
Network Working Group D. Cridland
Internet-Draft Surevine Ltd
Intended status: Standards Track January 7, 2018
Expires: July 11, 2018

Client Key SASL mechanism
draft-cridland-kitten-clientkey-00

Abstract

 This document proposes a SASL mechanism which might be used to
 authenticate specific clients on devices owned by a user.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 11, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Cridland Expires July 11, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft Client Key SASL mechanism January 2018

Table of Contents

1. Requirements notation . 2
2. Overview . 2
2.1. Initial Flow . 3
2.2. Subsequent Authentication 3

3. Notation . 3
4. The CLIENT-KEY mechanism 4
4.1. Mechanism Name . 4
4.2. Commencing State . 4
4.3. Client Initial Response 5
4.4. Server Addition Data With Success 5

5. Additional Application Protocol Support 6
5.1. Client Registration 6
5.2. Key Revocation . 7
5.3. Key Enumeration . 7

6. Security Considerations 7
6.1. Exposure of key . 7
6.2. Dangerous Implementation Shortcuts 8

7. References . 8
7.1. Normative References 8
7.2. Informative References 9

 Author's Address . 9

1. Requirements notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Overview

 Authentication within a "pure" SASL ([RFC4422]) environment - ie,
 without call-outs to SAML or OAuth - might include TOTP pathways such
 as [XEP-0388] proposes, and may also include multiple round-trips,
 typically to strengthen security on password-based protocols.

 It seems desirable to design a SASL mechanism to handle the
 "reauthentication" case needed to avoid client-side storage of
 reusable password data, bypass TOTP and similar, and allow for low
 RTT counts. CLIENT-KEY is a SASL mechanism designed to be used when
 supported by an application protocol framework which allows users to
 enumerate and invalidate individual clients or devices. It is
 designed to be a single round-trip, use channel binding where
 available, and avoid storage of plaintext-equivalent credentials on
 the server.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4422

Cridland Expires July 11, 2018 [Page 2]

Internet-Draft Client Key SASL mechanism January 2018

2.1. Initial Flow

 A typical interaction with a new client might look as follows:

 1. On connecting, the client uses a traditional mechanism based on a
 password, such as SCRAM.

 2. After authenticating successfully with SCRAM, the client is put
 through a TOTP challenge.

 3. The client offers to the user to "remember this device" or
 similar. If the user wants to do so, the client performs device
 registration and obtains a "client key", storing it locally.

2.2. Subsequent Authentication

 The next time the client need to authenticate, it can use CLIENT-KEY:

 1. On connecting, the client uses CLIENT-KEY to authenticate.

 2. The server notes that CLIENT-KEY has been used, and elides TOTP.

 If its client key is due to expire, it MAY at this point re-register,
 generating a new client key.

3. Notation

 This document uses relatively common notations for pseudocode:

 H(message) The H function is a cryptographic hash function computing
 the digest of the message - in this document always SHA-256. The
 function returns some binary data. It is assumed to be both
 collision-resistant and too difficult to practically guess message
 from H(message).

 HMAC(key, message) The HMAC function computes a MAC of the second
 argument, keyed by the first argument, according to the algorithm
 defined in [RFC2104]. It is assumed that given HMAC(key, message)
 and message, it is too difficult to practically guess key. Given
 only HMAC(key, message), it is assumed that guessing message is
 difficult within a reasonable time. The hash function used within
 the HMAC algorithm is H above.

 BASE64(message) The BASE64 function returns a string which
 represents the message encoded according to [RFC4648].

 NORMALIZE(string) The NORMALIZE function returns a string which has
 been processed by whatever one normalizes with these days.

https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc4648

Cridland Expires July 11, 2018 [Page 3]

Internet-Draft Client Key SASL mechanism January 2018

 R(n) The R function returns a sequence of n octets generated
 randomly with high entropy.

 L(message) This function returns the number of octets in the message
 (ie, the message length in octets).

 HASHLEN This constant is the equivalent of L(H("")) - it is the
 length of the output of the hash function.

 XOR(msg1, msg2) The XOR function returns a bitwise XOR of msg1
 against msg2. These two arguments MUST be the same length.

4. The CLIENT-KEY mechanism

4.1. Mechanism Name

 This document defines two mechanisms, CLIENT-KEY and CLIENT-KEY-PLUS.
 Both are based on SHA-256. Future documents may offer alternative
 hash algorithms.

