
Network Working Group D. Cridland
Internet-Draft A. Melnikov
Expires: August 30, 2007 Isode Limited
 February 26, 2007

The Hash Exchange Authentication SASL Mechanism
draft-cridland-sasl-hexa-00

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on August 30, 2007.

Copyright Notice

 Copyright (C) The IETF Trust (2007).

Abstract

 This memo defines and discusses a SASL mechanism that is based on the
 exchange of hashes. It does not require the storage of a plaintext
 equivalent on the server, is simple to implement, and provides a
 reasonable level of security.

Cridland & Melnikov Expires August 30, 2007 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft SASL HEXA February 2007

Table of Contents

1. Conventions used in this document 3
2. Introduction . 3
2.1. Rationale . 3
2.1.1. Deployability . 3
2.1.2. Hash Agility . 3
2.1.3. Ease of Implementation 4

3. Notations and Definitions 4
3.1. HMAC and Hash functions 4
3.1.1. Notation . 4

3.2. Wire Message Format 5
3.3. Prior Setup . 5
3.4. Authentication Process 5
3.4.1. Initial client message 5
3.4.2. Server challenge message 6
3.4.3. Client response message 6
3.4.4. Server Authentication and Mutual Auth 6

4. Mandatory to Implement . 7
5. Formal Syntax . 7
6. Security Considerations 8
6.1. Plaintext Equivalents 8
6.2. Hash algorithm usage 8
6.3. Resistance to attacks 9

7. References . 9
7.1. Normative References 9
7.2. Informative References 10

 Authors' Addresses . 10
 Intellectual Property and Copyright Statements 12

Cridland & Melnikov Expires August 30, 2007 [Page 2]

Internet-Draft SASL HEXA February 2007

1. Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [KEYWORDS].

2. Introduction

 Although other hash-based [SASL] mechanisms exist, they are being
 rapidly outdated by advances in computing speed and the discovery of
 weaknesses in hash functions. Moreover, both [CRAM-MD5] and
 [DIGEST-MD5] involve the server having plaintext equivalents in the
 shared secret store.

 This mechanism was borne out of a percieved need within the system
 administration community to have a mechanism which was both easier to
 implement and also safer than [DIGEST-MD5].

2.1. Rationale

 HEXA is specifically aimed at providing three key features.

2.1.1. Deployability

 HEXA is designed to be acceptable to deploy in the real world. Its
 authentication database is designed such that it may be used directly
 for local logins, effectively having the same properties as a typical
 /etc/shadow file on UNIX systems. This allows HEXA to co-exist with
 very well deployed mechanisms such as [PLAIN], freeing the need for
 transitioning.

2.1.2. Hash Agility

 Hash algorithms have an alarming tendancy to age. It is therefore
 beneficial to allow a server administrator to switch hash algorithms.
 This is only practical, however, when it is known that the new hash
 algorithm can be well supported by the clients in use. Where the
 clients are out of the control of the administrator, for example in
 typical commercial settings, it is useful for the administrator to be
 aware of what the current deployed base is able to use.

 Therefore, in HEXA, clients advertise their capability to the server,
 allowing a server administrator to upgrade the hash algorithm as
 required.

Cridland & Melnikov Expires August 30, 2007 [Page 3]

Internet-Draft SASL HEXA February 2007

2.1.3. Ease of Implementation

 In general, [DIGEST-MD5] has been found to be difficult to implement
 interoperably. Even well known implementations have been found to
 have interoperability problems under some circumstances. HEXA
 attempts to tackle this by using a small number of operation types,
 and simple parsing. This allows for simple scripting languages to
 implement, as well as using hash algorithms and related functions
 that are known to be well deployed.

 Since no mechanism can be considered secure in practise if no
 implementations exist, this specification chooses easily available
 pre-existing source code above stronger, less well implemented
 algorithms.

3. Notations and Definitions

3.1. HMAC and Hash functions

 This specification requires the use of [HMAC], based on hash
 functions such as [MD5], SHA1, or SHA-256.

