
Network Working Group D. Crocker

Internet-Draft Brandenburg InternetWorking

Intended status: Informational M. Kucherawy

Expires: January 13, 2012 Cloudmark

July 12, 2011

DomainKeys Security Tagging (DOSETA)

draft-crocker-doseta-base-03

Abstract

DomainKeys Security Tagging (DOSETA) is a component mechanism that

enables easy development of security-related services, such as for

authentication or encryption. It uses self-certifying keys based on

domain names. The domain name owner can be any actor involved in the

handling of the data, such as the author's organization, a server

operator or one of their agents. The DOSETA Library provides a

collection of common capabilities, including canonicalization,

parameter tagging and key retrieval. The DOSETA Signing Template

creates common framework for a signature of data that are in a "header/

content" form. Defining the meaning of a signature is the

responsibility of the service that incorporates DOSETA. Data security

is enforced through the use of cryptographic algorithms.

Status of this Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF). Note that other groups may also distribute working

documents as Internet-Drafts. The list of current Internet- Drafts is

at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as "work in progress."

This Internet-Draft will expire on January 13, 2012.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document.

Table of Contents

1. Introduction

1.1. Comments and Issues

2. Framework

2.1. DOSETA Architecture

2.2. Terminology

2.2.1. Identity

2.2.2. Actors

2.3. Syntax

2.3.1. Whitespace

2.3.2. Common ABNF Tokens

2.3.3. Imported ABNF Tokens

2.3.4. D-Quoted-Printable

3. DOSETA Library

3.1. Normalization for Transport Robustness

3.2. Canonicalization

3.2.1. Header Canonicalization Algorithms

3.2.2. Content Canonicalization Algorithms

3.2.3. Canonicalization Examples

3.3. Tag=Value Parameters

3.4. Key Management

3.5. Selectors for Keys

3.6. DNS Binding for Key Retrieval

3.6.1. Namespace

3.6.2. Resource Record Types for Key Storage

3.7. Stored Key Data

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

4. DOSETA H/C Signing Template

4.1. Cryptographic Algorithms

4.2. Signature Data Structure

4.3. Additional Tags

4.4. Signature Calculations

4.5. Signer Actions

4.5.1. Determine Whether the Data Should Be Signed and by Whom

4.5.2. Select a Private Key and Corresponding Selector

Information

4.5.3. Determine the Header Fields to Sign

4.5.4. Compute the Message Signature

4.5.5. Insert the DOSETA‑Signature Header Field

4.6. Verifier Actions

4.6.1. Extract Signatures from the Message

4.6.2. Validate the Signature Header Field

4.6.3. Get the Public Key

4.6.4. Compute the Verification

4.6.5. Communicate Verification Results

4.6.6. Interpret Results/Apply Local Policy

4.7. Requirements for Tailoring the Signing Service

5. Semantics of Multiple Signatures

5.1. Example Scenarios

5.2. Interpretation

6. DOSETA Claims Registry Definition

7. Considerations

7.1. IANA Considerations

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

7.1.1. DKIM Registries

7.1.2. Claims Registry

7.2. Security Considerations

8. References

8.1. Normative References

8.2. Informative References

Appendix A. Creating a Public Key

Appendix B. Acknowledgements

Appendix C. Example -- DKIM Using DOSETA

Appendix C.1. Signing and Verification Protocol

Appendix C.2. Extensions to DOSETA Template

Appendix C.2.1. Signature Data Structure

Appendix C.2.1.1. Content Length Limits

Appendix C.2.1.2. Signature Verification

Appendix C.2.2. Stored Key Data

Authors' Addresses

1. Introduction

DomainKeys Security Tagging (DOSETA) is a component mechanism enabling

development of security-related services, such as for authentication or

encryption; it uses self-certifying keys based on domain names

[RFC1034]. The domain name owner can be any actor involved in the

handling of the data, such as the author's organization, a server

operator or one of their agents. The DOSETA Library provides a

collection of common capabilities, including canonicalization,

parameter tagging and key retrieval. The DOSETA Signing Template

creates common framework for signing data that are in a "header/

content" form. Defining the intended meaning of a signature is the

responsibility of the service that incorporates DOSETA. Data security

is enforced through the use of cryptographic algorithms.

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

Identity:

NOTE:

The approach taken by DOSETA differs from previous approaches to data

signing -- such as, Secure/Multipurpose Internet Mail Extensions (S/

MIME) [RFC1847], OpenPGP [RFC4880] -- in that:

The message signature can be packaged independently of the data

it is signing, so that neither human viewers of the data nor

existing data handling software is confused by security-related

content appearing in the Content.

There is no dependency on having public and private key pairs

being issued by well-known, trusted certificate authorities.

There is no dependency on the deployment of any new Internet

protocols or services for public key distribution or revocation.

Specific security services can be limited to those needed by the

service using them.

DOSETA:

enables compatibility with the existing data handling

infrastructure and is transparent to the fullest extent possible

requires minimal new infrastructure

can support a variety of implementation configurations, in order

to reduce deployment time

can be deployed incrementally

allows delegation of signing to third parties

DOSETA derives from Domain Keys Identified Mail (DKIM) [RFC5672] and

has extracted the core portions of the its signing specification

[DKIMSign], so that they can be applied to other security-related

services. For example, the core could support a DKIM-like signing

service for web pages, and it could support a data ion mechanism using

the same DNS-based, self-certified key service as DKIM.

DOSETA features include:

DOSETA distinguishes the identity of the DOSETA

signature's producer from that of any other identifier

associated with the data, such as the data's purported author.

In particular, the DOSETA header field includes the DOSETA

Domain Identifier (DDI), per Section 2.2.1. DOSETA consumers

can use the DDI to decide how they want to process the data.

The DDI can be directly included in the attributes of the data

or can be recorded elsewhere.

*

*

*

*

*

*

*

*

*

*

Scalability:

Key Management:

Data Integrity:

[RFC EDITOR]

DOSETA does not, itself, specify that the identity it uses

is required to match any other associated identifier. Those

other identifiers already carry their own semantics which

might conflict with the use of the identifier needed by

DOSETA. However a particular DOSETA-based security service

might choose to add constraints on the choice of

identifier, such as having it match another identifier that

is associated with the data.

DOSETA is designed to easily support the extreme

scaling requirements that characterize Internet data

identification.

DOSETA differs from traditional hierarchical

public-key systems in that no Certificate Authority

infrastructure is required; the verifier requests the public

key from a repository under the domain name associated with

the use of DOSETA directly, rather than requiring consultation

of a certificate authority. That is, DOSETA provides self-

certifying keys.

The DNS is the initial mechanism for DOSETA public keys. Thus,

DOSETA currently depends on DNS administration and the

security of the DNS system. DOSETA is designed to be

extensible to other key fetching services as they become

available.

When DOSETA is used to sign data -- independent

of the semantics of that signature -- there is a computed hash

of some or all of the data that ensures detection of changes

to that data, between the times of signing and verifying.

1.1. Comments and Issues

Remove this sub-section prior to publication.

Possible applications:

JSON structure

XMPP message

XML object

vCard

vCal

Web page signing?

*

*

*

*

*

*

Discussion Venue:

Web ad authentication

Handle System

http://www.trusteddomain.org/mailman/listinfo/doseta-discuss

Discussion of this draft should take place on the

doseta-discuss mailing list. It is located at:

2. Framework

This section provides the technical background for the remainder of the

document.

2.1. DOSETA Architecture

As component technology, DOSETA is meant to be incorporated into a

service. This specification provides an underlying set of common

features and a template for using them to provide a signing service,

such as for authenticating an identifier. Hence, the pieces can be

depicted as follows, with DKIM being shown as a specific service that

incorporates DOSETA:

 +--------+ +----------+ +-----------------+

 | DKIM | | MIMEAUTH | | Message Privacy |

 +---+----+ +-----+----+ +--------+--------+

 | | |

 ++=====V==================V========++ |

 || || |

 || Header/Content Signing Template || |

 || || |

 ++================+================++ |

 | |

++=================V=================================V============++

|| ||

|| D O S E T A L I B R A R Y ||

|| +------------------+ +------------+ +-------------+ +--------+ ||

|| | | | Key | | Parameter | | Tags | ||

|| | Canonicalization | | Management | | Format | | Header | ||

|| | | | (DNS) | | (tag=value) | | Field | ||

|| +------------------+ +------------+ +-------------+ +--------+ ||

|| ||

++==++

[DKIMSign]. MIMEAUTH is an exemplar use of DOSETA, specified in

[mimeauth]. Message Privacy is a generic term, indicating any service

that provides encryption; it is expected that such a service can use

*

*

*

Canonicalization:

Key Management:

Format:

Tags:

Identity:

Identifier:

DOSETA Domain Identifier (DDI):

Identity Assessor:

the DOSETA core library, but not take advantage of the DOSETA signing

template.

The library comprises:

This ensures common data representation and

robustness against some forms of data modification during transit.

It is discussed in Section 3.2 and Section 3.1.

This covers the mechanisms for discovering and

obtaining signature key information by a verifier. It is discussed

in Section 3.4, Section 3.5, and Section 3.6.

This describes a simple syntax for encoding parametric

information and is discussed in Section 3.3.

These are common parameters for the stored public key record,

defined in Section 3.7 and the common parameters for the signature

record that is associated with the signed data, defined in Section

4.2.

2.2. Terminology

Within the specification, the label "[TEMPLATE]" is used to indicate

actions that are required for tailoring the use of DOSETA into a

specific service.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119].

Additional terms for this document are divided among Identity and

Actors.

2.2.1. Identity

A person, role, or organization. In the context of DOSETA,

examples include author, author's organization, an ISP along the

handling path, an independent trust assessment service, and a data

processing intermediary operator.

A label that refers to an identity. The primary example is

a domain name.

A single domain name that serves as an

identifier, referring to the DOSETA key owner's identity. The DDI is

specified in Section 4.2. Within this specification, the name has

only basic domain name semantics; any possible owner-specific

semantics MUST be provided in the specification that incorporates

DOSETA.

A module that consumes DOSETA's payload output. The

module is dedicated to the assessment of the delivered identifier.

Producer:

Consumer:

Signer:

Verifier:

WSP:

LWSP:

FWS:

Optionally, other DOSETA (and non-DOSETA) values can also be

delivered to this module as well as to a more general message

evaluation filtering engine. However, this additional activity is

outside the scope of the DOSETA specification.

2.2.2. Actors

An element in the data handling system that produces a

cryptographic encoding, on behalf of a domain, is referred to as a

Producer. For example, a signer is a type of producer.

An element in the data handling system that processes an

existing cryptographic encoding, on behalf of a domain, is referred

to as a consumer. For example, a verifier is a type of consumer.

An element in the data handling system that creates a digital

signature, on behalf of a domain, is referred to as a signer. This

element specifies an actor that is a type of DOSETA producer. The

actor might operate through a client, server or other agent such as

a reputation service. The core requirement is that the data MUST be

signed before it leaves the control of the signer's administrative

domain.

An element in the data handling system that verifies

signatures is referred to as a verifier. This element is a consumer

of a signing service. It might be a client, server, or other agent,

such as a reputation service. In most cases it is expected that a

verifier will be close to an end user of the data or some consuming

agent such as a data processing intermediary.

2.3. Syntax

This section specifies foundational syntactic constructs used in the

remainder of the document.

Syntax descriptions use Augmented BNF (ABNF) [RFC5234].

2.3.1. Whitespace

There are three forms of whitespace:

represents simple whitespace, that is, a space or a tab

character (formally defined in [RFC5234]).

is linear whitespace, defined as WSP plus CRLF (formally

defined in [RFC5234]).

is folding whitespace. It allows multiple lines to be

joined with each a separated by a sequence having CRLF

followed by at least one whitespace.

*

<local-part>

<sub-domain>

<field-name>

<qp-section>

<hex-octet>

NOTE:

The formal syntax for these are (WSP and LWSP are given for information

only):

ABNF:

WSP = SP / HTAB

LWSP = *(WSP / CRLF WSP)

FWS = [*WSP CRLF] 1*WSP

The definition of FWS is identical to that in [RFC5322] except for the

exclusion of obs-FWS.

2.3.2. Common ABNF Tokens

The following tokens are used in this document:

ABNF:

hyphenated-word = ALPHA

 [*(ALPHA / DIGIT / "-")

 (ALPHA / DIGIT)]

ALPHADIGITPS = (ALPHA / DIGIT / "+" / "/")

base64string = ALPHADIGITPS *([FWS] ALPHADIGITPS)

 [[FWS] "=" [[FWS] "="]]

hdr-name = field-name

qp-hdr-value = D-quoted-printable

 ; with "|" encoded

2.3.3. Imported ABNF Tokens

The following tokens are imported from other RFCs as noted. Those RFCs

SHOULD be considered definitive.

From [RFC5321]:

Implementation Warning: This permits quoted

strings)

From [RFC5322]:

(name of a header field)

From [RFC2045]:

a single line of quoted-printable-encoded text

a quoted-printable encoded octet)

*

*

*

*

*

Be aware that the ABNF in [RFC2045] does not obey the rules of

[RFC5234] and MUST be interpreted accordingly, particularly as

regards case folding.

Other tokens not defined herein are imported from [RFC5234]. These are

intuitive primitives such as SP, HTAB, WSP, ALPHA, DIGIT, CRLF, etc.