4.2. Commencing State

 The client has information stored as follows:

 ClientID The ClientID, an opaque string which uniquely identifies
 the device and client instance for that authorization-id.

 Secret The Client Secret Key, a random sequence of HASHLEN octets.

 ValidationKey The Client Validation Key, a random sequence of
 HASHLEN octets.

 Counter A Counter which records the number of times the Secret has
 been used.

 Expiry The Expiry of the client key, after which is it no longer
 valid.

 If the client does not have these values stored, it obtains them by
 authenticating as the user via some other mechanism and registering
 as described below.

 The server has information stored during this registration as
 follows:

 ClientID As above.

 Counter Also as above.

Cridland Expires July 11, 2018 [Page 4]

Internet-Draft Client Key SASL mechanism January 2018

 EncryptedSecret This has the value XOR(Secret, ValidationKey).

 Validator This has the value HMAC(EncryptedSecret, ValidationKey).

 Expiry The Expiry of the client key, after which is it no longer
 valid.

4.3. Client Initial Response

 The client constructs an initial response as follows:

 client-initial-response = gs2-header NUL authcid NUL client-id
 NUL client-hmac NUL client-validation-key
 authcid = 1*UTF-8-char
 client-id = 1*UTF-8-char
 client-hmac = base64string
 ; = BASE64(HMAC(Secret, client-hmac-input))
 client-hmac-input = "Client Response" NUL authcid-norm
 NUL client-id NUL Counter
 [NUL channel-binding-data]
 ; optional channel binding if -PLUS is used.
 client-validation-key = base64string
 ; = BASE64(ValidationKey)
 authcid-norm = 1*UTF-8-char
 ; = NORMALIZE(username)
 username = 1*UTF-8-char

 The client and server both calculate the client-hmac by:

 1. Creating a message as: "Client Response" NUL authcid NUL client-
 id NUL counter

 2. If CLIENT-KEY-PLUS is used, append a NUL followed by the channel
 binding information.

 3. Calculating an HMAC using SHA-256 of the message, keyed by the
 Secret.

 4. Base64-encoding the result.

 After the client sends the response, the counter is incremented.

4.4. Server Addition Data With Success

 When the client's initial response is received, the server first
 validates the ValidationKey provided, by checking if
 HMAC(EncryptedSecret, ValidationKey) matches its stored Validator.

Cridland Expires July 11, 2018 [Page 5]

Internet-Draft Client Key SASL mechanism January 2018

 If this is not the case, the authentication attempt is rejected with
 no further action.

 If it matches, then any failure from this point on MUST result in
 this key being revoked.

 The server extracts Secret from EncryptedSecret as
 XOR(EncryptedSecret, ValidationKey), and calculates its own value of
 client-hmac. At this point, the Counter is updated - note that this
 step is performed prior to comparing the two client-hmac values.

 Finally the two client-hmac values are compared. If the client's
 matches that calculated by the server, the authentication succeeds.
 Success data is passed back as follows:

 server-success-data = base64string
 ; = BASE64(HMAC(Secret, server-hmac-input))
 server-hmac-input = "Server Response" NUL authcid
 NUL client-id NUL Counter
 [NUL channel-binding-data]
 ; optional channel binding if -PLUS is used.

 On receipt of this, the client calculates its own version. If the
 computed value of server-success-data differs from that supplied by
 the server it should abort the connection.

5. Additional Application Protocol Support

5.1. Client Registration

 A client obtains the key by sending a message to the server
 containing four items of information to the server:

 1. A ClientID, which is a identifier unique within the scope of the
 authzid for the client instance, expressed as an opaque string.
 Good options for this include a UUID, better options include a
 hash of the device serial number or similar.

 2. A Client Name, which is a (potentially non-unique) human-readable
 name for the client instance. For example, "MegaBrowser on
 Linux", or "SuperClient on MyPhone".

 3. A ValidationKey, used within the mechanism to validate that the
 client knows the key, and decrypt the secret. This MUST be
 random, and consist of HASHLEN octets. An effective method for
 generating this is either R(HASHLEN) or H(R(40)).

Cridland Expires July 11, 2018 [Page 6]

Internet-Draft Client Key SASL mechanism January 2018

 4. A requested TTL, which gives the lifetime of the key. This might
 be short, for session-based keys, or longer for persistent keys.

