
Workgroup: radextra BOF

Internet-Draft:

draft-cullen-radextra-status-realm-00

Published: 24 October 2022

Intended Status: Standards Track

Expires: 27 April 2023

Authors: M. Cullen

Painless Security

A. DeKok

FreeRADIUS

M. Donnelly

Painless Security

J. Howlett

Federated Solutions

Status-Realm and Loop Prevention for the Remote Dial-In User Service

(RADIUS)

Abstract

This document describes extension to the Remote Authentication Dial-

In User Service (RADIUS) protocol to allow participants in a multi-

hop RADIUS proxy fabric to check the status of a remote RADIUS

authentication realm, gain visibility into the path that a RADIUS

request will take across the RADIUS proxy fabric, and mitigate or

prevent RADIUS proxy loops.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 27 April 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Requirements Notation

3. Terminology

4. Overview

4.1. Status-Realm Overview

4.2. RADIUS Loop Prevention Overview

5. Packet Formats

5.1. Status-Realm-Request Packet

5.2. Status-Realm-Response Packet

6. Max-Hop-Count Attribute

7. Status-Realm-Response-Code Attribute

8. Server-Information Attribute

9. Status-Realm Implementation Requirements

9.1. RADIUS Client Requirements

9.2. Server Requirements

9.3. Proxy Server Requirements

10. Status-Realm Implementation Status

10.1. Status-Realm Message Exchange Examples

11. Proxy Loop Detection Implementation Requirements

11.1. Server Requirements

11.2. Proxy Requirements

12. Proxy Loop Detection Implementation Status

12.1. Loop Detection Message Exchange Examples

13. Management Information Base (MIB) Considerations

14. Interaction with RADIUS Client MIB Modules

15. Table of Attributes

16. IANA Considerations

17. Security Considerations

18. Acknowledgements

19. References

19.1. Normative References

19.2. Informative References

Authors' Addresses

1. Introduction

This document describes an extension to the Remote Authentication

Dial-In User Service (RADIUS) protocol [RFC2865], to allow

participants in a multi-hop RADIUS proxy fabric to check the status

of a remote RADIUS authentication realm, gain visibility into the

path that a RADIUS request will take across the RADIUS proxy fabric,

and mitigate or prevent RADIUS proxy forwarding loops.

¶

¶

RADIUS Request

RADIUS Response

RADIUS Instance

RADIUS Client

RADIUS Server

Authentication Request

This document defines two new RADIUS Packet Type Codes:

Status-Realm-Request (TBD)

Status-Realm-Response (TBD)

This document also defines the following RADIUS Attributes:

Status-Realm-Response-Code (TBD)

Max-Hop-Count (TBD)

Server-Identifier (TBD)

2. Requirements Notation

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119].

3. Terminology

The following terms are used throughout this document. Their

definitions are included here for consistency and clarity.

A RADIUS Request is the first message in a RADIUS

message exchange. RADIUS request message types include: Access-

Request, Accounting-Request, and Status-Server. This document

defines a new RADIUS Request message type: Status-Realm-Request.

A RADIUS Response is any RADIUS message sent in

reply to a RADIUS Request. RADIUS reponse message types include:

Access-Accept, Access-Challenge, Access-Reject, Accounting-

Response. This document defines a new RADIUS Response message

type: Status-Realm-Response.

A single device or software module that implements

the RADIUS protocol.

A RADIUS Client is a RADIUS Instance that sends

RADIUS Request messages and recevies RADIUS Reponse messages in

reply.

A RADIUS Server is a RADIUS Instance that receives

RADIUS Requests and sends RADIUS Response messages in reply.

An Authentication Request is sent to

authenticate a particular user within a particular realm. The

user and realm information are typically included in a User-Name

Attribute [RFC2865] within the Authentication Request.

¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

¶

¶

¶

¶

¶

¶

¶

¶

Authentication Server

Authentication Realm

Target Realm

RADIUS Proxy

RADIUS Proxy Fabric

RADIUS Proxy Path

Proxy Loop

First-Hop Server

An Authentication Server is a RADIUS Server

that receives Access-Requests for a given RADIUS Realm, and sends

Access-Access, Access-Challenge or Access-Reject messages in

response. A single Authentication Server may serve more than one

Authentication Realm.

An Authentication Realm consists of a group of

users within a single organization that can be authenticated

using RADIUS. A single Authentication Realm MAY be served by more

than one Authentication Server.

The Target Realm of a RADIUS Request is the RADIUS

Realm toward which the Request is directed. The Target Realm is

typically contained within the "User-Name" attribute of a

Request.

A RADIUS Proxy receives RADIUS Requests and forwards

then towards the Target Realm included in the RADIUS Request

message. It also receives the corresponding RADIUS Respone

message and fowards them back towards the RADIUS Client that

originated the request. In this context forwarding a RADIUS

Requst consists of generating a new RADIUS Request containing

information from the original Request, and sending it to the

configured next-hop RADIUS server for the Target Realm.

Forwarding a RADIUS Response consists of sending it to the RADIUS

Server from which the corresponding Request was received.