2.3.4. D-Quoted-Printable

The D-Quoted-Printable encoding syntax resembles that described in

Quoted-Printable [RFC2045], Section 6.7:

Any character MAY be encoded as an "=" followed by two

hexadecimal digits from the alphabet "0123456789ABCDEF" (no

lowercase characters permitted) representing the hexadecimal-

encoded integer value of that character.

All control characters (those with values < %x20), 8-bit

characters (values > %x7F), and the characters DEL (%x7F), SPACE

(%x20), and semicolon (";", %x3B) MUST be encoded.

All whitespace, including SPACE, CR, and LF characters, MUST be

encoded.

After encoding, FWS MAY be added at arbitrary locations in order

to avoid excessively long lines; such whitespace is NOT part of

the value, and MUST be removed before decoding.

The formal syntax for D-Quoted-Printable is:

ABNF:

D-quoted-printable = *(FWS / hex-octet / D-safe-char)

 ; hex-octet is from RFC2045

D-safe-char = %x21-3A / %x3C / %x3E-7E

 ; '!' - ':', '<', '>' - '~'

 ; Characters not listed as "mail-safe"

 ; in [RFC2049] are also not

 ; recommended.

D-Quoted-Printable differs from Quoted-Printable as defined in

[RFC2045] in several important ways:

Whitespace in the input text, including CR and LF, MUST be

encoded. [RFC2045] does not require such encoding, and does not

permit encoding of CR or LF characters that are part of a CRLF

line break.

*

*

*

*

*

1.

Whitespace in the encoded text is ignored. This is to allow

tags encoded using D-Quoted-Printable to be wrapped as needed.

In particular, [RFC2045] requires that line breaks in the input

be represented as physical line breaks; that is not the case

here.

The "soft line break" syntax ("=" as the last non-whitespace

character on the line) does not apply.

D-Quoted-Printable does not require that encoded lines be no

more than 76 characters long (although there might be other

requirements depending on the context in which the encoded text

is being used).

3. DOSETA Library

DOSETA's library of functional components is distinguished by a DNS-

based, self-certifying public key mechanism, common data normalization

and canonicalization algorithms, and a common parameter encoding

mechanism.

3.1. Normalization for Transport Robustness

Some messages, particularly those using 8-bit characters, are subject

to modification during transit, notably from conversion to 7-bit form.

Such conversions will break DOSETA signatures. Similarly, data that is

not compliant with its associated standard, might be subject to

corrective efforts intermediaries. See Section 8 of [RFC4409] for

examples of changes that are commonly made to email. Such "corrections"

might break DOSETA signatures or have other undesirable effects.

In order to minimize the chances of such breakage, signers convert the

data to a suitable encoding, such as quoted-printable or base64, as

described in [RFC2045] before signing. Specification and use of such

conversions is outside the scope of DOSETA.

If the data is submitted to a DOSETA process with any local encoding

that will be modified before transmission, that modification to a

canonical form MUST be done before DOSETA processing. For Text data in

particular, bare CR or LF characters (used by some systems as a local

line separator convention) MUST be converted to the CRLF sequences

before the data is signed. Any conversion of this sort SHOULD be

applied to the data actually sent to the recipient(s), not just to the

version presented to the signing algorithm.

More generally, a DOSETA producer MUST use the data as it is expected

to be received by the DOSETA consumer rather than in some local or

internal form.

3.2. Canonicalization

Some data handling systems modify the original data during transit,

potentially invalidating a cryptographic function. In some cases, mild

2.

3.

4.

Header:

Content:

NOTE:

simple:

modification of data can be immaterial to the validity of a DOSETA-

based service. In these cases, a canonicalization algorithm that

survives modest handling modification is preferred.

In other cases, preservation of the exact, original bits is required;

even minor modifications need to result in a failure. Hence a

canonicalization algorithm is needed that does not tolerate any in-

transit modification of the data.

To satisfy basic requirements, two canonicalization algorithms are

defined: a "simple" algorithm that tolerates almost no modification and

a "relaxed" algorithm that tolerates common modifications such as

whitespace replacement and data line rewrapping.

Data presented for canonicalization MUST already be in "network normal"

format -- text is ASCII encoded, lines are separated with CRLF

characters, etc.) See Section 3.1 for information about normalizing

data.

Data handling systems sometimes treat different portions of text

differentially and might be subject to more or less likelihood of

breaking a signature. DOSETA currently covers two types of data:

Attribute:value sets, in the style of Internet Mail

header fields or MIME header fields

Lines of ASCII text

Some DOSETA producers might be willing to accept modifications to some

portions of the data, but not other portions. For DOSETA, a producer

MAY specify one algorithm for the header and another for the content.

If no canonicalization algorithm is specified, the "simple" algorithm

defaults for each part. DOSETA producers MUST implement both of the

base canonicalization algorithms. Because additional canonicalization

algorithms might be defined in the future, producers MUST ignore any

unrecognized canonicalization algorithms.

Canonicalization simply prepares the data for presentation to the

DOSETA processing algorithm.

Canonicalization operates on a copy of the data; it MUST NOT

change the transmitted data in any way. Canonicalization of distinct

data portions is described below.

3.2.1. Header Canonicalization Algorithms

This section describes basic entries for the Header Canonicalization

IANA registry defined in [DKIMSign], , which also applies to DOSETA

header canonicalization.

The "simple" header canonicalization algorithm is for a set of

"attribute:value" textual data structures, such as email header

fields [RFC5322]. It does not change the original Header fields in

any way. Header fields MUST be presented to the processing algorithm

*

relaxed:

simple:

exactly as they are in the data being processed. In particular,

header field names MUST NOT be case folded and whitespace MUST NOT

be changed.

The "relaxed" header canonicalization algorithm is for a set

of "attribute:value" textual data structures, such as email header

fields [RFC5322]. It does not change the original Header fields in

any way. The following steps MUST be applied in order:

Convert all header field names (not the header field values)

to lowercase. For example, convert "SUBJect: AbC" to "subject:

AbC".

Unfold all header field continuation lines as described in

[RFC5322]; in particular, lines with terminators embedded in

continued header field values (that is, CRLF sequences

followed by WSP) MUST be interpreted without the CRLF.

Implementations MUST NOT remove the CRLF at the end of the

header field value.

Convert all sequences of one or more WSP characters to a

single SP character. WSP characters here include those before

and after a line folding boundary.

Delete all WSP characters at the end of each unfolded header

field value.

Delete any WSP characters remaining before and after the colon

separating the header field name from the header field value.

The colon separator MUST be retained.

3.2.2. Content Canonicalization Algorithms

uoq1oCgLlTqpdDX/iUbLy7J1Wic=

frcCV1k9oG9oKj3dpUqdJg1PxRT2RSN/XKdLCPjaYaY=

2jmj7l5rSw0yVb/vlWAYkK/YBwk=

47DEQpj8HBSa+/TImW+5JCeuQeRkm5NMpJWZG3hSuFU=

This section describes basic entries for the Message Canonicalization

IANA registry defined in [DKIMSign], which also applies to DOSETA

Content.

The "simple" Content canonicalization algorithm is for lines

of ASCII text, such as occur in the body of email [RFC5322]. It

ignores all empty lines at the end of the Content. An empty line is

a line of zero length after removal of the line terminator. If there

is no Content or no trailing CRLF on the Content, a CRLF is added.

*

*

*

*

*

relaxed:

NOTE:

It makes no other changes to the Content. In more formal terms, the

"simple" Content canonicalization algorithm converts "0*CRLF" at the

end of the Content to a single "CRLF".

Note that a completely empty or missing Content is canonicalized as

a single "CRLF"; that is, the canonicalized length will be 2 octets.

The sha1 value (in base64) for an empty Content (canonicalized to a

"CRLF") is:

The "relaxed" Content canonicalization algorithm is for lines

of ASCII text, such as occur in the body of email [RFC5322]. It MUST

apply the following steps (a) and (b) in order:

Reduce whitespace:

Ignore all whitespace at the end of lines.

Implementations MUST NOT remove the CRLF at the end of

the line.

Reduce all sequences of WSP within a line to a single SP

character.

Ignore all empty lines at the end of the Content. "Empty

line" is defined in Section 3.2.2. If the Content is non-

empty, but does not end with a CRLF, a CRLF is added. (For

email, this is only possible when using extensions to SMTP

or non-SMTP transport mechanisms.)

The sha1 value (in base64) for an empty Content (canonicalized to a

null input) is:

The relaxed Content canonicalization algorithm can enable

certain types of extremely crude "ASCII Art" attacks in which a

message can be conveyed, by adjusting the spacing between words.

If this is a concern, the "simple" Content canonicalization

algorithm is more appropriate for use.

3.2.3. Canonicalization Examples

In the following examples, actual whitespace is used only for clarity.

The actual input and output text is designated using bracketed

descriptors: "<SP>" for a space character, "<HTAB>" for a tab

character, and "<CRLF>" for a carriage-return/line-feed sequence. For

example, "X <SP> Y" and "X<SP>Y" represent the same three characters.

Example 1: An email message reading:

a.

*

*

b.

A: <SP> X <CRLF>

B <SP> : <SP> Y <HTAB><CRLF>

 <HTAB> Z <SP><SP><CRLF>

<CRLF>

<SP> C <SP><CRLF>

D <SP><HTAB><SP> E <CRLF>

<CRLF>

<CRLF>

when canonicalized using relaxed canonicalization for both Header and

Content results in a Header reading:

a:X <CRLF>

b:Y <SP> Z <CRLF>

and a Content reading:

<SP> C <CRLF>

D <SP> E <CRLF>

Example 2: The same message canonicalized using simple canonicalization

for both Header and Content results in a header reading:

A: <SP> X <CRLF>

B <SP> : <SP> Y <HTAB><CRLF>

 <HTAB> Z <SP><SP><CRLF>

and a Content reading:

<SP> C <SP><CRLF>

D <SP><HTAB><SP> E <CRLF>

Example 3: When processed using relaxed Header canonicalization and

simple Content canonicalization, the canonicalized version has a header

of:

a:X <CRLF>

b:Y <SP> Z <CRLF>

and a Content reading:

<SP> C <SP><CRLF>

D <SP><HTAB><SP> E <CRLF>

3.3. Tag=Value Parameters

DOSETA uses a simple "tag=value" parameter syntax in several contexts,

such as when representing associated cryptographic data and domain key

records.

NOTE:

NOTE:

Values are a series of strings containing either plain text, "base64"

text (as defined in [RFC2045], Section 6.8), "qp-section" (ibid,

Section 6.7), or "D-quoted-printable" (as defined in Section 2.6). The

definition of a tag will determine the specific encoding for its

associated value. Unencoded semicolon (";") characters MUST NOT occur

in the tag value, since that separates tag-specs.

The "plain text" defined below, as "tag-value", only supports

use of 7-bit characters. However, it is likely that support of UTF-8

Unicode [UTF8] data will eventually be deemed important.

Formally the syntax rules are as follows:

ABNF:

tag-list = tag-spec 0*(";" tag-spec) [";"]

tag-spec = [FWS] tag-name [FWS] "=" [FWS] tag-value [FWS]

tag-name = ALPHA 0*ALNUMPUNC

tag-value = [tval 0*(1*(WSP / FWS) tval)]

 ; WSP and FWS prohibited at beginning and end

tval = 1*VALCHAR

VALCHAR = %x21-3A / %x3C-7E

 ; EXCLAMATION to TILDE except SEMICOLON

ALNUMPUNC = ALPHA / DIGIT / "_"

WSP is allowed anywhere around tags. In particular, any WSP

after the "=" and any WSP before the terminating ";" is not part of

the value. However, WSP inside the value is significant.

Tags MUST interpret a VALCHAR as case-sensitive, unless the specific

tag description of semantics specifies case insensitivity.

Tags MUST be unique; duplicate names MUST NOT occur within a single

tag-list. If a tag name does occur more than once, the entire tag-list

is invalid.

Whitespace within a value MUST be retained unless explicitly excluded

by the specific tag description.

Tag=value pairs that represent the default value MAY be included to aid

legibility.

Unrecognized tags MUST be ignored.

Tags that have an empty value are not the same as omitted tags. An

omitted tag is treated as having the default value; a tag with an empty

value explicitly designates the empty string as the value.

3.4. Key Management

Applications require some level of assurance that a producer is

authorized to use a cited public. Many applications achieve this by

using public key certificates issued by a trusted authority. For

applications with modest certification requirements, DOSETA achieves a

*

q-val:

d-val:

s-val:

D-find-key:

sufficient level of security, with excellent scaling properties, by

simply having the consumer query the purported producer's DNS entry (or

a supported equivalent) in order to retrieve the public key. The safety

of this model is increased by the use of DNSSEC [RFC4033] for the key

records in the DNS.

DOSETA keys might be stored in multiple types of key servers and in

multiple formats. As long as the key-related information is the same

and as long as the security properties of key storage and retrieval are

the same, DOSETA's operation is unaffected by the actual source of a

key.

The abstract key lookup algorithm is:

public-key = D-find-key(q-val, d-val, s-val)

The type of the lookup, as specified in the "q" parameter

(Section 4.2)

The domain of the signature, as specified in the "d"

parameter (Section 4.2)

The selector of the lookup as specified in the "s"

parameter (Section 4.2)

A function that uses q-val to determine the specific

details for accessing the desired stored Key record.

