
 Internet Draft Bert Culpepper
draft-culpepper-sip-key-events-01.txt InterVoice-Brite, Inc.

 March 1, 2002
 Expires: September, 2002 Robert Fairlie-Cuninghame
 Nuera Communications, Inc.

 Jean-Francois Mule
 CableLabs

 SIP Event Package for Keys

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026 [1].

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet- Drafts as
 reference material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This particular draft is intended to be discussed in the SIPPING
 Working Group. Discussion of it therefore belongs on that list. The
 charter for SIPPING working group may be found at

http://www.ietf.org/html.charters/sipping-charter.html

Abstract

 This document defines a protocol independent message format for
 requesting and reporting state related to keys or buttons. The
 document also defines a SIP Event Package to make use of this
 extensible framework through the SIP SUBSCRIBE & NOTIFY messages.
 The draft currently defines key event sub-packages to represent the
 state of telephone dial pads, feature buttons found on many
 commercial telephones, standard keyboards as well as support for
 user or device specific buttons (for instance, a "Double Latte"
 button). The event package and associated key packages can be used
 to enable new SIP services where an application or SIP entity
 requires notification of user interface activity either associated

https://datatracker.ietf.org/doc/html/draft-culpepper-sip-key-events-01.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
http://www.ietf.org/html.charters/sipping-charter.html

 with a particular SIP session or simply in relation to the device
 itself.

Culpepper/Cuninghame/Mule [Page 1]

Internet Draft SIP Key Events Package March 1, 2002

 Table of Contents

0. Changes since draft-culpepper-key-events-00....................3
1. Introduction...4
2. Motivation/Use Cases...4
2.1. Relation To Telephony Tones And Events.........................6
2.2. Example Usage Scenarios..6
2.2.1. Example 1: Application Server acting as B2BUA/3pcc........6
2.2.2. Example 2: Application Server Acting As A Proxy...........7

2.3. SIP Call-Control Interaction...................................8
Part A -- Introducing a protocol independent Key-Event message format.8
3. Terminology..8
4. Key-Event Messages...9
5. Key Representations...10
6. Key-Event Framework...11
7. Key-Event Sub-Package Definitions.............................11
7.1. Shared Key-Event States and Properties........................12
7.2. Key Sub-package...13
7.3. Keyboard Sub-Package..14
7.4. Telephone Sub-Package...15
7.5. User Package..15
8. Key-Event Message Body Format.................................16
8.1. Time-Header Format..16
8.2. Instance-Header Format..17
8.3. Event-Header Format...17
8.4. Properties-Header Format......................................18
8.5. State-Header Format...20
9. Key-Event Message Generation..................................20
9.1. Generating a Session Request message..........................20
9.2. Generating a Session Response message.........................21
9.2.1. Event Header Processing..................................21
9.2.2. Properties Header Processing.............................22
9.2.3. State Header Processing..................................22

9.3. Generating Key-Event Notification messages....................22
10. Minimal Implementation for Key-Event Notifiers................23
11. Guidelines to Future Sub-Package Authors......................23
12. MIME type information for the Key-Event Message Format........23
Part B -- The use of SIP SUBSCRIBE & NOTIFY for Key-Event Transport..24
13. Subscription to Key Events....................................24
13.1. Non-Dialog Specific Subscriptions..........................24
13.2. Dialog Specific Subscriptions..............................25
13.2.1. Dialog Attached Mode...................................25
13.2.2. Conversation Space Attached Mode.......................25
13.2.3. Multi-dialog Capable Endpoints.........................25
13.2.4. "Early" Dialog Subscriptions...........................26
13.2.5. Multiple Subscriptions.................................26

14. Instance-Header format for SIP Dialog Specific Subscriptions..27
15. SIP specific Key-Event error handling.........................27
15.1. Handling of unacceptable instance-header values............27

https://datatracker.ietf.org/doc/html/draft-culpepper-key-events-00

15.2. Handling of unknown key-event-set enumerations.............28
16. Event Package Definition......................................28
16.1. Event Package Name...28
16.2. Event Package Parameters...................................28