A multi-hop group of inter-connected RADIUS

Servers that Proxy requests among themselves towards a set of

Target Realms.

The RADIUS Server Path is a the set of RADIUS

Servers that a RADIUS Request traverses from the first RADIUS

Server that is contacted by the RADIUS Client to the final RADIUS

Server that responds to the Request.

A Proxy Loop may occur when two or more RADIUS Proxies

are configured such that a RADIUS Request follow a circular path

through the Proxy Fabric, never reaching the Target Realm. This

is a pathological and potentially damaging misconfiguration.

The First-Hop Server is the first RADIUS Server

within a Proxy Fabric to recieve a RADIUS Request. In some cases,

the First-Hop RADIUS Server may receive the request from a

separate RADIUS Client. In other case, the First-Hop RADIUS

¶

¶

¶

¶

¶

¶

¶

Last-Hop Proxy

Server and the RADIUS Client may be running in a single RADIUS

Instance.

The Last-Hop Proxy is the last RADIUS Proxy to

forward a RADIUS Request before it reaches the Authentication

Server. Depending on its configuraiton, the Last-Hop Proxy may or

may not know that is the Last-Hop Proxy for a given RADIUS

Request.

Note: It is possible for a single RADIUS instance to server in

multiple roles. For example, it is common for a RADIUS Server to act

as an Authentication Server for some Realms, while acting as a Proxy

for other Realms. A RADIUS Proxy will, by its nature, act as a

RADIUS Server for some RADIUS messages while acting as a RADIUS

Client for others. The requirements in this document apply to all

RADIUS instances whenever they are acting in the role to which the

requirement applies.

4. Overview

This document defines two functional extensions to RADIUS: Querying

the status of a remote RADIUS Realm (Status-Realm), and mitigating,

detecting and preventing loops in a RADIUS Proxy forwarding loops

(Proxy Loop Prevention). This section contains a short overview of

each function. Detailed definitions and requirements are covered in

later sections of this document.

4.1. Status-Realm Overview

Status-Realm-Request messages are sent by RADIUS Clients to to query

the reachability and status of a particular Target Realm. In some

cases, the Status-Realm RADIUS Client may be able to reach an

Authentication Server for the Target Realm directly. In other cases,

the RADIUS Client will send the initial Status-Realm request to a

RADIUS Proxy, which will forward the Status-Realm-Request toward the

indicated realm.

Status-Realm-Requests may be sent to the RADIUS authentication port

or the RADIUS accounting port of the first-hop RADIUS server. RADIUS

proxies should forward Status-Realm-Requests received on the

authentication port to the authentication port of the next-hop

RADIUS server. Status-Realm-Requests received on the accounting port

should, similarly, be forwarded to the accounting port of the next-

hop server.

When a Status-Realm-Request packet is received by an Authentication

Server for the Target Realm, the Authentication Server MUST respond

with a Status-Realm-Response packet.

¶

¶

¶

¶

¶

¶

¶

If an intermediate RADIUS Proxy is unable to forward a Status-Realm-

Request packet towards the Target Realm, either because it has no

information about how to reach the Target Realm, or because there

are no reachable Authentication Servers for the Target Realm, the

RADIUS Proxy MUST return a Status-Realm-Response packet containing a

Status-Realm-Response-Code attribute.

Status-Realm packets allow the sender to determine the reachability

and status of a Authentication Realm, without requiring a direct

RADIUS connection to a RADIUS Server for the Target realm, and

without requiring credentials for an authorized user within that

realm. This can be useful for debugging RADIUS authentication

issues, identifying routing issues within a RADIUS proxy fabric, or

monitoring realm availability.

Using the Max-Hop-Count attribute defined in this document, RADIUS

Clients can also implement "traceroute-like" functionality,

discovering a series of proxies on route to a target realm.

4.2. RADIUS Loop Prevention Overview

RADIUS Proxies are configured to know which next-hop RADIUS Server

to use for a given Target Realm. There is no dynamic routing

protocol or tree-spanning protocol in use, so Proxy Loops are a

common occurence due to misconfiguration. These loops can be

controlled or prevented using implementation-specific or operator-

specific mechanisms, but it would be useful to have well-defined,

common mechanism.

The Max-Hop-Count attribute described in this document can be used

to mitigate the damage caused by Proxy Loops. The Max-Hop-Count

attribute is set to a small integer by the RADIUS Client or First-

Hop RADIUS Server. The value is deprecated each time a RADIUS

message is proxied. When the Max-Hop-Count reaches zero, the request

is discarded, ending the loop.

This document also defines a more effective method of detecting and

preventing Proxy Forwarding Loops: RADIUS Loop Prevention. This

document defines a RADIUS Server-Identifier attribute that is used

to uniquely identify a RADIUS Server. When a RADIUS Proxy receives a

RADIUS Request packet, it checks to see if the Request contains a

Server-Identifier attribute indicating that it has already processed

this packet. If so, it discards the packet. If not, it adds its own

Server Identifier to the packet before forwarding it.