This document defines a single binding between the abstract lookup

algorithm and a physical instance, using DNS TXT records, per Section

3.6. Other bindings can be defined.

3.5. Selectors for Keys

It can be extremely helpful to support multiple DOSETA keys for the

same domain name. For example:

Rolling over from one key to another is a common security

administration requirement; for an operational service this is

made far easier when the old and new keys are supported

simultaneously.

Domains that want to delegate signing capability for a

specific address for a given duration to a partner, such as an

advertising provider or other outsourced function.

Domains that want to allow frequent travelers to generate

signed data locally without the need to connect to a

particular server.

*

* -

-

-

NOTE:

"Affinity" domains (such as, college alumni associations) that

provide data forwarding, but that do not operate a data

origination agent for outgoing data.

To these ends, DOSETA includes a mechanism that supports multiple

concurrent public keys per signing domain. The key namespace is

subdivided using "selectors". For example, selectors might indicate the

names of office locations (for example, "sanfrancisco", "coolumbeach",

and "reykjavik"), the signing date (for example, "january2005",

"february2005", etc.), or even an individual user.

For further administrative convenience, sub-division of selectors is

allowed, distinguished as dotted sub-components of the selector name.

When keys are retrieved from the DNS, periods in selectors define DNS

label boundaries in a manner similar to the conventional use in domain

names. Selector components might be used to combine dates with

locations, for example, "march2005.reykjavik". In a DNS implementation,

this can be used to allow delegation of a portion of the selector

namespace.

ABNF:

selector = sub-domain *("." sub-domain)

The number of public keys and the corresponding selectors for each

domain are determined by the domain owner. Many domain owners will be

satisfied with just one selector, whereas administratively distributed

organizations might choose to manage disparate selectors and key pairs

in different regions or on different servers.

As noted, selectors make it possible to seamlessly replace public keys

on a routine basis. If a domain wishes to change from using a public

key associated with selector "january2005" to a public key associated

with selector "february2005", it merely makes sure that both public

keys are advertised in the public-key repository concurrently for the

transition period during which data might be in transit prior to

verification. At the start of the transition period, the outbound

servers are configured to sign with the "february2005" private key. At

the end of the transition period, the "january2005" public key is

removed from the public-key repository.

A key can also be revoked as described below. The

distinction between revoking and removing a key selector

record is subtle. When phasing out keys as described above, a

signing domain would probably simply remove the key record

after the transition period. However, a signing domain could

elect to revoke the key (but maintain the key record) for a

further period. There is no defined semantic difference

between a revoked key and a removed key.

-

*

*

NOTE:

s:

d:

NOTE:

While some domains might wish to make selector values well known,

others will want to take care not to allocate selector names in a way

that allows harvesting of data by outside parties. For example, if per-

user keys are issued, the domain owner will need to make the decision

as to whether to associate this selector directly with the name of a

registered end-user, or make it some unassociated random value, such as

a fingerprint of the public key.

The ability to reuse a selector with a new key (for

example, changing the key associated with a user's name) makes

it impossible to tell the difference between data that didn't

verify because the key is no longer valid versus a data that

is actually forged. For this reason, reuse of selectors with

different keys is ill-advised. A better strategy is to assign

new keys to new selectors.

3.6. DNS Binding for Key Retrieval

This section defines a binding using DNS TXT records as a key service.

All implementations MUST support this binding.

3.6.1. Namespace

A DOSETA key is stored in a subdomain named:

ABNF:

dns-record = s "._domainkey." d

is the selector of the lookup as specified in the "s"

parameter (Section 4.2); use of selectors is discussed in

Section 3.5

is the domain of the signature, as specified in the "d"

parameter (Section 4.2)

The string constant "_domainkey" is used to mark a sub-tree that

contains unified DOSETA key information. This string is a constant,

rather than being a different string for different key-based

services, with the view that keys are agnostic about the service

they are used for. That is, there is no semantic or security benefit

in having a different constant string for different key services.

That said, a new service is certainly free to define a new constant

and maintain and entirely independent set of keys.

foo.bar._domainkey.example.com

Given a DOSETA‑Signature field with a "d" parameter of "example.com"

and an "s" parameter of "foo.bar", the DNS query will be for:

Wildcard DNS records (for example, *.bar._domainkey.example.com) do not

make sense in the context of DOSETA and their presence can be

*

*

[TEMPLATE]

problematic. Hence DNS wildcards with DOSETA SHOULD NOT be used. Note

also that wildcards within domains (for example,

s._domainkey.*.example.com) are not supported by the DNS.

3.6.2. Resource Record Types for Key Storage

The DNS Resource Record type used is specified by an option to the

query-type ("q") parameter. The only option defined in this base

specification is "txt", indicating the use of a DNS TXT Resource Record

(RR), as defined in Section 3.7. A later extension of this standard

might define another RR type.

Strings in a TXT RR MUST be concatenated together before use, with no

intervening whitespace. TXT RRs MUST be unique for a particular

selector name; that is, if there are multiple records in an RRset, the

results are undefined.

3.7. Stored Key Data

This section defines a syntax for encoding stored key data within an

unstructured environment such as the simple text environment of a DNS

TXT record.

(Key Retrieval) A service that incorporates DOSETA

MAY define the specific mechanism by which consumers can

obtain associated public keys. This might be as easy as

referencing an existing key management system or it might

require a new set of conventions.

Absent an explicit specification for key retrieval, the

default mechanism is specified in Section 3.6. Use of this

means sharing the set of public keys with DKIM and other

DOSETA-based services.

The overall syntax is a tag-list as described in Section 3.3. The base

set of valid tags is described below. Other tags MAY be present and

MUST be ignored by any implementation that does not understand them.

ABNF:

key-k-tag = %x76 [FWS] "=" [FWS] key-k-tag-type

key-k-tag-type = "rsa" / x-key-k-tag-type

x-key-k-tag-type = hyphenated-word ; for future extension

ABNF:

key-n-tag = %x6e [FWS] "=" [FWS] qp-section

ABNF:

key-p-tag = %x70 [FWS] "=" [[FWS] base64string]

*

*

k=

n=

p=

NOTE:

NOTE:

NOTE:

Key type (MAY be include; default is "rsa"). Signers and

verifiers MUST support the "rsa" key type. The "rsa" key type

indicates that an ASN.1 DER-encoded [ITU-X660-1997]

RSAPublicKey [RFC3447] (see Sections Section 3.5 and A.1.1) is

being used in the "p" parameter. (Note: the "p" parameter

further encodes the value using the base64 algorithm.)

Unrecognized key types MUST be ignored.

Notes that might be of interest to a human (MAY be included;

default is empty). No interpretation is made by any program.

This tag should be used sparingly in any key server mechanism

that has space limitations (notably DNS). This is intended for

use by administrators, not end users.

Public-key data (MUST be included). An empty value means that

this public key has been revoked. The syntax and semantics of

this tag value before being encoded in base64 are defined by

the "k" parameter.

If a private key has been compromised or otherwise

disabled (for example, an outsourcing contract has been

terminated), a signer might want to explicitly state that

it knows about the selector, but also have all queries

using that selector result in a failed verification.

Verifiers SHOULD ignore any DOSETA‑Signature header fields

with a selector referencing a revoked key.

A base64string is permitted to include white space

(FWS) at arbitrary places; however, any CRLFs MUST be

followed by at least one WSP character. Implementors and

administrators are cautioned to ensure that selector TXT

records conform to this specification.

4. DOSETA H/C Signing Template

This section specifies the basic components of a signing mechanism; it

is similar to the one defined for DKIM. This template for a signing

service can be mapped to a two-part -- header/content -- data model. As

for DKIM this separates specification of the signer's identity from any

other identifiers that might be associated with that data.

The use of hashing and signing algorithms by DOSETA

inherently provides a degree of data integrity protection,

-

-

-

*

[TEMPLATE]

rsa-sha1:

rsa-sha256:

Other:

NOTE:

between the signing and verifying steps. However it does not

necessarily "authenticate" the data that is signed. For

example, it does not inherently validate the accuracy of the

data or declare that the signer is the author or owner of the

data. To the extent that authentication is meant by the

presence of a signature, that needs to be specified as part of

the semantics for the service based upon this template.

(Header/Content Mapping) The service incorporating

this mechanism MUST define the precise mappings onto the

template provided in this section. (Data lacking a header

component might still be possible to cast in a header/content

form, where the header comprises on the DOSETA Signature

information.)

The service also MUST define the precise meaning of a

signature.

4.1. Cryptographic Algorithms

DOSETA supports multiple digital signature algorithms:

The rsa-sha1 Signing Algorithm computes a message hash

as described in Section 4.4 below using SHA-1

[FIPS-180-2-2002] as a hashing algorithm. That hash is then

signed by the signer using the RSA algorithm (defined in

PKCS#1 version 1.5 [RFC3447]) as the crypt-alg and the

signer's private key. The hash MUST NOT be truncated or

converted into any form other than the native binary form

before being signed. The signing algorithm SHOULD use a public

exponent of 65537.

The rsa-sha256 Signing Algorithm computes a message

hash as described in [RFC5451] below using SHA-256

[FIPS-180-2-2002] as the hash-alg. That hash is then signed by

the signer using the RSA algorithm (defined in PKCS#1 version

1.5 [RFC3447]) as the crypt-alg and the signer's private key.

The hash MUST NOT be truncated or converted into any form

other than the native binary form before being signed.

Other algorithms MAY be defined in the future. Verifiers

MUST ignore any signatures using algorithms that they do not

implement.

Signers MUST implement and SHOULD sign using rsa-sha256. Verifiers MUST

implement rsa-sha256.

Although sha256 is strongly encouraged, some senders of low-

security messages (such as routine newsletters) might prefer to use

*

[TEMPLATE]

sha1 because of reduced CPU requirements to compute a sha1 hash. In

general, sha256 is always preferred, whenever possible.

Selecting appropriate key sizes is a trade-off between cost,

performance, and risk. Since short RSA keys more easily succumb to off-

line attacks, signers MUST use RSA keys of at least 1024 bits for long-

lived keys. Verifiers MUST be able to validate signatures with keys

ranging from 512 bits to 2048 bits, and they MAY be able to validate

signatures with larger keys. Verifier policies might use the length of

the signing key as one metric for determining whether a signature is

acceptable.

Factors that ought to influence the key size choice include the

following:

The practical constraint that large (for example, 4096 bit)

keys might not fit within a 512-byte DNS UDP response packet

The security constraint that keys smaller than 1024 bits are

subject to off-line attacks

Larger keys impose higher CPU costs to verify and sign data

Keys can be replaced on a regular basis, thus their lifetime

can be relatively short

The security goals of this specification are modest compared

to typical goals of other systems that employ digital

signatures

See [RFC3766] for further discussion on selecting key sizes.

4.2. Signature Data Structure

A signature of data is stored into an data structure associated with

the signed data. This structure contains all of the signature‑ and

key‑fetching data. This DOSETA‑Signature structure is a tag-list as

defined in Section 3.3.

(Signature Association) A service that incorporates

DOSETA MUST define the exact means by which the Signature

structure is associated with the data.

When the DOSETA‑Signature structure is part of a sequence of structures

-- such as being added to an email header -- it SHOULD NOT be reordered

and SHOULD be pre-pended to the message. (This is the same handling as

is given to email trace Header fields, defined in Section 3.6 of

[RFC5322].)

The tags are specified below. Tags described as <qp-section> are

encoded as described in Section 6.7 of MIME Part One [RFC2045], with

the additional conversion of semicolon characters to "=3B";

* -

-

-

-

-

*

intuitively, this is one line of quoted-printable encoded text. The D-

quoted-printable syntax is defined in Section 2.3.4.

Tags on the DOSETA‑Signature structure along with their type and

requirement status are shown below. Unrecognized tags MUST be ignored.

ABNF:

sig-v-tag = %x76 [FWS] "=" [FWS] "1"

ABNF:

sig-a-tag = %x61 [FWS] "=" [FWS] sig-a-tag-alg

sig-a-tag-alg = sig-a-tag-k "-" sig-a-tag-h

sig-a-tag-k = "rsa" / x-sig-a-tag-k

sig-a-tag-h = "sha1" / "sha256" / x-sig-a-tag-h

x-sig-a-tag-k = ALPHA *(ALPHA / DIGIT)

 ; for later extension

x-sig-a-tag-h = ALPHA *(ALPHA / DIGIT)

 ; for later extension

ABNF:

sig-b-tag = %x62 [FWS] "=" [FWS] sig-b-tag-data

sig-b-tag-data = base64string

ABNF:

sig-bh-tag = %x62 %x68 [FWS] "=" [FWS] sig-bh-tag-data

sig-bh-tag-data = base64string

ABNF:

sig-bh-tag = %x63 [FWS] "=" [FWS] sig-c-header "/" sig-c-content

ABNF:

sig-c-tag = %x63 [FWS] "=" [FWS] sig-c-tag-alg

 ["/" sig-c-tag-alg]

sig-c-tag-alg = "simple" / "relaxed" / x-sig-c-tag-alg

x-sig-c-tag-alg = hyphenated-word ; for later extension

ABNF:

sig-cl-tag = %x63 %x6C [FWS] "=" [FWS]

 sig-cl-tag-claim

 ["/" sig-c-tag-claim]

sig-c-tag-claim = hyphenated-word

 ; per DOSETA Claims Registry

ABNF:

v=

NOTE:

a=

sig-d-tag = %x64 [FWS] "=" [FWS] domain-name

domain-name = sub-domain 1*("." sub-domain)

 ; from RFC 5321 Domain,

 ; but excluding address-literal

ABNF:

sig-h-tag = %x68 [FWS] "=" [FWS] hdr-name

 0*([FWS] ":" [FWS] hdr-name)

ABNF:

sig-q-tag = %x71 [FWS] "=" [FWS] sig-q-tag-method

 *([FWS] ":" [FWS] sig-q-tag-method)

sig-q-tag-method = "dns/txt" / x-sig-q-tag-type

 ["/" x-sig-q-tag-args]

x-sig-q-tag-type = hyphenated-word ; for future extension

x-sig-q-tag-args = qp-hdr-value

ABNF:

sig-s-tag = %x73 [FWS] "=" [FWS] selector

ABNF:

sig-t-tag = %x74 [FWS] "=" [FWS] 1*12DIGIT

ABNF:

sig-x-tag = %x78 [FWS] "=" [FWS]

 1*12DIGIT

Version (MUST be included). This tag defines the version of

this specification that applies to the signature record. It

MUST have the value "1". Note that verifiers MUST do an exact

string comparison on this value; for example, "1" is not the

same as "1.0".