 Messages are shown in plain text, with the CR LF pair shown as a line
 ending.

 Mandatory to implement hashes are discussed in Section 4, and are
 considered volatile parts of this specification, very likely to
 change in future revisions of this specification.

3.1.1. Notation

 We use a relatively simple notation to show the calculations
 involved:
 HASH(T)
 An agreed hash algorithm, used to produce a cryptographically
 secure hash of the input data T.
 HMAC(K,T)
 An [HMAC] function used with an agreed hash function, used to
 produce a MAC for T with a key of K.
 HMAC[n](K,T)
 Where n is an integer, expands to HMAC(HMAC[n-1](K,T),T).
 HMAC[1](K,T) is equivalent to HMAC(K,T).
 Q + W
 Where Q and W are strings, represents simple concatenation.

Cridland & Melnikov Expires August 30, 2007 [Page 4]

Internet-Draft SASL HEXA February 2007

 Q ^ W
 Where Q and W are strings, represents an octet by octet XOR.
 SASLprep(X)
 Where X is a string, represents the application of the [SASLPREP]
 algorithm to the string.

3.2. Wire Message Format

 HEXA uses a wire format based on a simplified variant of email
 message header formats, and only transfers text. No folding or
 encoding is required or allowed.

 The message contains keys and values, where each key appears a
 maximum of once. Keys consist of ASCII letters, numbers, and the
 hyphen character. Values contain UTF-8, and begin with a non-space
 character. They never contain NUL, CR, or LF. Each Key Value pair
 ends with a CR LF pair.

 Keys appear first, followed by a single colon (":"), followed by the
 value. Any surrounding spaces are considered part of the value.

3.3. Prior Setup

 The client is assumed to have an Authcid, an optional Authzid, and a
 Password.

 The server has a Realm, and a database keyed against Authcid
 containing a Salt, and hash output known as the Verifier.

 Verifier := HMAC[n](Intermediate, Salt)
 Intermediate := HMAC[n](Realm + SASLprep(Authcid)
 + SASLprep(Password), Salt)

 The server's database is initially populated before authentication by
 temporarily calculating the Intermediate from the supplied Password,
 and choosing a new Salt. A new Salt SHOULD be used whenever the
 Password is changed. The hash algorithm used is also remembered by
 the server - servers MAY use multiple hash algorithms.

 After calculating and storing the Verifier, the Intermediate MUST be
 discarded.

3.4. Authentication Process

3.4.1. Initial client message

 Initially, the client sends a message containing Authcid, optionally
 Authzid, a list of hash algorithm names it supports, and some random

Cridland & Melnikov Expires August 30, 2007 [Page 5]

Internet-Draft SASL HEXA February 2007

 data to use as a client nonce, this message is ClientMessage:

 Authcid:mel
 Hashes:MD5 SHA1 SHA-256
 Client-Nonce:laksjdoijcosijdv
 Channel-Bindings:TLS

3.4.2. Server challenge message

 The server looks up Authcid in its database, selects the strongest
 hash algorithm mutually supported, and returns the hash algorithm,
 the number of cycles it uses, and the value of Salt. It also creates
 some random data for use as a server nonce. Because this MUST be
 textual, servers MAY base64 encode this data, however, this is an
 implementation detail. The server sends the server nonce, Salt, and
 Realm to the client, along with an indication of which channel
 binding the server will use, if any:

 Realm:example.net
 Salt:aajvskjhvslkjdnvcn
 Hash:MD5
 Hash-Cycles:5
 Server-Nonce:ksjdnclksdhufdh
 Channel-Binding:TLS

3.4.3. Client response message

 The client stores this message precisely as received, as
 ServerMessage.