 The server then generates Secret, and calculates EncryptedSecret as
 XOR(Secret, ValidationKey). Secret MUST be HASHLEN random octets,
 and again an effective method might be R(HASHLEN) or H(R(40)). It
 then stores Validator as H(ValidationKey) and EncryptedSecret only.

 The server then responds with a generated value of EncryptedSecret
 and a timestamp giving the expiry time. This is the only point at
 which the EncryptedSecret should be transferred.

 The server MUST store only the items noted above, and most especially
 MUST NOT store Secret or ValidationKey.

5.2. Key Revocation

 Any authenticated client may revoke a key belonging to the same user
 by sending a message to the server containing the ClientID
 corresponding to an existing key. This simply causes the record of
 the ClientID, Counter, EncryptedSecret and Validator to be removed.

5.3. Key Enumeration

 Any authenticated client may enumerate keys belonging to the same
 user by sending a message to the server. The server responds with a
 list of items each containing a ClientID and the Client Name. Note
 that the key is not included.

6. Security Considerations

 This document is concerned with security throughout. This section is
 concerned with specific threats and mitigations.

 Our threat model assumes that an attacker can (with effort) obtain
 the complete server database, may observe network traffic between the
 client and server, and may obtain whatever data is stored on an
 individual client.

6.1. Exposure of key

 The Secret transferred from the server to the client during client
 registration is clearly vulnerable to anyone able to observe the
 unencrypted data on the connection. The connection therefore MUST be
 protected by TLS or equivalent encryption.

 It may also be extracted from the client at any point, since for use
 it needs to be stored in such a way that the Secret, ValidationKey

Cridland Expires July 11, 2018 [Page 7]

Internet-Draft Client Key SASL mechanism January 2018

 and Counter are able to be retrieved. The effect of such compromise
 can be mitigated by using relatively short expiry times, but it is
 naturally mitigated by use of the counter, which means that an
 attacker using the key causes the key to be invalidated on the
 original device, alerting the user to a compromise and a likely
 revocation cycle. This attack is undetectable if a long-expiry key
 is unused by the legitimate client; we therefore recommend short-
 expiry keys and that users are advised to revoke the keys of lost
 devices.

 The Secret cannot be obtained due to a server breach as long as only
 the EncryptedSecret is stored. Servers MUST NOT store the Secret
 itself. Similarly, the ValidationKey MUST NOT be stored on the
 server.

6.2. Dangerous Implementation Shortcuts

 If the server does not test that the HMAC(EncryptedSecret,
 ValidationKey) matches Validator, then an attacker who has obtained
 the server database can supply any value for ValidationKey and simply
 use XOR(EncryptedSecret,ValidatorKey) as their corresponding value
 for Secret. This would allow an attacker access based only on data
 obtained from the server.

 A client or server using a weak random function R() may mean its
 chosen values for ValidationKey and Secret respectively are able to
 be guessed.

 If the server does not revoke the key on mismatches after the
 ValidationKey is known to be correct, then an attacker can try
 multiple values for Counter, increasingly the likelyhood of
 discovering a match.

 If the server revokes the key when the ValidationKey does not match
 the Validator, this opens a denial of service attack whereby an
 attacker can potentially revoke a user's keys.

7. References

7.1. Normative References

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 DOI 10.17487/RFC2104, February 1997,
 <https://www.rfc-editor.org/info/rfc2104>.

https://datatracker.ietf.org/doc/html/rfc2104
https://www.rfc-editor.org/info/rfc2104

Cridland Expires July 11, 2018 [Page 8]

Internet-Draft Client Key SASL mechanism January 2018

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4422] Melnikov, A., Ed. and K. Zeilenga, Ed., "Simple
 Authentication and Security Layer (SASL)", RFC 4422,
 DOI 10.17487/RFC4422, June 2006,
 <https://www.rfc-editor.org/info/rfc4422>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <https://www.rfc-editor.org/info/rfc4648>.

7.2. Informative References

 [XEP-0388]
 Cridland, D., "Extensible SASL Profile", August 2017.

Author's Address

 Dave Cridland
 Surevine Ltd
 PO Box 1136
 Guildford GU1 9ND
 UK

 Phone: +44 845 468 1066
 Email: dave.cridland@surevine.com

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc4422
https://www.rfc-editor.org/info/rfc4422
https://datatracker.ietf.org/doc/html/rfc4648
https://www.rfc-editor.org/info/rfc4648

Cridland Expires July 11, 2018 [Page 9]