DOSETA‑Signature version numbers are expected to

increase arithmetically as new versions of this

specification are released.

The algorithm used to generate the signature (MUST be

included). Verifiers MUST support "rsa-sha1" and "rsa-sha256";

signers SHOULD sign using "rsa-sha256". See Section 4.1 for a

description of algorithms.

*

-

-

b=

bh=

c=

sig-c-header:

sig-c-content:

cl=

The signature data (MUST be included). Whitespace is ignored

in this value and MUST be ignored when reassembling the

original signature. In particular, the signing process can

safely insert FWS in this value in arbitrary places to conform

to line-length limits. See Signer Actions (Section 4.5) for

how the signature is computed.

The hash of the canonicalized Content (body), as limited by

the "l" parameter (MUST be included). Whitespace is ignored in

this value and MUST be ignored when reassembling the original

signature. In particular, the signing process can safely

insert FWS in this value in arbitrary places to conform to

line-length limits. See Section 4.4 for how the Content hash

is computed.

Data canonicalization (MAY be included; default is "simple/

simple"). This tag informs the verifier of the type of

canonicalization used to prepare the message for signing. It

consists of two names separated by a "slash" (%d47) character,

corresponding to the header and Content canonicalization

algorithms respectively:

A value from Header Canonicalization IANA

registry defined in [DKIMSign]

A value from Message Canonicalization IANA

registry defined in [DKIMSign]

These algorithms are described in

Section 3.2. If only one algorithm is named, that algorithm is

used for the header and "simple" is used for the Content. For

example, "c=relaxed" is treated the same as "c=relaxed/

simple".

A list of semantic claims, asserting the set of "meanings"

intended by the signer, such as author validity or content

validity (SHOULD be included; default is "handled"}. The list

of supported claims comprises values from the DOSETA Claims

IANA registry, defined in Section 6 using values listed in

Section 7.1.2.

-

-

-

-

-

d=

[TEMPLATE]

h=

The DDI doing the signing (MUST be included). Hence, the DDI

value is used to form the query for the public key. The DDI

MUST correspond to a valid DNS name under which the DOSETA key

record is published. The conventions and semantics used by a

signer to create and use a specific DDI are outside the scope

of the DOSETA Signing specification, as is any use of those

conventions and semantics. When presented with a signature

that does not meet these requirements, verifiers MUST consider

the signature invalid.

Internationalized domain names MUST be encoded as described in

[RFC5890].

(Semantics) The service incorporating DOSETA

MUST define the semantics of a signature.

Signed Header fields (MUST be included). A colon-separated

list of header field names that identify the Header fields

presented to the signing algorithm. The field MUST contain the

complete list of Header fields in the order presented to the

signing algorithm. The field MAY contain names of Header

fields that do not exist when signed; nonexistent Header

fields do not contribute to the signature computation (that

is, they are treated as the null input, including the header

field name, the separating colon, the header field value, and

any CRLF terminator). The field MUST NOT include the DOSETA

Signature header field that is being created or verified, but

might include others. Folding whitespace (FWS) MAY be included

on either side of the colon separator. Header field names MUST

be compared against actual header field names in a case-

insensitive manner. This list MUST NOT be empty. See Section

4.5.3 for a discussion of choosing Header fields to sign.

By "signing" Header fields that do not actually exist, a

signer can prevent insertion of those Header fields before

verification. However, since a signer cannot possibly know all

possible Header fields that might be created in the future,

the security of this solution is not total.

The exclusion of the header field name and colon as well as

the header field value for non-existent Header fields prevents

-

-

-

q=

s=

t=

x=

an attacker from inserting an actual header field with a null

value.

A colon-separated list of query methods used to retrieve the

public key (MAY be included; default is "dns/txt"). Each query

method is of the form "type[/options]", where the syntax and

semantics of the options depend on the type and specified

options. If there are multiple query mechanisms listed, the

choice of query mechanism MUST NOT change the interpretation

of the signature. Implementations MUST use the recognized

query mechanisms in the order presented. Unrecognized query

mechanisms MUST be ignored.

Currently, the only valid value is "dns/txt", which defines

the DNS TXT record lookup algorithm described elsewhere in

this document. The only option defined for the "dns" query

type is "txt", which MUST be included. Verifiers and signers

MUST support "dns/txt".

The selector subdividing the namespace for the "d=" (domain)

tag (MUST be included).

Signature Timestamp (SHOULD be included; default is an

unknown creation time). The time that this signature was

created. The format is the number of seconds since 00:00:00 on

January 1, 1970 in the UTC time zone. The value is expressed

as an unsigned integer in decimal ASCII. This value is not

constrained to fit into a 31- or 32-bit integer.

Implementations SHOULD be prepared to handle values up to at

least 10^12 (until approximately AD 200,000; this fits into 40

bits). To avoid denial-of-service attacks, implementations MAY

consider any value longer than 12 digits to be infinite. Leap

seconds are not counted. Implementations MAY ignore signatures

that have a timestamp in the future.

Signature Expiration (SHOULD be included; default is no

expiration). The format is the same as in the "t" parameter,

represented as an absolute date, not as a time delta from the

signing timestamp. The value is expressed as an unsigned

integer in decimal ASCII, with the same constraints on the

value in the "t=" tag. Signatures MAY be considered invalid if

the verification time at the verifier is past the expiration

date. Ideally verification time is when a message is first

received at the administrative domain of the verifier;

-

-

-

NOTE:

NOTE:

id=

NOTE:

otherwise the current time SHOULD be used. The value of the

"x" parameter MUST be greater than the value of the "t"

parameter if both are present.

The "x" parameter is not intended as an anti-replay

defense.

Due to clock drift, the receiver's notion of when to

consider the signature expired might not match exactly when

the sender is expecting. Receivers MAY add a 'fudge factor'

to allow for such possible drift.

4.3. Additional Tags

Some applications can benefit from additional, common functional

enhancements. These are defined here, as options to the core mechanism.

key-id-tag = %x69 %64 [FWS] "=" [FWS] hyphenated-word

The local identifier, restricting the scope of the DDI, such

as to a specific user. This value is combined with the DDI, to

specify the identifier to be used for assessment.

Administrative choices for selectors can provide different

keys for different local identifiers. See Section 3.5

ABNF:

4.4. Signature Calculations

Hashing and cryptographic signature algorithms are combined into a

procedure for computing a digital signature. Producers will choose

appropriate parameters for the signing process. Consumers will use the

tags that are then passed as an associated DOSETA‑Signature header

field. Section 4.2. In the following discussion, the names of the tags

are parameters in that field.

The basic operations for producing a signature are canonicalization,

hashing and signing. Canonicalization removes irrelevant variations.

Hashing produces a very short representation for the data and signing

produces a unique, protected string to be exchanged.

Canonicalization (see Section 3.2) prepares a separate

representation of the data for additional processing; it does

not affect the original, transmitted data in any way.

Producers MUST compute hashes in the order defined. Consumers MAY

compute them in any order convenient to the producer, provided that the

result is semantically identical to the semantics that would occur, had

they been computed in this order.

The combined hashing and signing algorithms are:

*

-

*

*

Content Hash:

Header Hash:

Signature:

Truncate the content to the length specified in

the "l" parameter.

Canonicalize the truncated content, using the algorithm

specified in the "c" parameter.

Hash the canonicalized content, using the hashing

algorithm specified in the "a" parameter.

Convert the resulting hash to base64 form.

Signers then insert the base64 result into the "bh"

parameter of the DOSETA‑Signature field; verifiers

compare their hash with the value in the "bh" parameter.

Select the header fields specified by the "h"

parameter.

Ensure that each field is terminated by a single CRLF.

Canonicalize each of these fields, using the header

canonicalization algorithm specified in the "c"

parameter.

Select the DOSETA‑Signature field that exists

(verifying), or will be inserted (signing), in the

header.

From that field, delete the value portion of the "b"

parameter, including all surrounding whitespace; that is,

treat the "b" parameter as containing an empty string.

Canonicalize the resulting field, using the Header

canonicalization algorithm specified in the "c"

parameter, but remove the trailing CRLF, if present.

Using the hashing algorithm specified in the "a"

parameter, hash the sequence:

the canonicalized header fields, in the order

specified by the "h" parameter,

the output from the content hash, and

the canonicalized DOSETA‑Signature field.

Obtain the relevant key associated with the relevant

domain and selector; for signing this is a private key;

for verifying this is a public key.

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

6.

7.

1.

2.

3.

1.

Obtain the header hash produced by the previous

calculation.

Using the signing algorithm specified in the "a"

parameter, and the relevant key, process the hash.

All tags cited in the "h" parameter MUST be included even if they are

not understood by the verifier. Note that the DOSETA‑Signature field is

presented to the hash algorithm after the content hash is processed,

rather than with the rest of the header fields that are processed

before the content hash. The DOSETA‑Signature header structure MUST NOT

be cited in its own h= tag. If present, other DOSETA‑Signature header

fields MAY be cited and included in the signature process (see Section

5).

When calculating the hash on data that will be transmitted using

additional encoding, such as base64 or quoted-printable, signers MUST

compute the hash after the encoding. Likewise, the verifier MUST

incorporate the values into the hash before decoding the base64 or

quoted-printable text. However, the hash MUST be computed before

transport level encodings such as SMTP "dot-stuffing" (the modification

of lines beginning with a "." to avoid confusion with the SMTP end-of-

message marker, as specified in [RFC5321]).

With the exception of the canonicalization procedure described in

Section 3.2, the DOSETA signing process treats the content as a simple

string of octets. DOSETA content MAY be either simple lines of plain-

text or as a MIME object; no special treatment is afforded to MIME

content.

Formally, the algorithm for the signature is as follows:

ABNF:

content-hash = hash-alg (canon-content, l-param)

data-hash = hash-alg (h-headers, D-SIG, content-hash)

signature = sig-alg (d-domain, selector, data-hash)

2.

3.

*

content-hash:

hash-alg:

canon-content:

l-param:

data-hash:

h-headers:

D-SIG:

canon-content:

signature:

sig-alg:

d-domain:

selector:

NOTE:

where:

is the output from hashing the content, using

hash-alg.

is the hashing algorithm specified in the "a"

parameter.

is a canonicalized representation of the content.

is the length-of-content value of the "l" parameter.

is the output from using the hash-alg algorithm, to

hash the header including the DKIM‑Signature header, and the

content hash.

is the list of headers to be signed, as specified in

the "h" parameter.

is the canonicalized DOSETA‑Signature field without the

signature value portion of the parameter, itself; that is, an

empty parameter value.

is the canonicalized data content (respectively)

as defined in Section 3.2 (excluding the DOSETA‑Signature

field).

is the signature value produced by the signing

algorithm.

is the signature algorithm specified by the "a"

parameter.

is the domain name specified in the "d" parameter.

is the selector value specified in the "s" parameter.

Many digital signature APIs provide both hashing and application

of the RSA private key using a single "sign()" primitive. When using

such an API, the last two steps in the algorithm would probably be

combined into a single call that would simultaneously perform both

"a-hash-alg" and the "sig-alg".

4.5. Signer Actions

The following steps are performed in order by signers.

*

NOTE:

NOTE:

NOTE:

4.5.1. Determine Whether the Data Should Be Signed and by Whom

A signer can obviously only sign data using domains for which it has a

private key and the necessary knowledge of the corresponding public key

and selector information. However, there are a number of other reasons

beyond the lack of a private key why a signer could choose not to sign

the data.

Signing modules can be incorporated into any portion of a

service, as deemed appropriate, including end-systems, servers and

intermediaries. Wherever implemented, signers need to beware of the

semantics of signing data. An example of how this can be problematic

is that within a trusted enclave the signing address might be

derived from the data according to local policy; the derivation is

based on local trust rather than explicit validation.

If the data cannot be signed for some reason, the disposition of that

data is a local policy decision.

4.5.2. Select a Private Key and Corresponding Selector Information

This specification does not define the basis by which a signer ought to

choose which private key and selector information to use. Currently,

all selectors are equal, with respect to this specification. So the

choices ought to largely be a matter of administrative convenience.