 The client now calculates Intermediate and Verifier as above, and in
 addition a hash Key, and a value Exchange, such that:

 Key := HMAC[n](Verifier, ClientMessage
 + ServerMessage + ChannelBinding)
 Exchange := Key ^ Intermediate

 If there is no channel binding available that the server supports,
 then ChannelBinding will be an empty string. Exchange is represented
 as hex, and the result is sent to the server:

 Hash-Exchange:1f2d...

3.4.4. Server Authentication and Mutual Auth

 The server can now construct Key, extract Intermediate from Exchange,
 and verify Intermediate against the stored hash output Verifier. In
 order to prove to the client that it can do so, it sends the client a

Cridland & Melnikov Expires August 30, 2007 [Page 6]

Internet-Draft SASL HEXA February 2007

 final message containing a hash output Authentication, such that:

 Intermediate := Exchange ^ Key
 Authentication := HMAC[n](Intermediate, ChannelBinding
 + ServerMessage + Salt + ClientMessage)

 This has is sent to the client as:

 Server-Auth:3f4d5a...

4. Mandatory to Implement

 The rationale behind this mechanism is ease of deployment and
 implementation, thus implementations MUST provide a configuration
 which supports the [MD5] hash algorithm using a minimal number of
 cycles of 16. Implementations SHOULD also support SHA-256.

 This is because both [MD5], and [HMAC] implementations which are
 hardcoded to use [MD5], are easily available in many languages and
 environments.

5. Formal Syntax

 Insert boilerplate about [ABNF] here.

 wire-message = *key-value
 key-value = key ":" value CRLF
 key = ALPHA *(ALPHA / "-" / DIGIT)
 value = utf8-text
 utf8-text = 1*(VCHAR / SP / UTF-2 / UTF8-3 / UTF8-4)
 ; visible UTF-8 or space.
 hash-output = 1*(HEXDIG)
 ; Output of hash algorithm, generally 32 or more has digits.

 ; Following productions all conform to wire-message:

 client-init-message = authcid [authzid] hashes client-nonce
 [channel-bindings] *(extension)
 server-challenge-message = realm hash hash-cycles server-nonce
 [channel-binding] *(extension)
 client-response-message = hash-exchange *(extension)
 server-auth-message = server-auth *(extension)

 ; Following productions all conform to key-value:

 ; client-init-message:

Cridland & Melnikov Expires August 30, 2007 [Page 7]

Internet-Draft SASL HEXA February 2007

 authcid = "Authcid" ":" utf8text CRLF
 authzid = "Authzid" ":" utf8text CRLF
 ; SASLPrepped authcid/authzid.
 hashes = "Hashes" ":" hash-name *(SP hash-name) CRLF
 client-nonce = "Client-Nonce" ":" utf8text CRLF
 ; MUST be generated afresh with reasonable entropy.
 channel-bindings = "Channel-Bindings" ":" channel-binding-name
 *(SP channel-binding-name) CRLF

 ; server-challenge-message:
 realm = "Realm" ":" utf8text CRLF
 hash = "Hash" ":" hash-name CRLF
 hash-cycles = "Cycles" ":" 1*(DIGIT) CRLF
 server-nonce = "Server-Nonce" ":" utf8text CRLF
 ; MUST be generated afresh with reasonable entropy.
 channel-binding = "Channel-Binding:" ":" channel-binding-name CRLF

 ; client-response-message:
 hash-exchange = "Hash-Exchange" ":" hash-output CRLF

 ; server-auth-message:
 server-auth = "Server-Auth" ":" hash-output CRLF

 ; Values:
 channel-binding-name = ALPHA *(ALPHA / DIGIT / "-")
 hash-name = ALPHA *(ALPHA / DIGIT / "-")

 ; Extensions:
 extension = key-value

6. Security Considerations

6.1. Plaintext Equivalents

 The intermediate hash B is a plaintext equivalent. Clients SHOULD
 NOT store this, and MUST NOT store the original plaintext password.
 Servers MUST NOT store B.