5. Packet Formats

This section describes the RADIUS packet formats for Status-Realm-

Request and Status-Realm-Response packets. Status-Realm-Requests are

¶

¶

¶

¶

¶

¶

sent in the same format, whether they are sent to the authentication

port or the accounting port.

5.1. Status-Realm-Request Packet

Status-Realm-Request packets reuse the RADIUS packet format, with

the fields and values for those fields as defined in [RFC2865],

Section 3.

A Status-Realm-Request packet MUST include a Message-Authenticator

attribute, as defined in [RFC2869], section 5.14. The Message-

Authenticator provides per-packet authentication and integrity

protection. The Authenticator field of a Status-Realm-Request packet

MUST be generated using the same method as that used for the Request

Authenticator field of Access-Request packets.

A Status-Realm-Request packets MUST include a User-Name Attribute,

containing the Target Realm for the Request. The 'user' portion of

the User-Name SHOULD be ignored, if present.

A Status-Realm-Request message MUST also include a Max-Hop-Count

attribute, as defined above.

Status-Realm-Requests MAY include NAS-Identifier, and one of (NAS-

IP-Address or NAS-IPv6-Address). These attributes are not necessary

for the operation of Status-Realm, but may be useful information to

a server that receives those packets.

Status-Realm-Request packets MUST NOT contain authentication

credentials (such as User-Password, CHAP-Password, EAP-Message) or

User or NAS accounting attributes (such as Acct-Session-Id, Acct-

Status-Type, Acct-Input-Octets).

5.2. Status-Realm-Response Packet

Status-Realm-Response packets reuse the RADIUS packet format, with

the fields and values for those fields as defined in [RFC2865],

Section 3.

The Response Authenticator field of a Status-Realm-Response packet

MUST be generated using the same method used for calculating the

Response Authenticator of an Access-Accept or an Access-Reject sent

in response to an Access-Request, with the Status-Realm-Request

Request Authenticator taking the place of the Access-Request Request

Authenticator.

The Status-Realm-Response packet MUST contain a Status-Realm-

Response-Code attribute, as defined below, indicating the results of

the Status-Realm request.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

The Status-Realm-Response packet MAY contain the following

attributes: Reply-Message, Message-Authenticator, Server-

Information.

Note that when a server responds to a Status-Realm-Request packet,

it MUST NOT send more than one Status-Realm-Response packet.

6. Max-Hop-Count Attribute

This section defines a new RADIUS attribute, Max-Hop-Count (TBD).

The value of the Max-Hop-Count attribute is an integer, as defined

in [RFC8044], Section 3.1. Valid values are small positive integers,

0 to 255.

This attribute is used to limit the number of RADIUS servers that

will proxy a packet before it reaches its final destination. When a

RADIUS server that implements the Max-Hop-Count Attribute determines

that it wants to proxy a RADIUS Request to another RADIUS Server, it

will check the Max-Hop-Count attribute. If the Max-Hop-Count

attribute is present and the value is zero, the Request MUST NOT be

forwarded and an error response SHOULD be returned, as appropriate

to the request type. If the Max-Hop-Count is greater than zero, the

proxy server MUST decrement the hop count by 1 before forwarding the

request.

In the context of Status-Realm-Requests, this attribute can be used

to implement "traceroute-like" functionality. By sending a series of

Status-Realm-Requests with incremented values of Max-Hop-Count,

starting with a Max-Hop-Count value of O, the RADIUS Client will

receive a series of Status-Realm-Responses from the RADIUS Proxies

on the Proxy Path to a given Target Realm.

When used on other types of RADIUS Request messages, this option can

mitigate the damage caused by RADIUS proxy loops. It is therefore

possible that a RADIUS Client or a RADIUS proxy server will support

the Max-Hop-Count attribute, even if they do not support Status-

Realm. When used to limit RADIUS proxy loops, it is RECOMENDED that

the value of the Max-Hop-Count attribute be set to 32, by default.

If this attribute is not present on a RADIUS Request received from a

RADIUS Client, the First-Hop RADIUS Server MAY add this option,

setting it to the default value of 32, or to any valid, configured

value.

¶

¶

¶

¶

¶

¶

¶

7. Status-Realm-Response-Code Attribute

This section defines a new RADIUS attribute, Status-Realm-Response-

Code (TBD). This is of type tlv, as defined in [RFC8044], section

3.13. It contains 3 sub-attributes:

Response-Code (Type = 1)

Hop-Count (Type = 2)

Responding-Server (Type = 3)

Response-Code is of type 'integer', as defined in [RFC8044], Section

3.1. Exactly one Response-Code sub-attribute MUST be included in in

every Status-Realm-Response-Code attribute. It will contain one of

the following values:

Hop-Count is of type 'integer'. Valid values are 0=255. The value of

this sub-attribute MUST be set to the value of the Max-Hop-Count

attribute in the received Status-Realm-Request. If no Max-Hop-Count

is included in the Status-Realm-Request message, this sub-attribute

MUST be omitted.