Distribution and management of private keys is also outside the scope

of this document.

A signer SHOULD use a private key with an associated selector

record that is expected to still be valid by time the verifier is

likely to have an opportunity to validate the signature. The signer

SHOULD anticipate that verifiers can choose to defer validation,

perhaps until the message is actually read by the final recipient.

In particular, when rotating to a new key pair, signing SHOULD

immediately commence with the new private key, but the old public

key SHOULD be retained for a reasonable validation interval before

being removed from the key server.

4.5.3. Determine the Header Fields to Sign

Signers SHOULD NOT sign an existing header field that is likely to be

legitimately modified or removed in transit. Signers MAY include any

other Header fields present at the time of signing at the discretion of

the signer.

The choice of which Header fields to sign is non-obvious. One

strategy is to sign all existing, non-repeatable Header fields. An

alternative strategy is to sign only Header fields that are likely

to be displayed to or otherwise be likely to affect the processing

of the Content at the receiver. A third strategy is to sign only

NOTE:

NOTE:

"well known" headers. Note that verifiers might treat unsigned

Header fields with extreme skepticism, including refusing to display

them to the end user or even ignoring the signature if it does not

cover certain Header fields.

The DOSETA‑Signature header field is always implicitly signed and MUST

NOT be included in the "h" parameter except to indicate that other

preexisting signatures are also signed.

Signers MAY claim to have signed Header fields that do not exist (that

is, signers MAY include the header field name in the "h" parameter even

if that header field does not exist in the message). When computing the

signature, the non-existing header field MUST be treated as the null

string (including the header field name, header field value, all

punctuation, and the trailing CRLF).

This allows signers to explicitly assert the absence of a header

field; if that header field is added later the signature will fail.

A header field name need only be listed once more than the

actual number of that header field in a message at the time of

signing in order to prevent any further additions. For example, if

there is a single Comments header field at the time of signing,

listing Comments twice in the "h" parameter is sufficient to prevent

any number of Comments Header fields from being appended; it is not

necessary (but is legal) to list Comments three or more times in the

"h" parameter.

Received: <A>

Received:

Received: <c>

Signers choosing to sign an existing header field that occurs more than

once in the message (such as Received) MUST sign the physically last

instance of that header field in the header block. Signers wishing to

sign multiple instances of such a header field MUST include the header

field name multiple times in the h= tag of the DOSETA‑Signature header

field, and MUST sign such Header fields in order from the bottom of the

header field block to the top. The signer MAY include more instances of

a header field name in h= than there are actual corresponding Header

fields to indicate that additional Header fields of that name SHOULD

NOT be added.

then the resulting DOSETA‑Signature header field ought to read:

DKIM-Signature: ... h=Received : Received :...

EXAMPLE:

If the signer wishes to sign two existing Received Header fields,

and the existing header contains:

*

*

NOTE:

NOTE:

Signers need to be careful of signing Header fields that might have

additional instances added later in the delivery process, since such

Header fields might be inserted after the signed instance or otherwise

reordered. Trace Header fields (such as Received) and Resent-* blocks

are the only fields prohibited by [RFC5322] from being reordered. In

particular, since DOSETA‑Signature Header fields might be reordered by

some intermediate MTAs, signing existing DOSETA‑Signature Header fields

is error-prone.

Despite the fact that [RFC5322] permits Header fields to be

reordered (with the exception of Received Header fields), reordering

of signed Header fields with multiple instances by intermediate MTAs

will cause DOSETA signatures to be broken; such anti-social behavior

ought to be avoided.

Although not required by this specification, all end-user

visible Header fields SHOULD be signed to avoid possible "indirect

spamming". For example, if the Subject header field is not signed, a

spammer can resend a previously signed mail, replacing the

legitimate subject with a one-line spam.

4.5.4. Compute the Message Signature

The signer MUST compute the message hash as described in Section 4.4

and then sign it using the selected public-key algorithm. This will

result in a DOSETA‑Signature header field that will include the Content

hash and a signature of the header hash, where that header includes the

DOSETA‑Signature header field itself.

Entities such as mailing list managers that implement DOSETA and that

modify the message or a header field (for example, inserting

unsubscribe information) before retransmitting the message SHOULD check

any existing signature on input and MUST make such modifications before

re-signing the message.

The signer MAY elect to limit the number of bytes of the Content that

will be included in the hash and hence signed. The length actually

hashed SHOULD be inserted in the "l=" tag of the DOSETA‑Signature

header field.

4.5.5. Insert the DOSETA‑Signature Header Field

Finally, the signer MUST insert the DOSETA‑Signature header field

created in the previous step prior to transmitting the data. The

DOSETA‑Signature header field MUST be the same as used to compute the

hash as described above, except that the value of the "b" parameter

MUST be the appropriately signed hash computed in the previous step,

signed using the algorithm specified in the "a" parameter of the

DOSETA‑Signature header field and using the private key corresponding

to the selector given in the "s=" tag of the DOSETA‑Signature header

field, as chosen above in Section 4.5.2

NOTE:

NOTE:

The DOSETA‑Signature header field MUST be inserted before any other

DOSETA‑Signature fields in the header block.

The easiest way to achieve this is to insert the

DOSETA‑Signature header field at the beginning of the header block.

In particular, it might be placed before any existing Received

Header fields. This is consistent with treating DOSETA‑Signature as

a trace header field.

4.6. Verifier Actions

Since a signer MAY remove or revoke a public key at any time, it is

recommended that verification occur in a timely manner. In many

configurations, the most timely place is during acceptance by the

border MTA or shortly thereafter. In particular, deferring verification

until the message is accessed by the end user is discouraged.

A border or intermediate server MAY verify the data signature(s). An

server that has performed verification MAY communicate the result of

that verification by adding a verification header field to incoming

data.

A verifying server MAY implement a policy with respect to unverifiable

data, regardless of whether or not it applies the verification header

field to signed messages.

Verifiers MUST produce a result that is semantically equivalent to

applying the following steps in the order listed. In practice, several

of these steps can be performed in parallel in order to improve

performance.

4.6.1. Extract Signatures from the Message

The order in which verifiers try DOSETA‑Signature Header fields is not

defined; verifiers MAY try signatures in any order they like. For

example, one implementation might try the signatures in textual order,

whereas another might try signatures by identities that match the

contents of the From header field before trying other signatures.

Verifiers MUST NOT attribute ultimate meaning to the order of multiple

DOSETA‑Signature Header fields. In particular, there is reason to

believe that some relays will reorder the Header fields in potentially

arbitrary ways.

Verifiers might use the order as a clue to signing order in the

absence of any other information. However, other clues as to the

semantics of multiple signatures (such as correlating the signing

host with Received Header fields) might also be considered.

A verifier SHOULD NOT treat a message that has one or more bad

signatures and no good signatures differently from a message with no

signature at all; such treatment is a matter of local policy and is

beyond the scope of this document.

NOTE:

NOTE:

When a signature successfully verifies, a verifier will either stop

processing or attempt to verify any other signatures, at the discretion

of the implementation. A verifier MAY limit the number of signatures it

tries to avoid denial-of-service attacks.

An attacker could send messages with large numbers of faulty

signatures, each of which would require a DNS lookup and

corresponding CPU time to verify the message. This could be an

attack on the domain that receives the message, by slowing down the

verifier by requiring it to do a large number of DNS lookups and/or

signature verifications. It could also be an attack against the

domains listed in the signatures, essentially by enlisting innocent

verifiers in launching an attack against the DNS servers of the

actual victim.

In the following description, text reading "return status

(explanation)" (where "status" is one of "PERMFAIL" or "TEMPFAIL")

means that the verifier MUST immediately cease processing that

signature. The verifier SHOULD proceed to the next signature, if any is

present, and completely ignore the bad signature. If the status is

"PERMFAIL", the signature failed and SHOULD NOT be reconsidered. If the

status is "TEMPFAIL", the signature could not be verified at this time

but might be tried again later. A verifier MAY either defer the message

for later processing, perhaps by queueing it locally or issuing a

451/4.7.5 SMTP reply, or try another signature; if no good signature is

found and any of the signatures resulted in a TEMPFAIL status, the

verifier MAY save the message for later processing. The "(explanation)"

is not normative text; it is provided solely for clarification.

Verifiers SHOULD ignore any DOSETA‑Signature Header fields where the

signature does not validate. Verifiers that are prepared to validate

multiple signature Header fields SHOULD proceed to the next signature

header field, if it exists. However, verifiers MAY make note of the

fact that an invalid signature was present for consideration at a later

step.

The rationale of this requirement is to permit messages that

have invalid signatures but also a valid signature to work. For

example, a mailing list exploder might opt to leave the original

submitter signature in place even though the exploder knows that it

is modifying the message in some way that will break that signature,

and the exploder inserts its own signature. In this case, the

message ought to succeed even in the presence of the known-broken

signature.

For each signature to be validated, the following steps need to be

performed in such a manner as to produce a result that is semantically

equivalent to performing them in the indicated order.

NOTE:

4.6.2. Validate the Signature Header Field

Implementers MUST meticulously validate the format and values in the

DOSETA‑Signature header field; any inconsistency or unexpected values

MUST cause the header field to be completely ignored and the verifier

to return PERMFAIL (signature syntax error). Being "liberal in what you

accept" is definitely a bad strategy in this security context. Note

however that this does not include the existence of unknown tags in a

DOSETA‑Signature header field, which are explicitly permitted.

If any tag listed as "required" in Section 4.2 is omitted from the

DOSETA‑Signature header field, the verifier MUST ignore the

DOSETA‑Signature header field and return PERMFAIL (signature missing

required tag).

The tags listed as required in Section 4.2 are "v=", "a=", "b=",

"bh=", "d=", "h=", and "s=". Should there be a conflict between this

note and Section 4.2, is normative.

If the DOSETA‑Signature header field does not contain the "i"

parameter, the verifier MUST behave as though the value of that tag

were "@d", where "d" is the value from the "d=" tag.

Verifiers MUST confirm that the domain specified in the "d=" tag is the

same as or a parent domain of the domain part of the "i" parameter. If

not, the DOSETA‑Signature header field MUST be ignored and the verifier

SHOULD return PERMFAIL (domain mismatch).

If the "h" parameter does not include the From header field, the

verifier MUST ignore the DOSETA‑Signature header field and return

PERMFAIL (From field not signed).

Verifiers MAY ignore the DOSETA‑Signature header field and return

PERMFAIL (signature expired) if it contains an "x" parameter and the

signature has expired.

Verifiers MAY ignore the DOSETA‑Signature header field if the domain

used by the signer in the "d" parameter is not associated with a valid

signing entity. For example, signatures with "d=" values such as "com"

and "co.uk" might be ignored. The list of unacceptable domains SHOULD

be configurable.

Verifiers MAY ignore the DOSETA‑Signature header field and return

PERMFAIL (unacceptable signature header) for any other reason, for

example, if the signature does not sign Header fields that the verifier

views to be essential. As a case in point, if MIME Header fields are

not signed, certain attacks might be possible that the verifier would

prefer to avoid.

4.6.3. Get the Public Key

The public key for a signature is needed to complete the verification

process. The process of retrieving the public key depends on the query

type as defined by the "q" parameter in the DOSETA‑Signature header

field. Obviously, a public key need only be retrieved if the process of

NOTE:

extracting the signature information is completely successful. Details

of key management and representation are described in Section 3.4. The

verifier MUST validate the key record and MUST ignore any public key

records that are malformed.

The use of wildcard TXT records in the DNS will produce a

response to a DOSETA query that is unlikely to be valid DOSETA key

record. This problem applies to many other types of queries, and

client software that processes DNS responses needs to take this

problem into account.

When validating a message, a verifier MUST perform the following steps

in a manner that is semantically the same as performing them in the

following order -- in some cases the implementation might parallelize

or reorder these steps, as long as the semantics remain unchanged:

Retrieve the public key as described in Section 3.4 using the

algorithm in the "q=" tag, the domain from the "d" parameter,

and the selector from the "s" parameter.

If the query for the public key fails to respond, the verifier

MAY defer acceptance of this data and return TEMPFAIL - key

unavailable. (If verification is occurring during the incoming

SMTP session, this MAY be achieved with a 451/4.7.5 SMTP reply

code.) Alternatively, the verifier MAY store the message in the

local queue for later trial or ignore the signature. Note that

storing a message in the local queue is subject to denial-of-

service attacks.

If the query for the public key fails because the corresponding

key record does not exist, the verifier MUST immediately return

PERMFAIL (no key for signature).

If the query for the public key returns multiple key records,

the verifier might choose one of the key records or might cycle

through the key records performing the remainder of these steps

on each record at the discretion of the implementer. The order

of the key records is unspecified. If the verifier chooses to

cycle through the key records, then the "return ..." wording in

the remainder of this section means "try the next key record,

if any; if none, return to try another signature in the usual

way".

If the result returned from the query does not adhere to the

format defined in this specification, the verifier MUST ignore

the key record and return PERMFAIL (key syntax error).

Verifiers are urged to validate the syntax of key records

carefully to avoid attempted attacks.

1.

2.

3.

4.

5.