6.2. Hash algorithm usage

 In general, it is thought that the recursive application of hash
 functions increases the strength of a hash. In particular, if the
 hash has no weaknesses at all, merely doubling the number of
 iterations will cause an offline dictionary attack to take twice as
 much CPU resource. Making this a variable, negotiated, factor allows
 very simple increases in security, as long as the hash algorithm
 itself is not compromised sufficiently that a non-brute-force attack

Cridland & Melnikov Expires August 30, 2007 [Page 8]

Internet-Draft SASL HEXA February 2007

 becomes practical.

 The exact hash algorithm used may be changed by live deployments.
 HEXA provides a simple method for server administrators to discover
 actual availability of new hash algorithms in clients, simplifying a
 hash algorithm change.

6.3. Resistance to attacks

 HEXA is thought to be resistent to slightly more attacks than
 [DIGEST-MD5]:
 Downgrade
 Assuming that HEXA can be negotiated at all, a downgrade attack
 inside HEXA cannot be mounted, as complete messages are used as
 input to the hashing functions - a man-in-the-middle attack will
 cause the authentication to fail.
 Server based attack
 Merely obtaining the authentication database will not directly
 allow an attcker to authenticate masquerading as a legitimate user
 without substantial offline dictionary attacks. However, if an
 attacker can both obtain the authentication database and observe
 traffic on the wire, then the attacker can obtain B. As with
 [DIGEST-MD5], this will not yield the password without an
 expensive offline-dictionary attack.
 Client based attack
 Clients typically store sufficient data to reauthenticate later
 without interactively requesting passwords from the user. Like
 [DIGEST-MD5], clients need not store the actual password, but can
 merely store B for this purpose. This practise is not
 recommended, as an attacker obtaining B can authenticate as the
 user.

7. References

7.1. Normative References

 [ABNF] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", RFC 4234, October 2005.

 [HMAC] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 February 1997.

 [KEYWORDS]
 Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

https://datatracker.ietf.org/doc/html/rfc4234
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

Cridland & Melnikov Expires August 30, 2007 [Page 9]

Internet-Draft SASL HEXA February 2007

 [MD5] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
 April 1992.

 [SASL] Melnikov, A. and K. Zeilenga, "Simple Authentication and
 Security Layer (SASL)", RFC 4422, June 2006.

 [SASLPREP]
 Zeilenga, K., "SASLprep: Stringprep Profile for User Names
 and Passwords", RFC 4013, February 2005.

 [UTF-8] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

7.2. Informative References

 [CRAM-MD5]
 Klensin, J., Catoe, R., and P. Krumviede, "IMAP/POP
 AUTHorize Extension for Simple Challenge/Response",

RFC 2195, September 1997.

 [DIGEST-MD5]
 Leach, P. and C. Newman, "Using Digest Authentication as a
 SASL Mechanism", RFC 2831, May 2000.

 [PLAIN] Zeilenga, K., "The PLAIN Simple Authentication and
 Security Layer (SASL) Mechanism", RFC 4616, August 2006.

Authors' Addresses

 Dave Cridland
 Isode Limited
 5 Castle Business Village
 36, Station Road
 Hampton, Middlesex TW12 2BX
 GB

 Email: dave.cridland@isode.com

https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc4422
https://datatracker.ietf.org/doc/html/rfc4013
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc2195
https://datatracker.ietf.org/doc/html/rfc2831
https://datatracker.ietf.org/doc/html/rfc4616

Cridland & Melnikov Expires August 30, 2007 [Page 10]

Internet-Draft SASL HEXA February 2007

 Alexey Melnikov
 Isode Limited
 5 Castle Business Village
 36, Station Road
 Hampton, Middlesex TW12 2BX
 GB

 Email: alexey.melnikov@isode.com

Cridland & Melnikov Expires August 30, 2007 [Page 11]

Internet-Draft SASL HEXA February 2007

Full Copyright Statement

 Copyright (C) The IETF Trust (2007).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgment

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Cridland & Melnikov Expires August 30, 2007 [Page 12]