Responding-Server is of type 'tlv', as defined in [RFC8044], Section

3.13. This sub-attribute MUST be returned in every Status-Realm-

Response attribute. The value field of this sub-attribute contains a

¶

* ¶

* ¶

* ¶

¶

 0 The target realm is available

 1 No proxy route to the target realm

 2 No available servers for the target realm

 3 The target realm is missing or invalid

 4 Max-Hop-Count exceeded

 5-255 Unspecified error, the is unreachable

 257 Administratively prohibited, target realm status

 unknown

 258 Internal error, target realm status unknown

 259 Bad Status-Realm-Request, missing or invalid

 Target Realm

 260 Bad Status-Realm-Request, missing or invalid

 Max-Hop-Count, Target Realm status unknown

 260-511 Unspecified error, Target Realm status unknown

 512+ Reserved

¶

¶

Server-Information Attribute for the responding server, as described

below.

8. Server-Information Attribute

The Server-Information attribute is used to identify a specific

RADIUS Server. It MAY be added to any RADIUS Request message to

indicate that a particular RADIUS Server has processed the Request.

If present in a RADIUS Request, it should be copied into the

corresponding RADIUS Response. RADIUS Servers SHOULD NOT add Server-

Information attributes to Response messages when processing

Responses.

This attribute is also included as a sub-attribute within the

Status-Realm-Response-Code attribute, defined above, to indicate

which RADIUS Server has sent the Status-Realm-Response message.

This attribute is of type 'tlv', as defined in [RFC8044], Section

3.13. The value of this attribute consists of a set of sub-

attributes, all of type 'tlv'. Each sub-attribute contains an

identifier for a RADIUS proxy. The Proxy-Identifier MUST have at

least one sub-attribute and MAY have more than one sub-attribute. If

multiple sub-attributes are present, a RADIUS proxy MUST match all

of the sub-attributes in order to match the identifier.

The following sub-attributes may be included in the value field of a

Proxy-Information Attribute. The Type code for each sub-attribute is

included in parenthesis.

Server-Name (Type = 1)

Server-Identifier (Type = 2)

Hop-Count (Type = 3)

The Server-Operator is of type 'string'. It is the analogue of the

Operator-Name, as defined in [RFC5580].

The Server-Identifier in an analogue of the NAS-Identifier defined

in [RFC2865]. It indicates the name of this particular proxy server.

This field is used to identify which server processed the Request,

among those operated by the organization indicated in the Server-

Operator sub-attribute.

9. Status-Realm Implementation Requirements

This section describes implementation details and requirements for

RADIUS Clients and servers that support Status-Realm.

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

¶

¶

¶

9.1. RADIUS Client Requirements

When Status-Realm-Request packets are sent from a RADIUS Client,

they MUST NOT be retransmitted. Instead, the Identity field MUST be

changed every time a packet is transmitted. The old packet should be

discarded, and a new Status-Realm-Request packet should be generated

and sent, with new Identity and Authenticator fields.

RADIUS Clients MUST include the Message-Authenticator attribute in

all Status-Realm-Request packets. Failure to do so would mean that

the packets could be trivially spoofed, leading to potential denial-

of-service (DoS) attacks.

The RADIUS Client MUST include a User-Name attribute in the request.

The "user" portion of the username SHOULD be omitted. The "realm"

portion of the username is the target realm for the Status-Realm

request.

RADIUS Clients that support Status-Realm-Requests SHOULD allow a

user or administrator to set or configure the Count value of the

Max-Hop-Count Attribute described above. If a different value is not

indicated, the RADIUS Client SHOULD include a Max-Hop-Count

attribute with a Count value of 32 in the Status-Realm-Request

packet to prevent the possibility that Status-Realm-Requests will

loop indefinitely.

The RADIUS Client MAY increment packet counters as a result of

sending a Status-Realm-Resquest or receiving a Status-Realm-

Response. The RADIUS Client MUST NOT perform any other action that

is normally performed when it receives a Response packet, such as

permitting a user to have login access to a port.

RADIUS Clients MAY send Status-Realm-Request packets to the RADIUS

destination ports from the same source port(s) used to send other

Request packets. Other RADIUS Clients MAY choose to send Status-

Realm-Request packets from a unique source port that is not used to

send other Request packets.

In the case where a RADIUS Client sends a Status-Realm-Request

packets from a source port also used to send other Request packets,

the Identifier field MUST be unique across all outstanding Request

packets for that source port, independent of the value of the RADIUS

Code field for those outstanding requests. Once the RADIUS Client

has either received a corresponding Status-Realm-Response packet or

determined that the Status-Realm-Request has timed out, it may reuse

the Identifier in another Request packet.

The RADIUS Client MUST validate the Response Authenticator in the

Status-Realm-Response. If the Response Authenticator is not valid,

¶

¶

¶

¶

¶

¶

¶

the packet MUST be silently discarded. If the Response Authenticator

is valid, then the packet MUST be deemed to be a valid response.

9.2. Server Requirements

Servers SHOULD permit administrators to globally enable or disable

the acceptance of Status-Realm-Request packets. The default SHOULD

be that acceptance is enabled. Servers SHOULD also permit

administrators to enable or disable acceptance of Status-Realm-

Request packets on a per-RADIUS Client basis. The default SHOULD be

that acceptance is enabled.