If the "h" parameter exists in the public key record and the

hash algorithm implied by the a= tag in the DOSETA‑Signature

header field is not included in the contents of the "h"

parameter, the verifier MUST ignore the key record and return

PERMFAIL (inappropriate hash algorithm).

If the public key data (the "p" parameter) is empty, then this

key has been revoked and the verifier MUST treat this as a

failed signature check and return PERMFAIL (key revoked). There

is no defined semantic difference between a key that has been

revoked and a key record that has been removed.

If the public key data is not suitable for use with the

algorithm and key types defined by the "a=" and "k" parameters

in the DOSETA‑Signature header field, the verifier MUST

immediately return PERMFAIL (inappropriate key algorithm).

4.6.4. Compute the Verification

Given a signer and a public key, verifying a signature consists of

actions semantically equivalent to the following steps.

Based on the algorithm defined in the "c" parameter, the

Content length specified in the "l" parameter, and the header

field names in the "h" parameter, prepare a canonicalized

version of the Content as is described in Section 4.4 (note

that this version does not actually need to be instantiated).

When matching header field names in the "h" parameter against

the actual message header field, comparisons MUST be case-

insensitive.

Based on the algorithm indicated in the "a" parameter, compute

the message hashes from the canonical copy as described in

Section 4.4

Verify that the hash of the canonicalized Content computed in

the previous step matches the hash value conveyed in the "bh"

parameter. If the hash does not match, the verifier SHOULD

ignore the signature and return PERMFAIL (Content hash did not

verify).

Using the signature conveyed in the "b" parameter, verify the

signature against the header hash using the mechanism

appropriate for the public key algorithm described in the "a"

parameter. If the signature does not validate, the verifier

SHOULD ignore the signature and return PERMFAIL (signature did

not verify).

Otherwise, the signature has correctly verified.

6.

7.

8.

1.

2.

3.

4.

5.

NOTE:
Implementations might wish to initiate the public-key query in

parallel with calculating the hash as the public key is not needed

until the final decryption is calculated. Implementations might also

verify the signature on the message header before validating that

the message hash listed in the "bh" parameter in the

DOSETA‑Signature header field matches that of the actual Content;

however, if the Content hash does not match, the entire signature

MUST be considered to have failed.

4.6.5. Communicate Verification Results

Verifiers wishing to communicate the results of verification to other

parts of the data handling system can do so in whatever manner they see

fit. For example, implementations might choose to add a Header field to

the data before passing it on. Any such header field SHOULD be inserted

before any existing DOSETA‑Signature or preexisting verification status

Header fields in the header field block. The Authentication-Results:

header field ([RFC5451]) MAY be used for this purpose.

Patterns intended to search for results Header fields to visibly

mark authenticated data for end users SHOULD verify that the

header field was added by the appropriate verifying domain In

particular, filters SHOULD NOT be influenced by bogus results

header fields added by attackers. To circumvent this attack,

verifiers SHOULD delete existing results Header fields after

verification and before adding a new header field.

4.6.6. Interpret Results/Apply Local Policy

It is beyond the scope of this specification to describe what actions

an Assessment phase will take, but data with a verified DOSETA

signature presents an opportunity to an Assessor that unsigned data

does not. Specifically, signed data creates a predictable identifier by

which other decisions can reliably be managed, such as trust and

reputation. Conversely, unsigned data typically lacks a reliable

identifier that can be used to assign trust and reputation. It is

usually reasonable to treat unsigned data as lacking any trust and

having no positive reputation.

In general, verifiers SHOULD NOT reject data solely on the basis of a

lack of signature or an unverifiable signature; such rejection would

cause severe interoperability problems. However, if the verifier does

opt to reject such data

Temporary failures such as inability to access the key server or other

external service are the only conditions that SHOULD use a temporary

failure code. In particular, cryptographic signature verification

failures MUST NOT return temporary failure replies.

Once the signature has been verified, that information MUST be conveyed

to the Assessor (such as an explicit allow/whitelist and reputation

*

Association:

Semantics:

Structural Mapping:

Required Fields:

system) and/or to the end user. If the DDI is not the same as the

address in the From: header field, the data system SHOULD take pains to

ensure that the actual DDI is clear to the reader.

The verifier MAY treat unsigned Header fields with extreme skepticism,

including marking them as untrusted or even deleting them.

While the symptoms of a failed verification are obvious -- the

signature doesn't verify -- establishing the exact cause can be more

difficult. If a selector cannot be found, is that because the selector

has been removed, or was the value changed somehow in transit? If the

signature line is missing, is that because it was never there, or was

it removed by an overzealous filter? For diagnostic purposes, the exact

nature of a verification failure SHOULD be made available to the policy

module and possibly recorded in the system logs. If the data cannot be

verified, then it SHOULD be rendered the same as all unverified data

regardless of whether or not it looks like it was signed.

4.7. Requirements for Tailoring the Signing Service

This generic template requires additional details, to define a specific

service:

Specify the means by which the signature field is

associated with the data it signs. This identifies the

specific signing service and the mechanics of attaching the

signature. For example, DKIM uses the DKIM‑Signature email

header field. If the header field is encoded differently than

defined for the DOSETA generic service, such as in XML or

JSON, then that also needs to be specified, including the

algorithm for mapping between the common encoding provided

here and the new encoding.

Define the meaning(s) of a signature that is intended

by the signer. Note that exactly the same algorithms might be

used for very different semantics. One might merely affix an

identifier to some data, in a verifiable fashion, while the

same set of mechanisms might separately be defined as

authenticating the validity of that data. A single service can

support multiple semantics for a signature. These SHOULD be

specified using the "cl=" claims mechanism defined in Section

4.2 and Section 6 with values listed in Section 7.1.2

The mappings between the template's generic

service and data of a particular service needs to be defined.

For example, with DKIM the DOSETA Header maps to the email

header and DOSETA Content maps to the email body.

Specify the header fields that MUST, SHOULD or

MAY be included in the signature calculation.

*

Required Algorithms:

EXAMPLE:

EXAMPLE:

EXAMPLE:

Specify the hashing and signing algorithms

that MUST, SHOULD or MAY be supported by participants in the

service.

5. Semantics of Multiple Signatures

5.1. Example Scenarios

There are many reasons why a message might have multiple signatures.

For example, a given signer might sign multiple times, perhaps with

different hashing or signing algorithms during a transition phase.

Suppose SHA-256 is in the future found to be insufficiently

strong, and DOSETA usage transitions to SHA-1024. A signer might

immediately sign using the newer algorithm, but continue to sign

using the older algorithm for interoperability with verifiers that

had not yet upgraded. The signer would do this by adding two

DOSETA‑Signature Header fields, one using each algorithm. Older

verifiers that did not recognize SHA-1024 as an acceptable algorithm

would skip that signature and use the older algorithm; newer

verifiers could use either signature at their option, and all other

things being equal might not even attempt to verify the other

signature.

Similarly, a signer might sign a message including all headers and no

"l" parameter (to satisfy strict verifiers) and a second time with a

limited set of headers and an "l" parameter (in anticipation of

possible message modifications in route to other verifiers). Verifiers

could then choose which signature they preferred.

A verifier might receive data with two signatures, one

covering more of the data than the other. If the signature covering

more of the data verified, then the verifier could make one set of

policy decisions; if that signature failed but the signature

covering less of the data verified, the verifier might make a

different set of policy decisions.

Of course, a message might also have multiple signatures because it

passed through multiple signers. A common case is expected to be that

of a signed message that passes through a mailing list that also signs

all messages. Assuming both of those signatures verify, a recipient

might choose to accept the message if either of those signatures were

known to come from trusted sources.

Recipients might choose to whitelist mailing lists to which

they have subscribed and that have acceptable anti- abuse policies

so as to accept messages sent to that list even from unknown

authors. They might also subscribe to less trusted mailing lists

(for example, those without anti-abuse protection) and be willing to

EXAMPLE:

NOTE:

NOTE:

accept all messages from specific authors, but insist on doing

additional abuse scanning for other messages.

Another related example of multiple signers might be forwarding

services, such as those commonly associated with academic alumni sites.

A recipient might have an address at members.example.org, a

site that has anti-abuse protection that is somewhat less effective

than the recipient would prefer. Such a recipient might have

specific authors whose messages would be trusted absolutely, but

messages from unknown authors that had passed the forwarder's

scrutiny would have only medium trust.

5.2. Interpretation

A signer that is adding a signature to a message merely creates a new

DOSETA‑Signature header, using the usual semantics of the h= option. A

signer MAY sign previously existing DOSETA‑Signature Header fields

using the method described in Section 4.5.3 to sign trace Header

fields.

Signers need to be cognizant that signing DOSETA‑Signature

Header fields might result in verification failures due to

modifications by intermediaries, such as their reordering

DOSETA‑Signature header fields. For this reason, signing existing

DOSETA‑Signature Header fields is unadvised, albeit legal.

If a header field with multiple instances is signed, those

header fields are always signed from the "bottom" up (from last to

first). Thus, it is not possible to sign only specific instances of

header fields. For example, if the message being signed already

contains three DOSETA‑Signature header fields (from the bottom, up)

A, B, and C, it is possible to sign all of them, A and B only, or A

only, but not C only, B only, B and C only, or A and C only.

A signer MAY add more than one DOSETA‑Signature header field using

different parameters. For example, during a transition period a signer

might want to produce signatures using two different hash algorithms.

Signers SHOULD NOT remove any DOSETA‑Signature Header fields from

messages they are signing, even if they know that the signatures cannot

be verified.

When evaluating a message with multiple signatures, a verifier SHOULD

evaluate signatures independently and on their own merits. For example,

a verifier that by policy chooses not to accept signatures with

deprecated cryptographic algorithms would consider such signatures

invalid. Verifiers MAY process signatures in any order of their choice;

for example, some verifiers might choose to process signatures

corresponding to the From field in the message header before other

NOTE:

Label:

Description:

signatures. See Section 4.6.1 for more information about signature

choices.

Verifier attempts to correlate valid signatures with invalid

signatures in an attempt to guess why a signature failed are ill-

advised. In particular, there is no general way that a verifier can

determine that an invalid signature was ever valid.

Verifiers SHOULD ignore failed signatures as though they were not

present in the message. Verifiers SHOULD continue to check signatures

until a signature successfully verifies to the satisfaction of the

verifier. To limit potential denial-of-service attacks, verifiers MAY

limit the total number of signatures they will attempt to verify.

6. DOSETA Claims Registry Definition

A registry entry MUST contain: Section 7.1.2

Specifies a textual name for claim, to be used in the

"cl=" tag.

Explains the semantics of the claim being asserted.

The registry entries are contained in the IANA DOSETA Claims Registry,

defined in

7. Considerations

7.1. IANA Considerations

7.1.1. DKIM Registries

DOSETA relies on IANA registration data bases specified by DKIM

[DKIMSign]. Services that incorporate DOSETA might need to define new

registries or add to existing ones.

7.1.2. Claims Registry

Per [RFC2434], IANA is requested to establish a DOSETA Claims Registry,

for assertions (claims) that are meant by the presence of the DOSETA-

based signature that contains the claims. See Section 6 for the

definition of the columns in the registry table.

LABEL CLAIM DESCRIPTION

handled

The signer claims they have had a role in processing the

object. (This claim is approximately equivalent to the

semantics of DKIM.)

validauth

*

LABEL CLAIM DESCRIPTION

If there is a standardized field listing the purported

author of the data, the signer claims that the value in

that field is valid.

validdata
The signer claims that all of the data in the object

valid.

validfields
The signer claims that the portions of the object that

are covered by the signature hash are valid.

DOSETA Claim Registry (with initial values)

7.2. Security Considerations

Any mechanism that attempts to prevent or detect abuse is subject to

intensive attack. DOSETA needs to be carefully scrutinized to identify

potential attack vectors and the vulnerability to each. See also

[RFC4686].

DOSETA core technology derives from DKIM [DKIMSign]. The Security

Considerations of that specification applies equally to DOSETA.

The DOSETA "cl=" claims list provides a list of claimed meanings for a

DOSETA signature. An opportunity for security problems comes from

failing to distinguish between a signer "claim" and claim validity.

Whether to trust claims made by a signer requires a level of assessment

beyond DOSETA.

8. References

8.1. Normative References

, "

[FIPS-180-2-2002]
U.S. Department of Commerce, , "Secure Hash

Standard", FIPS PUB 180-2, August 2002.

[ITU-X660-1997]

Information Technology - ASN.1 encoding rules:

Specification of Basic Encoding Rules (BER),

Canonical Encoding Rules (CER) and

Distinguished Encoding Rules (DER)", 1997.

[RFC1034]
Mockapetris, P., "DOMAIN NAMES - CONCEPTS AND

FACILITIES", RFC 1034, November 1987.

[RFC2045]

Freed, N. and N.S. Borenstein, "Multipurpose

Internet Mail Extensions (MIME) Part One:

Format of Internet Message Bodies", RFC 2045,

November 1996.

[RFC2049]

Freed, N. and N.S. Borenstein, "Multipurpose

Internet Mail Extensions (MIME) Part Five:

Conformance Criteria and Examples", RFC 2049,

November 1996.

