)

   o  Order of the base point: n

   The public key of the key pair is calculated as follows:

   1.  A new generator is generated and assigned to GA:

          GA = X1 + X3 + X4

   2.  A private key is generated and assigned to xc:

          xc = x2*s mod n

   3.  A public key associated with xs is generated and assigned to Xc:

          Xc = GA*xc

   4.  Xc is assigned to the public key part X of the ECJPAKEKeyKP
       structure.

7.6.2.  Schnorr ZKP Generation

   For Xc, the values for the ZKP part zkp.V and zkp.r of the
   ECJPAKEKeyKP structure are generated as follows:

   The inputs are:

   o  New generator: GA

   o  Order of the base point: n

   o  Identity of originator: IDc

   o  Key pair to provide a ZKP of: (Xc,xc) (public key: Xc, private
      key: xc)

   The ZKP is generated as follows:

   1.  A random integer in the range 1 to n-1 is assigned to ephemeral
       private key v.

   2.  An ephemeral public key associated with v is generated and
       assigned to V:
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          V = GA*v

   3.  An integer representation of a hash (see Section 7.2) is
       generated and assigned to h:

          h = int(SHA-256(GA, V, Xc, IDc)) mod n

   4.  A signature is generated and assigned to r:

          r = v - xc*h mod n

   5.  V and r are assigned to the ZKP part zkp.V and zkp.r of the
       ECJPAKEKeyKP structure respectively.

7.6.3.  Schnorr ZKP Verification

   For Xc, the ECJPAKEKeyKP structure is verified as follows:

   The inputs are:

   o  New generator: GA

   o  Order of the base point: n

   o  Identity of originator: IDc

   o  Public key to be verified: Xc

   o  ZKP ephemeral public key: V

   o  ZKP signature: r

   The ZKP is verified as follows:

   1.  An integer representation of a hash (see Section 7.2) is
       generated and assigned to h:

          h = int(SHA-256(GA, V, Xc, IDc)) mod n

   2.  A check point is generated and assigned to V':

          V'= X*h + GA*r

   3.  The points V' and V are compared.  If equal then the ZKP
       verifies, otherwise it does not verify.
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7.7.  Premaster Secret Generation

   The TLS-ECJ-PAKE handshake relies on the generation of identical
   premaster secrets at the client and server to verify the key
   establishment.  The use of the protected Finished messages is
   therefore used for key confirmation purposes and to verify the
   handshake.

7.7.1.  Server Premaster Secret Generation

   The inputs are:

   o  Public key of the client: Xc

   o  Public key: X2

   o  Private key: x4

   o  Shared secret: s (integer format, see Section 7.3)

   The premaster secret is generated as follows:

   1.  Compute PMSK:

          PMSK = (Xc - X2*x4*s)*x4

   2.  Compute PMS:

          PMS = SHA-256(str(32, X coordinate of PMSK))

   3.  The master secret and key expansion is generated according to
Section 8.1 and Section 6.3 of [RFC5246].

7.7.2.  Client Premaster Secret Generation

   The inputs are:

   o  Public key of the server: Xs

   o  Public key: X4

   o  Private key: x2

   o  Shared secret: s (integer format, see Section 7.3)

   The premaster secret is generated as follows:

   1.  Compute PMSK:

https://datatracker.ietf.org/doc/html/rfc5246#section-6.3
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          PMSK = (Xs - X4*x2*s)*x2

   2.  Compute PMS:

          PMS = SHA-256(str(32, X coordinate of PMSK))

   3.  The master secret and key expansion is generated according to
Section 8.1 and Section 6.3 of [RFC5246].
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9.  IANA Considerations

9.1.  Transport Layer Security (TLS) Parameters

9.1.1.  TLS Cipher Suite Registry

   IANA is requested to add the following entries in the TLS Cipher
   Suite Registry:

       TLS_ECJPAKE_WITH_AES_128_CCM = {0xTBD, 0xTBD}
       TLS_ECJPAKE_WITH_AES_256_CCM = {0xTBD, 0xTBD}
       TLS_ECJPAKE_WITH_AES_128_CCM_8 = {0xTBD, 0xTBD}
       TLS_ECJPAKE_WITH_AES_256_CCM_8 = {0xTBD, 0xTBD}

9.2.  Transport Layer Security (TLS) Extensions

9.2.1.  ExtensionType Values

   IANA is requested to add the following entries in the ExtensionType
   Values:

       ecjpake_key_kp_pair = TBD

10.  Security Considerations

10.1.  Security Proof

   An independent study that proves security of J-PAKE in a model with
   algebraic adversaries and random oracles can be found in [ABM15].

https://datatracker.ietf.org/doc/html/rfc5246#section-6.3
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10.2.  Counter Reuse

   The cipher suites described in this document are AES-CCM-based AEAD
   cipher suites, therefore the security considerations for counter
   reuse described in [RFC6655] also apply to these cipher suites.

10.3.  Password

   The password forming the basis of the shared secret SHOULD be
   distributed in a secure out-of-band channel.  In the specific case of
   [THREAD], this is achieved by the user enabling the use of the
   password only through a commissioning session where the user is in
   control of adding details of devices they wish to add to the Thread
   network.

10.4.  Rate Limiting

   An attacker could attempt to engage repeatedly with a ECJ-PAKE server
   in an attempt to guess the password.  Servers SHOULD take steps to
   ensure the opportunity for repeated contact is limited.

10.5.  Usage Restrictions

   The cipher suites described in this document have primarily been
   developed to enable authentication and authorization for network
   access for IoT devices, as described in [THREAD].  It is therefore
   RECOMMENDED that the use of these cipher suite is restricted to
   similar uses and SHOULD NOT be used in conjunction with web servers
   and web browsers unless consideration is given to secure entry of
   passwords in a browser.
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