If a server does not support Status-Realm, or if it is configured

not to respond to Status-Realm-Requests, then it MUST silently

discard any Status-Realm-Requests messages that it receives. If a

server receives a Status-Realm-Request packet from a RADIUS Client

from which it is configured not to accept Status-Realm-Requests,

then it MUST silently discard the message.

If a server supports Status-Realm, is configured to respond to

Status-Realm-Requets, and receives a Status-Realm-Request packet

from a permitted RADIUS Client, it MUST first validate the Message-

Authenticator attribute as defined in [RFC3579], Section 3.2.

Packets failing this validation MUST be silently discarded.

If the Status-Realm-Request passes Message-Authenticator validation,

then the server should check if the Target Realm matches a local

realm served by this Server. If it does match, the server should

send a Status-Realm-Response packet indicating that status of the

Target Realm, reachable or unreachable (Status-Server-Response-Code

= 0 or 2).

If the Target Realm does not match a local realm, then the server

should determine whether it is configured to proxy packets towards

the Target Realm. If so, the server should implement the Proxy

Server Requirements, below. Servers SHOULD ignore the value of the

"user" portion of the User-Name attribute, if any.

Servers SHOULD NOT discard Status-Realm packets merely because they

have recently sent the RADIUS Client a response packet. The query

may have originated from an administrator who does not have access

to the response packet stream or one who is interested in obtaining

additional information about the server.

The server MAY decide to send an error response to a Status-Realm-

Request packet based on local-site policy. For example, a server

that is running but is unable to perform its normal duties SHOULD

send a Status-Realm-Response packet indicating an internal error

(Status-Server-Response-Code = 257). This situation can happen, for

example, when a server requires access to a database for normal

¶

¶

¶

¶

¶

¶

¶

operation, but the connection to that database is down. Or, it may

happen when the accepted load on the server is lower than the

current load.

The server MAY increment packet counters or create log entries as a

result of receiving a Status-Realm-Request packet or sending a

Status-Realm-Response packet. The server SHOULD NOT perform any

other action that is normally performed when it receives a Request

packet, other than sending a Response packet.

If the Status-Realm-Request packet includes a Max-Hop-Count

attribute, that attribute (with its current value) MUST be returned

in any corresponding Status-Realm-Response packet.

Note that [RFC2865], Section 3, defines a number of RADIUS Codes,

but does not make statements about which Codes are valid for port

1812. In contrast, [RFC2866], Section 3, specifies that only RADIUS

Accounting packets are to be sent to port 1813. This specification

is compatible with the standards-track specification [RFC2865], as

it defines a new Message Type Code for packets to port 1812. This

specification is not compatible with the informational document

[RFC2866], as it adds a new Code (Status-Realm-Request) that is

valid for port 1813.

9.3. Proxy Server Requirements

Many RADIUS servers act as RADIUS proxies, forwarding requests to

other RADIUS servers. Such servers SHOULD proxy Status-Realm-Request

packets to enable RADIUS Clients to determine the status of

Authentication Realms that are not directly connected to the RADIUS

Client.

RADIUS proxies that support Status-Realm-Requests MUST support the

Max-Hop-Count attribute defined above. Before forwarding a Status-

Realm-Request packet, a proxy MUST check the Max-Hop-Count

Attribute. If the Max-Hop-Count attribute is present and the Count

is zero (0), the proxy MUST send a Status-Realm-Response indicating

that the hop count has been exceeded (Status-Server-Response-Code =

4), and MUST NOT forward the packet. If the Max-Hop-Count attribute

is present, and the Count value is not zero, the proxy MUST

decrement the Max-Hop-Count value before forwarding the packet.

The RADIUS proxy MUST check the "realm" portion of the User-Name

attribute in the Status-Realm-Request to determine the Target Realm

for the request. If the target realm is missing or malformed, the

RADIUS proxy MUST send a Status-Realm-Response indicating an invalid

realm (Status-Server-Response-Code = 3). If the realm is properly

formed, the Status-Realm-Request packet should be proxied toward the

Target Realm, using the same next-hop RADIUS server that the proxy

¶

¶

¶

¶

¶

¶

server would use for other request packets received on the same

port.

In some cases, a RADIUS proxy may not have an available next-hop

RADIUS server for the Target Realm. In that case, the RADIUS proxy

server MUST send a Status-Realm-Response packet indicating that

there is no proxy route to the Target Realm (Status-Server-Response-

Code = 1).

In cases where a RADIUS proxy is configured to have a direct

connection to the RADIUS server(s) of the Target Realm, but is

configured not to forward Status-Realm-Request packets to the target

server(s), the proxy MAY use other methods to determine the status

of the Target Realm (such as Status-Server packets or recent Access-

Request state information), and send a Status-Realm-Response

indicating the determined state of the Target Realm (Status-Server-

Response-Code = 0 or 2). If the proxy is configured not to forward

Status-Realm-Request packet to the Target Realm and does not have

other methods to detect the status of the Target Realm, it SHOULD

return a Status-Realm-Response packet indicating that the request is

administrative prohibited (Status-Server-Response-Code = 257).