[RFC2119]

http://tools.ietf.org/html/rfc1034
http://tools.ietf.org/html/rfc1034
mailto:ned@innosoft.com
mailto:nsb@nsb.fv.com
http://tools.ietf.org/html/rfc2045
http://tools.ietf.org/html/rfc2045
http://tools.ietf.org/html/rfc2045
mailto:ned@innosoft.com
mailto:nsb@nsb.fv.com
http://tools.ietf.org/html/rfc2049
http://tools.ietf.org/html/rfc2049
http://tools.ietf.org/html/rfc2049

Bradner, S., "Key words for use in RFCs to

Indicate Requirement Levels", BCP 14, RFC 2119,

March 1997.

[RFC2434]

Narten, T. and H. Alvestrand, "Guidelines for

Writing an IANA Considerations Section in

RFCs", RFC 2434, October 1998.

[RFC3447]

Jonsson, J. and B. Kaliski, "Public-Key

Cryptography Standards (PKCS) #1: RSA

Cryptography Specifications Version 2.1", RFC

3447, February 2003.

[RFC5321]
Klensin, J., "Simple Mail Transfer Protocol",

RFC 5321, October 2008.

[RFC5322]
Resnick, P., "Internet Message Format", RFC

5322, October 2008.

[RFC5234]

Crocker, D. and P. Overell, "Augmented BNF for

Syntax Specifications: ABNF", RFC 4234, January

2008.

[RFC5890]

Klensin, J., "Internationalizing Domain Names

in Applications (IDNA): Definitions and

Document Framework", RFC 5890, August 2010.

8.2. Informative References

[mimeauth]

Crocker, D. and M. Kucherawy, "MIME Content

Authentication using DOSETA (MIMEAUTH) ", I-D draft-

crocker-doseta-mimeauth, 2011.

[RFC1847]

Galvin, J., Murphy, S., Crocker, S. and N. Freed,

"Security Multiparts for MIME: Multipart/Signed and

Multipart/Encrypted", RFC 1847, October 1995.

[RFC2047]

Moore, K., "MIME (Multipurpose Internet Mail

Extensions) Part Three: Message Header Extensions for

Non-ASCII Content", RFC 2047, November 1996.

[RFC4880]
Callas, J., Donnerhacke, L., Finney, H. and R. Thayer,

"OpenPGP Message Format", RFC 4880, November 2007.

[RFC3766]

Orman, H. and P. Hoffman, "Determining Strengths For

Public Keys Used For Exchanging Symmetric Keys", BCP

86, RFC 3766, April 2004.

[RFC4033]

Arends, R., Austein, R., Larson, M., Massey, D. and S.

Rose, "DNS Security Introduction and Requirements",

RFC 4033, March 2005.

[RFC4409]
Gellens, R. and J. Klensin, "Message Submission for

Mail", RFC 4409, April 2006.

[RFC4686]
Fenton, J., "Analysis of Threats Motivating DomainKeys

Identified Mail (DKIM)", RFC 4686, September 2006.

[RFC4870]

Delany, M., "Domain-Based Email Authentication Using

Public Keys Advertised in the DNS (DomainKeys)", RFC

4870, May 2007.

[DKIMSign]

mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2434
http://tools.ietf.org/html/rfc2434
http://tools.ietf.org/html/rfc2434
http://tools.ietf.org/html/rfc3447
http://tools.ietf.org/html/rfc3447
http://tools.ietf.org/html/rfc3447
http://tools.ietf.org/html/rfc5321
http://tools.ietf.org/html/rfc5322
mailto:dcrocker@bbiw.net
mailto:paul.overell@thus.net
http://tools.ietf.org/html/rfc4234
http://tools.ietf.org/html/rfc4234
http://tools.ietf.org/html/rfc5890
http://tools.ietf.org/html/rfc5890
http://tools.ietf.org/html/rfc5890
mailto:dcrocker@bbiw.net
mailto:msk@cloudmark.com
mailto:galvin@tis.com
mailto:sandy@tis.com
mailto:crocker@cybercash.com
mailto:ned@innosoft.com
http://tools.ietf.org/html/rfc1847
http://tools.ietf.org/html/rfc1847
mailto:moore@cs.utk.edu
http://tools.ietf.org/html/rfc2047
http://tools.ietf.org/html/rfc2047
http://tools.ietf.org/html/rfc2047
mailto:jon@pgp.com
mailto:lutz@iks-jena.de
mailto:hal@pgp.com
mailto:rodney@unitran.com
http://tools.ietf.org/html/rfc4880
http://tools.ietf.org/html/rfc3766
http://tools.ietf.org/html/rfc3766
http://tools.ietf.org/html/rfc4033
http://tools.ietf.org/html/rfc4409
http://tools.ietf.org/html/rfc4409
http://tools.ietf.org/html/rfc4686
http://tools.ietf.org/html/rfc4686
http://tools.ietf.org/html/rfc4870
http://tools.ietf.org/html/rfc4870

Allman, E., Callas, J., Delany, M., Libbey, M.,

Fenton, J. and M. Thomas, "DomainKeys Identified Mail

(DKIM) Signatures", RFC 4871, May 2007.

[RFC5451]
Kucherawy, M., "Message Header Field for Indicating

Message Authentication Status", RFC 5451, April 2009.

[RFC5672]
Crocker, D., "RFC 4871 DomainKeys Identified Mail

(DKIM) Signatures: Update", RFC 5672, August 2009.

[UTF8]
Yergeau, F., "UTF-8, a transformation format of ISO

10646", RFC 3629, November 2003.

Appendix A. Creating a Public Key

$ openssl genrsa -out rsa.private 1024

The default signature is an RSA signed SHA256 digest of the complete

email. For ease of explanation, the openssl command is used to describe

the mechanism by which keys and signatures are managed. One way to

generate a 1024-bit, unencrypted private key suitable for DOSETA is to

use openssl like this:

The "genrsa" step results in the file rsa.private containing the key

information similar to this:

-----BEGIN RSA PRIVATE KEY-----

MIICXwIBAAKBgQDwIRP/UC3SBsEmGqZ9ZJW3/DkMoGeLnQg1fWn7/zYtIxN2SnFC

jxOCKG9v3b4jYfcTNh5ijSsq631uBItLa7od+v/RtdC2UzJ1lWT947qR+Rcac2gb

to/NMqJ0fzfVjH4OuKhitdY9tf6mcwGjaNBcWToIMmPSPDdQPNUYckcQ2QIDAQAB

AoGBALmn+XwWk7akvkUlqb+dOxyLB9i5VBVfje89Teolwc9YJT36BGN/l4e0l6QX

/1//6DWUTB3KI6wFcm7TWJcxbS0tcKZX7FsJvUz1SbQnkS54DJck1EZO/BLa5ckJ

gAYIaqlA9C0ZwM6i58lLlPadX/rtHb7pWzeNcZHjKrjM461ZAkEA+itss2nRlmyO

n1/5yDyCluST4dQfO8kAB3toSEVc7DeFeDhnC1mZdjASZNvdHS4gbLIA1hUGEF9m

3hKsGUMMPwJBAPW5v/U+AWTADFCS22t72NUurgzeAbzb1HWMqO4y4+9Hpjk5wvL/

eVYizyuce3/fGke7aRYw/ADKygMJdW8H/OcCQQDz5OQb4j2QDpPZc0Nc4QlbvMsj

7p7otWRO5xRa6SzXqqV3+F0VpqvDmshEBkoCydaYwc2o6WQ5EBmExeV8124XAkEA

qZzGsIxVP+sEVRWZmW6KNFSdVUpk3qzK0Tz/WjQMe5z0UunY9Ax9/4PVhp/j61bf

eAYXunajbBSOLlx4D+TunwJBANkPI5S9iylsbLs6NkaMHV6k5ioHBBmgCak95JGX

GMot/L2x0IYyMLAz6oLWh2hm7zwtb0CgOrPo1ke44hFYnfc=

-----END RSA PRIVATE KEY-----

To extract the public-key component from the private key, use openssl

like this:

$ openssl rsa -in rsa.private -out rsa.public -pubout -outform PEM

This results in the file rsa.public containing the key information

similar to this:

http://tools.ietf.org/html/rfc4871
http://tools.ietf.org/html/rfc4871
http://tools.ietf.org/html/rfc5451
http://tools.ietf.org/html/rfc5451
mailto:dcrocker@bbiw.net
http://tools.ietf.org/html/rfc5672
http://tools.ietf.org/html/rfc5672
http://tools.ietf.org/html/rfc3629
http://tools.ietf.org/html/rfc3629

NOTE:

Association:

Semantics:

-----BEGIN PUBLIC KEY-----

MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDwIRP/UC3SBsEmGqZ9ZJW3/DkM

oGeLnQg1fWn7/zYtIxN2SnFCjxOCKG9v3b4jYfcTNh5ijSsq631uBItLa7od+v/R

tdC2UzJ1lWT947qR+Rcac2gbto/NMqJ0fzfVjH4OuKhitdY9tf6mcwGjaNBcWToI

MmPSPDdQPNUYckcQ2QIDAQAB

-----END PUBLIC KEY-----

This public-key data (without the BEGIN and END tags) is placed in the

DNS:

brisbane IN TXT

 ("v=DKIM1; p=MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQ"

 "KBgQDwIRP/UC3SBsEmGqZ9ZJW3/DkMoGeLnQg1fWn7/zYt"

 "IxN2SnFCjxOCKG9v3b4jYfcTNh5ijSsq631uBItLa7od+v"

 "/RtdC2UzJ1lWT947qR+Rcac2gbto/NMqJ0fzfVjH4OuKhi"

 "tdY9tf6mcwGjaNBcWToIMmPSPDdQPNUYckcQ2QIDAQAB")

Appendix B. Acknowledgements

DOSETA is derived from DKIM [DKIMSign]. DKIM is an evolution of

DomainKeys [RFC4870], which was developed by Mark Delany, then of

Yahoo!. In particular, the key management service, based on the DNS,

and the user-INvisible tagging scheme was developed by him.

Appendix C. Example -- DKIM Using DOSETA

This example re-specifies DKIM in terms of DOSETA, while retaining bit-

level compatibility with the existing DKIM specification [DKIMSign].

This section is merely an example. Any use of normative language

in this section is strictly for completness of the example and has

no normative effect on the DOSETA specification.

Appendix C.1. Signing and Verification Protocol

The DOSETA template specifies TEMPLATE information that is required to

tailor the signing service:

The DOSETA‑Signature data are stored in a

DKIM‑Signature header field that is part of the header of the

message being signed. This contains all of the signature and

key-fetching data, per Section 4.2.

A DKIM signature means that the owner of the signing

domain is taking "some" responsibility for the message. Hence,

the payload, or output, of DKIM is:

A validated domain name, specifically the d= parameter in

the DKIM‑Signature header field

*

-

Structural Mapping:

Required Support

Field Hash:

Required Algorithms:

An indication that its use has been validated

The nature and extent of a DKIM signer's responsibility can

vary widely and is beyond the scope of this specification.

DKIM maps the DOSETA Header processing to an

email header and the DOSETA Content to an email body, per

[RFC5322]

The basic rule for choosing fields to include is

to select those fields that constitute the "core" of the

message content. Hence, any replay attack will have to

include these in order to have the signature succeed; but

with these included, the core of the message is valid, even

if sent on to new recipients.

Common examples of fields with addresses and fields with

textual content related to the body are: From (MUST be

included), Reply-To, Subject, Date, To, Cc, Resent-Date,

Resent-From, Resent-To, Resent-Cc, In-Reply-To, References,

List-Id, List-Help, List-Unsubscribe, List-Subscribe, List-

Post, List-Owner, List-Archive.

Use DOSETA defaults.

Appendix C.2. Extensions to DOSETA Template

This section contains specifications that are added to the basic DOSETA

H/C Signing Template.

Appendix C.2.1. Signature Data Structure

These are DKIM-specific tags:

ABNF:

sig-i-tag = %x69 [FWS] "=" [FWS]

 [local-part] "@" domain-name

ABNF:

sig-l-tag = %x6c [FWS] "=" [FWS]

 1*76DIGIT

ABNF:

-

i=

NOTE:

NOTE:

sig-z-tag = %x7A [FWS] "=" [FWS]

 sig-z-tag-copy

 *("|" [FWS] sig-z-tag-copy)

sig-z-tag-copy = hdr-name [FWS] ":"

 qp-hdr-value

The Agent or User Identifier (AUID) on behalf of which the

SDID is taking responsibility (DOSETA-quoted-printable;

OPTIONAL, default is an empty <local-part> followed by an "@"

followed by the domain from the "d=" tag).

The syntax is a standard email address where the <local-part>

MAY be omitted. The domain part of the address MUST be the

same as, or a subdomain of, the value of the "d=" tag.

Internationalized domain names MUST be converted using the

steps listed in Section 4 of [RFC5890] using the "ToASCII"

function.

The AUID is specified as having the same syntax as an email

address, but is not required to have the same semantics.

Notably, the domain name is not required to be registered in

the DNS -- so it might not resolve in a query -- and the

<local-part> MAY be drawn from a namespace unrelated to any

mailbox. The details of the structure and semantics for the

namespace are determined by the Signer. Any knowledge or use

of those details by verifiers or assessors is outside the

scope of the DOSETA Signing specification. The Signer MAY

choose to use the same namespace for its AUIDs as its users'

email addresses or MAY choose other means of representing its

users. However, the signer SHOULD use the same AUID for each

message intended to be evaluated as being within the same

sphere of responsibility, if it wishes to offer receivers the

option of using the AUID as a stable identifier that is finer

grained than the SDID.