If the Status-Realm-Request packet includes a Max-Hop-Count

attribute, that attribute (with its current value) MUST be returned

in any corresponding Status-Realm-Response packet.

10. Status-Realm Implementation Status

There is an initial implementation of Status-Realm available here:

https://github.com/alandekok/freeradius-server/tree/Status-Realm

10.1. Status-Realm Message Exchange Examples

Message exchange examples are TBD.

11. Proxy Loop Detection Implementation Requirements

This section describes implementation details and requirements for

RADIUS Clients, Servers and Proxies that support Proxy Loop

Detection.

11.1. Server Requirements

A RADIUS Server that implements Proxy Loop Prevention add its own

Server-Information Attribute to any RADIUS message that it

generates, including RADIUS Response messages. It MUST also copy all

Server-Information atributes from a received RADIUS Request into any

RADIUS Response that it generates in reply to that Request.

¶

¶

¶

¶

¶

¶

¶

¶

¶

11.2. Proxy Requirements

A RADIUS Proxy that implements the Loop Prevention mechanism defined

in this document MUST be configured with information to populate a

Server-Information attribute, and matching criteria to determine if

a Server-Information attribute in an incoming request indicates the

existence of a Proxy Loop.

Before forwarding a RADIUS Request towards the Target Realm, a

RADIUS Proxy that implements Proxy Loop Prevention MUST examine each

of the Server-Information attributes included in the Request message

to determine whether the message is caught in a Proxy Loop. If so,

the Proxy should discard the message. If a Proxy Loop is not

detected, the RADIUS Proxy MUST add its own Server-Information

attribute to any RADIUS Request that they forward toward the Target

Realm.

12. Proxy Loop Detection Implementation Status

The Proxy Loop Detection mechanism is similar to RADIUS Vendor-

Specific attribute used today to detect RADIUS Proxy Loops. Unlike

the Vendor-Specific attributes in use today, this mechanism includes

server information within a single, globally-defrined attribute,

rather than requiring that a unique vendor identifiers be allocated

for each RADIUS Server operator.

12.1. Loop Detection Message Exchange Examples

Message exchange examples are TBD.

13. Management Information Base (MIB) Considerations

Status-Realm-Request packets are sent to the defined RADIUS ports,

so they can affect the [RFC4669] and [RFC4671] RADIUS server MIB

modules. [RFC4669] defines a counter named

radiusAuthServTotalUnknownTypes that counts the number of RADIUS

packets of unknown type that were received. [RFC4671] defines a

similar counter named radiusAccServTotalUnknownTypes.

Implementations not supporting Status-Realm-Requests or

implementations that are configured not to respond to Status-Realm-

Request packets MUST use these counters to track received Status-

Realm packets.

If, however, Status-Realm-Requests are supported and the server is

configured to respond as described above, then the counters defined

in [RFC4669] and [RFC4671] MUST NOT be used to track Status-Realm-

Request or Status-Realm-Response packets. That is, when a server

fully implements Status-Realm, the counters defined in [RFC4669] and

[RFC4671] MUST be unaffected by the transmission or reception of

packets relating to Status-Realm-Requests.

¶

¶

¶

¶

¶

¶

If a server supports Status-Realm-Request and the [RFC4669] or

[RFC4671] MIB modules, then it SHOULD also support vendor-specific

MIB extensions dedicated solely to tracking Status-Realm-Request and

Status-Realm-Response packets. Any definition of the server MIB

modules for Status-Realm-Requests is outside of the scope of this

document.

14. Interaction with RADIUS Client MIB Modules

RADIUS Clients implementing Status-Realm-Request MUST NOT increment

[RFC4668] or [RFC4670] counters upon reception of Status-Realm-

Response packets. That is, when a RADIUS Client fully implements

Status-Realm-Request, the counters defined in [RFC4668] and

[RFC4670] MUST be unaffected by the transmission or reception of

packets relating to Status-Realm.

If an implementation supports Status-Realm-Request and the [RFC4668]

or [RFC4670] MIB modules, then it SHOULD also support vendor-

specific MIB extensions dedicated solely to tracking Status-Realm

requests and responses. Any definition of the RADIUS Client MIB

modules for Status-Realm-Requests is outside of the scope of this

document.

15. Table of Attributes

The following table provides a guide to which attributes may be

found in Status-Realm-Request and Status-Realm-Response packets, and

in what quantity. Attributes other than the ones listed below SHOULD

NOT be found in a Status-Realm-Request packet.

¶

¶

¶

¶

 Status- Status-

 Realm- Realm-

 Request Response

 1 1 1 User-Name

 0 0 2 User-Password

 0 0 3 CHAP-Password

 0-1 0 4 NAS-IP-Address (Note 1)

 0 0+ 18 Reply-Message

 0+ 0+ 26 Vendor-Specific

 0-1 0 32 NAS-Identifier (Note 1)

 0 0 79 EAP-Message

 1 0-1 80 Message-Authenticator

 0-1 0 95 NAS-IPv6-Address (Note 1)

 0 1 (TBD) Status-Realm-Response-Code

 1 0 (TBD) Max-Hop-Count

 0+ 0+ (TBD) Server-Information

 0 0 103-121 Digest-*

¶

Note 1: Status-Realm-Request packet SHOULD contain one of (NAS-IP-

Address or NAS-IPv6-Address), or NAS-Identifier, or both NAS-

Identifier and one of (NAS-IP-Address or NAS-IPv6-Address).

The following table defines the meaning of the table entries

included above:

16. IANA Considerations

This document defines the Status-Realm-Request (TBD) and the Status-

Realm-Response (TBD) RADIUS Packet Type Codes, both of which should

be assigned by IANA from the Unassigned block of RADIUS Packet Type

Codes.

This document defines three new RADIUS attributes, Max-Hop-Count

(TBD) and Status-Realm-Response-Code (TBD) and Server-Identifier

(TBD), which should be assigned by IANA from an Unassigned block of

RADIUS Attribute Types, such as the Unassigned block for Extended-

Attribute-1.

This document also defines two new Protocol Registries that need to

be created: "Values for RADIUS Attribute (TBD), Status-Realm-

Response-Code" and "Valies for RADIUS Attribute (TBD), Server-

Identifier". Initial values for these registries are defined above.

17. Security Considerations

Status-Realm-Request packets are similar to Access-Request packets,

and are therefore subject to the same security considerations as

described in [RFC2865], Section 8. Status-Realm packets also use the

Message-Authenticator attribute, and are therefore subject to the

same security considerations as [RFC3579], Section 4.

We reiterate that all Status-Realm-Request packets MUST contain a

Message-Authenticator. Servers not checking the Message-

Authenticator attribute could respond to Status-Realm packets from

an attacker, potentially enabling a reflected DoS attack onto a real

RADIUS Client.

Where this document differs from [RFC2865] is that it defines a new

request/response method in RADIUS: the Status-Realm-Request and

Status-Realm-Response. The Status-Realm-Request is similar to the

¶

¶

 0 This attribute MUST NOT be present in packet.

 0+ Zero or more instances of this attribute MAY be present in

 the packet.

 0-1 Zero or one instance of this attribute MAY be present in

 the packet.

 1 Exactly one instance of this attribute MUST be present in

 the packet.

¶

¶

¶

¶

¶

¶

[RFC2119]

[RFC2865]

[RFC8044]

[RFC1321]

previously described and widely implemented Status-Server message

[RFC5997], and no additional security considerations are known to

relate to the implementation or use of Status-Server. This option

differs from Status-Server because it is forwarded through proxies,

so it can be sent to a RADIUS Server that does not have a direct

connection to the Status-Realm RADIUS Client. However, Access-

Request packets are also forwarded, and there should be no

additional attacks other than those incurred by forwarding Status-

Realm-Request packets.

Attacks on cryptographic hashes are well known [RFC4270] and getting

better with time. RADIUS uses the MD5 hash [RFC1321] for packet

authentication and attribute obfuscation. There are ongoing efforts

in the IETF to analyze and address these issues for the RADIUS

protocol.

Security Considerations for Loop Prevention are TBD.

18. Acknowledgements

This document was written using xml2rfc, as described in [RFC7991]

Some of the sections in this document were adapted from the

description of the Status-Server RADIUS Packet Type Code in

[RFC5997].

19. References

19.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Rigney, C., Willens, S., Rubens, A., and W. Simpson,

"Remote Authentication Dial In User Service (RADIUS)",

RFC 2865, DOI 10.17487/RFC2865, June 2000, <https://

www.rfc-editor.org/info/rfc2865>.

DeKok, A., "Data Types in RADIUS", RFC 8044, DOI

10.17487/RFC8044, January 2017, <https://www.rfc-

editor.org/info/rfc8044>.

19.2. Informative References

Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,

DOI 10.17487/RFC1321, April 1992, <https://www.rfc-

editor.org/info/rfc1321>.

¶

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2865
https://www.rfc-editor.org/info/rfc2865
https://www.rfc-editor.org/info/rfc8044
https://www.rfc-editor.org/info/rfc8044
https://www.rfc-editor.org/info/rfc1321
https://www.rfc-editor.org/info/rfc1321

[RFC2866]

[RFC2869]

[RFC3579]

[RFC4270]

[RFC4668]

[RFC4669]

[RFC4670]

[RFC4671]

[RFC5580]

[RFC5997]

[RFC7991]

Rigney, C., "RADIUS Accounting", RFC 2866, DOI 10.17487/

RFC2866, June 2000, <https://www.rfc-editor.org/info/

rfc2866>.

Rigney, C., Willats, W., and P. Calhoun, "RADIUS

Extensions", RFC 2869, DOI 10.17487/RFC2869, June 2000,

<https://www.rfc-editor.org/info/rfc2869>.