The <local-part> of the "i=" tag is optional because in

some cases a signer might not be able to establish a

verified individual identity. In such cases, the signer

might wish to assert that although it is willing to go as

far as signing for the domain, it is unable or unwilling to

commit to an individual user name within their domain. It

can do so by including the domain part but not the <local-

part> of the identity.

Absent public standards for the semantics of an AUID,

an assessment based on AUID requires a non-standardized

basis.

*

-

NOTE:

l=

NOTE:

NOTE:

This specification does not require the value of the

"i=" tag to match the identity in any Header field. This is

considered to be an assessment-time policy issue.

Constraints between the value of the "i=" tag and other

identities in other Header fields might seek to apply basic

authentication into the semantics of trust associated with

a role such as content author. Trust is a broad and complex

topic and trust mechanisms are subject to highly creative

attacks. The real-world efficacy of any but the most basic

bindings between the "i=" value and other identities is not

well established, nor is its vulnerability to subversion by

an attacker. Hence reliance on the use of these options

needs to be strictly limited. In particular, it is not at

all clear to what extent a typical end-user recipient can

rely on any assurances that might be made by successful use

of the "i=" options.

Content length count (plain-text unsigned decimal integer;

OPTIONAL, default is entire Content). This tag informs the

verifier of the number of octets in the Content of the data

after canonicalization included in the cryptographic hash,

starting from 0 immediately following the CRLF preceding the

Content. This value MUST NOT be larger than the actual number

of octets in the canonicalized Content.

Use of the "l=" tag might allow display of fraudulent

content without appropriate warning to end users. The "l="

tag is intended for increasing signature robustness when

sending to intermediaries that append data to Content, such

as mailing lists that both modify their content and do not

sign their messages. However, using the "l=" tag enables

attacks in which an intermediary with malicious intent

modifies a message to include content that solely benefits

the attacker. It is possible for the appended content to

completely replace the original content in the end

recipient's eyes and to defeat duplicate message detection

algorithms. Examples are described in Security

Considerations Section 7.2. To avoid this attack, signers

need be extremely wary of using this tag, and verifiers

might wish to ignore the tag or remove text that appears

after the specified content length.

The value of the "l=" tag is constrained to 76 decimal

digits. This constraint is not intended to predict the size

of future data or to require implementations to use an

integer representation large enough to represent the

-

z=

maximum possible value, but is intended to remind the

implementer to check the length of this and all other tags

during verification and to test for integer overflow when

decoding the value. Implementers might need to limit the

actual value expressed to a value smaller than 10^76, for

example, to allow a message to fit within the available

storage space.

Copied Header fields (DOSETA-quoted-printable, but see

description; OPTIONAL, default is null). A vertical-bar-

separated list of selected Header fields present when the

message was signed, including both the field name and value.

It is not required to include all Header fields present at the

time of signing. This field need not contain the same Header

fields listed in the "h=" tag. The Header field text itself

MUST encode the vertical bar ("|", %x7C) character. That is,

vertical bars in the "z=" text are meta-characters, and any

actual vertical bar characters in a copied header field MUST

be encoded. Note that all whitespace MUST be encoded,

including whitespace between the colon and the header field

value. After encoding, FWS MAY be added at arbitrary locations

in order to avoid excessively long lines; such whitespace is

NOT part of the value of the header field, and MUST be removed

before decoding.

The Header fields referenced by the "h=" tag refer to the

fields in the [RFC5322] Header, not to any copied fields in

the "z=" tag. Copied header field values are for diagnostic

use.

Header fields with characters requiring conversion (perhaps

from legacy MTAs that are not [RFC5322] compliant) SHOULD be

converted as described in MIME Part Three [RFC2047].

EXAMPLE of a signature header field spread across multiple continuation

lines:

DKIM-Signature: v=1; a=rsa-sha256; d=example.net;

 s=brisbane; c=simple; q=dns/txt; i=@eng.example.net;

 t=1117574938; x=1118006938;

 h=from:to:subject:date;

 z=From:foo@eng.example.net|To:joe@example.com|

 Subject:demo=20run|

 Date:July=205,=202005=203:44:08=20PM=20-0700;

 bh=MTIzNDU2Nzg5MDEyMzQ1Njc4OTAxMjM0NTY3ODkwMTI=;

 b=dzdVyOfAKCdLXdJOc9G2q8LoXSlEniSbav+yuU4zGeeruD00lszZVoG4ZHRNiYzR

-

NOTE:

NOTE:

Appendix C.2.1.1. Content Length Limits

A text length count MAY be specified to limit the signature calculation

to an initial prefix of an ASCII text data portion, measured in octets.

If the Content length count is not specified, the entire Content is

signed.

This capability is provided because it is very common for intermediate

data handling services to add trailers to text (for example,

instructions how to get off a mailing list). Until such data is signed

by the intermediate handler, the text length count can be a useful tool

for the verifier since it can, as a matter of policy, accept messages

having valid signatures that do not cover the additional data.

Using text length limits enables an attack in which an attacker

modifies a message to include content that solely benefits the

attacker. It is possible for the appended content to completely

replace the original content in the end recipient's eyes and to

defeat duplicate message detection algorithms. To avoid this attack,

signers need to be wary of using this tag, and verifiers might wish

to ignore the tag or remove text that appears after the specified

content length, perhaps based on other criteria.

The text length count allows the signer of text to permit data to be

appended to the end of the text of a signed message. The text length

count MUST be calculated following the canonicalization algorithm; for

example, any whitespace ignored by a canonicalization algorithm is not

included as part of the Content length count. Signers of MIME messages

that include a Content length count SHOULD be sure that the length

extends to the closing MIME boundary string.

A creator wishing to ensure that the only acceptable

modifications are to add to a MIME postlude would use a text length

count encompassing the entire final MIME boundary string, including

the final "--CRLF". A signer wishing to allow additional MIME parts

but not modification of existing parts would use a Content length

count extending through the final MIME boundary string, omitting the

final "--CRLF". Note that this only works for some MIME types, such

as, multipart/mixed but not multipart/signed.

A text length count of zero means that the text is completely unsigned.

Creators wishing to ensure that no modification of any sort can occur

will specify the "simple" canonicalization algorithm for all data

portions and will and omit the text length counts.

Appendix C.2.1.2. Signature Verification

A Content length specified in the "l=" tag of the signature limits the

number of bytes of the Content passed to the verification algorithm.

All data beyond that limit is not validated by DOSETA. Hence, verifiers

NOTE:

might treat a message that contains bytes beyond the indicated Content

length with suspicion, such as by truncating the message at the

indicated Content length, declaring the signature invalid (for example,

by returning PERMFAIL (unsigned content)), or conveying the partial

verification to the policy module.

Verifiers that truncate the Content at the indicated Content

length might pass on a malformed MIME message if the signer used the

"N-4" trick (omitting the final "--CRLF") described in the

informative note in Appendix Appendix C.2.1.1. Such verifiers might

wish to check for this case and include a trailing "--CRLF" to avoid

breaking the MIME structure. A simple way to achieve this might be

to append "--CRLF" to any "multipart" message with a Content length;

if the MIME structure is already correctly formed, this will appear

in the postlude and will not be displayed to the end user.

Appendix C.2.2. Stored Key Data

This section defines additions to the DOSETA Library, concerning stored

key data.

ABNF:

key-g-tag = %x67 [FWS] "=" [FWS] key-g-tag-lpart

 key-g-tag-lpart = [dot-atom-text]

 ["*" [dot-atom-text]]

ABNF:

key-h-tag = %x68 [FWS] "=" [FWS]

 key-h-tag-alg

 0*([FWS] ":" [FWS]

 key-h-tag-alg)

key-h-tag-alg = "sha1" / "sha256" /

 x-key-h-tag-alg

x-key-h-tag-alg = hyphenated-word

 ; for future extension

ABNF:

key-s-tag = %x73 [FWS] "=" [FWS]

 key-s-tag-type

 0*([FWS] ":" [FWS]

 key-s-tag-type)

key-s-tag-type = "email" / "*" /

 x-key-s-tag-type

x-key-s-tag-type = hyphenated-word

 ; for future extension

ABNF:

g=

h=

s=

*

email

t=

key-t-tag = %x74 [FWS] "=" [FWS]

 key-t-tag-flag

 0*([FWS] ":" [FWS]

 key-t-tag-flag)

key-t-tag-flag = "y" / "s" /

 x-key-t-tag-flag

x-key-t-tag-flag = hyphenated-word

 ; for future extension

Granularity of the key (plain-text; OPTIONAL, default is

"*"). This value MUST match the Local-part of the "i=" tag of

the DKIM- Signature header field (or its default value of the

empty string if "i=" is not specified), with a single,

optional "*" character matching a sequence of zero or more

arbitrary characters ("wildcarding"). An email with a signing

address that does not match the value of this tag constitutes

a failed verification. The intent of this tag is to constrain

which signing address can legitimately use this selector, for

example, when delegating a key to a third party that should

only be used for special purposes. Wildcarding allows matching

for addresses such as "user+*" or "*-offer". An empty "g="

value never matches any addresses.

Acceptable hash algorithms (plain-text; OPTIONAL, defaults to

allowing all algorithms). A colon-separated list of hash

algorithms that might be used. Signers and Verifiers MUST

support the "sha256" hash algorithm. Verifiers MUST also

support the "sha1" hash algorithm.

Service Type (plain-text; OPTIONAL; default is "*"). A colon-

separated list of service types to which this record applies.

Verifiers for a given service type MUST ignore this record if

the appropriate type is not listed.

matches all service types

electronic mail (not necessarily limited to SMTP)

This tag is intended to constrain the use of keys for other

purposes, if use of DOSETA is defined by other services in the

future.

Flags, represented as a colon-separated list of names (plain-

text; OPTIONAL, default is no flags set).

*

-

-

-

y

s

This domain is testing DOSETA. Verifiers MUST NOT treat

data from signers in testing mode differently from unsigned

data, even if the signature fails to verify. Verifiers MAY

wish to track testing mode results to assist the signer.

Any DOSETA‑Signature Header fields using the "i=" tag MUST

have the same domain value on the right-hand side of the

"@" in the "i=" tag and the value of the "d=" tag. That is,

the "i=" domain MUST NOT be a subdomain of "d=". Use of

this flag is RECOMMENDED unless subdomaining is required.

Authors' Addresses

D. Crocker Crocker Brandenburg InternetWorking 675 Spruce Dr.

Sunnyvale, USA Phone: +1.408.246.8253 EMail: dcrocker@bbiw.net URI:

http://bbiw.net

M. Kucherawy Kucherawy Cloudmark 128 King St., 2nd Floor San

Francisco, CA 94107 USA EMail: msk@cloudmark.com

-

mailto:dcrocker@bbiw.net
http://bbiw.net
mailto:msk@cloudmark.com

	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Comments and Issues
	2. Framework
	2.1. DOSETA Architecture
	2.2. Terminology
	2.2.1. Identity
	2.2.2. Actors
	2.3. Syntax
	2.3.1. Whitespace
	2.3.2. Common ABNF Tokens
	2.3.3. Imported ABNF Tokens
	2.3.4. D-Quoted-Printable
	3. DOSETA Library
	3.1. Normalization for Transport Robustness
	3.2. Canonicalization
	3.2.1. Header Canonicalization Algorithms
	3.2.2. Content Canonicalization Algorithms
	3.2.3. Canonicalization Examples
	3.3. Tag=Value Parameters
	3.4. Key Management
	3.5. Selectors for Keys
	3.6. DNS Binding for Key Retrieval
	3.6.1. Namespace
	3.6.2. Resource Record Types for Key Storage
	3.7. Stored Key Data
	4. DOSETA H/C Signing Template
	4.1. Cryptographic Algorithms
	4.2. Signature Data Structure
	4.3. Additional Tags
	4.4. Signature Calculations
	4.5. Signer Actions
	4.5.1. Determine Whether the Data Should Be Signed and by Whom
	4.5.2. Select a Private Key and Corresponding Selector Information
	4.5.3. Determine the Header Fields to Sign
	4.5.4. Compute the Message Signature
	4.5.5. Insert the DOSETA‑Signature Header Field
	4.6. Verifier Actions
	4.6.1. Extract Signatures from the Message
	4.6.2. Validate the Signature Header Field
	4.6.3. Get the Public Key
	4.6.4. Compute the Verification
	4.6.5. Communicate Verification Results
	4.6.6. Interpret Results/Apply Local Policy
	4.7. Requirements for Tailoring the Signing Service
	5. Semantics of Multiple Signatures
	5.1. Example Scenarios
	5.2. Interpretation
	6. DOSETA Claims Registry Definition
	7. Considerations
	7.1. IANA Considerations
	7.1.1. DKIM Registries
	7.1.2. Claims Registry
	7.2. Security Considerations
	8. References
	8.1. Normative References
	8.2. Informative References
	Appendix A. Creating a Public Key
	Appendix B. Acknowledgements
	Appendix C. Example -- DKIM Using DOSETA
	Appendix C.1. Signing and Verification Protocol
	Appendix C.2. Extensions to DOSETA Template
	Appendix C.2.1. Signature Data Structure
	Appendix C.2.1.1. Content Length Limits
	Appendix C.2.1.2. Signature Verification
	Appendix C.2.2. Stored Key Data
	Authors' Addresses