Aboba, B. and P. Calhoun, "RADIUS (Remote Authentication

Dial In User Service) Support For Extensible

Authentication Protocol (EAP)", RFC 3579, DOI 10.17487/

RFC3579, September 2003, <https://www.rfc-editor.org/

info/rfc3579>.

Hoffman, P. and B. Schneier, "Attacks on Cryptographic

Hashes in Internet Protocols", RFC 4270, DOI 10.17487/

RFC4270, November 2005, <https://www.rfc-editor.org/info/

rfc4270>.

Nelson, D., "RADIUS Authentication Client MIB for IPv6",

RFC 4668, DOI 10.17487/RFC4668, August 2006, <https://

www.rfc-editor.org/info/rfc4668>.

Nelson, D., "RADIUS Authentication Server MIB for IPv6",

RFC 4669, DOI 10.17487/RFC4669, August 2006, <https://

www.rfc-editor.org/info/rfc4669>.

Nelson, D., "RADIUS Accounting Client MIB for IPv6", RFC

4670, DOI 10.17487/RFC4670, August 2006, <https://

www.rfc-editor.org/info/rfc4670>.

Nelson, D., "RADIUS Accounting Server MIB for IPv6", RFC

4671, DOI 10.17487/RFC4671, August 2006, <https://

www.rfc-editor.org/info/rfc4671>.

Tschofenig, H., Ed., Adrangi, F., Jones, M., Lior, A.,

and B. Aboba, "Carrying Location Objects in RADIUS and

Diameter", RFC 5580, DOI 10.17487/RFC5580, August 2009,

<https://www.rfc-editor.org/info/rfc5580>.

DeKok, A., "Use of Status-Server Packets in the Remote

Authentication Dial In User Service (RADIUS) Protocol",

RFC 5997, DOI 10.17487/RFC5997, August 2010, <https://

www.rfc-editor.org/info/rfc5997>.

Hoffman, P., "The "xml2rfc" Version 3 Vocabulary", RFC

7991, DOI 10.17487/RFC7991, December 2016, <https://

www.rfc-editor.org/info/rfc7991>.

https://www.rfc-editor.org/info/rfc2866
https://www.rfc-editor.org/info/rfc2866
https://www.rfc-editor.org/info/rfc2869
https://www.rfc-editor.org/info/rfc3579
https://www.rfc-editor.org/info/rfc3579
https://www.rfc-editor.org/info/rfc4270
https://www.rfc-editor.org/info/rfc4270
https://www.rfc-editor.org/info/rfc4668
https://www.rfc-editor.org/info/rfc4668
https://www.rfc-editor.org/info/rfc4669
https://www.rfc-editor.org/info/rfc4669
https://www.rfc-editor.org/info/rfc4670
https://www.rfc-editor.org/info/rfc4670
https://www.rfc-editor.org/info/rfc4671
https://www.rfc-editor.org/info/rfc4671
https://www.rfc-editor.org/info/rfc5580
https://www.rfc-editor.org/info/rfc5997
https://www.rfc-editor.org/info/rfc5997
https://www.rfc-editor.org/info/rfc7991
https://www.rfc-editor.org/info/rfc7991

Authors' Addresses

Margaret Cullen

Painless Security

Phone: +1 (781)405-7464

Email: margaret@painless-security.com

Alan DeKok

FreeRADIUS

Email: aland@freeradius.org

Mark Donnelly

Painless Security

Phone: +1 (857)928-5967

Email: mark@painless-security.com

Josh Howlett

Federated Solutions

Phone: +44 (0)7510 666 950

Email: josh@federated-solutions.com

tel:+1%20(781)405-7464
mailto:margaret@painless-security.com
mailto:aland@freeradius.org
tel:+1%20(857)928-5967
mailto:mark@painless-security.com
tel:+44%20(0)7510%20666%20950
mailto:josh@federated-solutions.com

	Status-Realm and Loop Prevention for the Remote Dial-In User Service (RADIUS)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Requirements Notation
	3. Terminology
	4. Overview
	4.1. Status-Realm Overview
	4.2. RADIUS Loop Prevention Overview

	5. Packet Formats
	5.1. Status-Realm-Request Packet
	5.2. Status-Realm-Response Packet

	6. Max-Hop-Count Attribute
	7. Status-Realm-Response-Code Attribute
	8. Server-Information Attribute
	9. Status-Realm Implementation Requirements
	9.1. RADIUS Client Requirements
	9.2. Server Requirements
	9.3. Proxy Server Requirements

	10. Status-Realm Implementation Status
	10.1. Status-Realm Message Exchange Examples

	11. Proxy Loop Detection Implementation Requirements
	11.1. Server Requirements
	11.2. Proxy Requirements

	12. Proxy Loop Detection Implementation Status
	12.1. Loop Detection Message Exchange Examples

	13. Management Information Base (MIB) Considerations
	14. Interaction with RADIUS Client MIB Modules
	15. Table of Attributes
	16. IANA Considerations
	17. Security Considerations
	18. Acknowledgements
	19. References
	19.1. Normative References
	19.2. Informative References

	Authors' Addresses