Culpepper/Cuninghame/Mule [Page 2]

Internet Draft SIP Key Events Package March 1, 2002

16.3. SUBSCRIBE Bodies...28
16.4. Subscription Duration......................................29
16.5. NOTIFY Bodies..29
16.6. Notifier Processing of SUBSCRIBE Requests..................29
16.7. Notifier Generation of NOTIFY Requests.....................30
16.7.1. Generating Initial NOTIFY Requests.....................30
16.7.2. Generating Subsequent NOTIFY Requests..................30

16.8. Subscriber Processing of NOTIFY Requests...................30
16.9. Subscriber Generation of SUBSCRIBE Requests................31
16.10. Pre-loaded Routes in SUBSCRIBE requests....................31
16.11. Handling of Forked Subscriptions...........................32
16.12. Rate of Notifications......................................32
17. Examples..32
18. Security Considerations.......................................38
19. IANA Considerations...38
19.1. Key-Event Package Registration.............................38
19.2. Key-Event Sub-Package Registration.........................39
20. Authors...39
21. References..40

0. Changes since draft-culpepper-key-events-00

 - Substantial reorganization of draft. The draft is now split into
 two parts: a protocol independent Key-Event Message Format section
 and a SIP Events specific section. This allows other authors to
 write transport profiles for other protocols.

 - Removed Applies-To header and replaced it will a protocol
 dependent hole in the application/key-event message body
 (instance-header).

 - Updated to reflect draft-ietf-sip-events-04 changes.

https://datatracker.ietf.org/doc/html/draft-culpepper-key-events-00
https://datatracker.ietf.org/doc/html/draft-ietf-sip-events-04

Culpepper/Cuninghame/Mule [Page 3]

Internet Draft SIP Key Events Package March 1, 2002

1. Introduction

 As stated in SIP-specific Event Notification [2], the SIP SUBSCRIBE
 and NOTIFY methods provide a mechanism by which cooperating SIP [3]
 endpoints can request and receive asynchronous notification of
 changes in state related to network resources and calls. This
 mechanism, when combined with an event package for keys, can be used
 for requesting and reporting the status of keys and keypads
 associated with SIP user agents or indeed any SIP device.

 Communication sessions many times are used as a means to access and
 deliver services to users. The operation and use of these services
 almost always require some user interaction with the service. One
 of the primary means for user interactions with services when using
 the legacy circuit-switched telecommunications network is via tones
 generated as a result of a key press on the communications device.
 While tones can be used in the same manner in IP networks, their
 use, given the distributed nature of the network, is sub-optimal.
 In addition, their use limits the user interface of many user
 devices as well as the range of application services possible. It
 is for these reasons that a means to transport key presses is
 needed.

2. Motivation/Use Cases

 The first and foremost motivation for this proposal is to extend the
 possibility for user interaction beyond the antiquated telephone
 dialpad model imposed by limiting interaction to DTMF tones. The
 proposal is designed to support full keyboards, multiple key
 instances, user- or device-specific buttons (for instance, a "Double
 Latte" button). It also aims to provide an extensible framework to
 allow volume controls, multi-position switches or any other user
 interface widget to be defined in future Key Event Packages. A
 secondary goal of the proposal is that devices possessing a simple
 user interface (such as telephone dialpad) need only implement a
 smaller subset of the full proposal without losing any
 interoperability with Application Servers (c.f., section 10).

 DTMF has been used in telephony networks as a means for users of
 network services to provide input and some control of those
 services. DTMF is also used to signal connection destinations in
 these networks. This dual role of DTMF does not present problems in
 circuit-switched networks. However, with telecommunications move to
 packet networks, separation of these roles is needed. Packet
 networks enable communications and related services to be deployed
 in a distributed architecture. An alternative to DTMF for "user
 input" is needed in order to better support the distributed
 application architecture possible in IP networks.

 Although a standard mechanism exists for the transport of DTMF tones
 in IP networks, using it for user input and/or dynamic application
 control as is done in the PSTN does not carry over into the IP
 network very well. Receiving tones via RTP is problematic for the

Culpepper/Cuninghame/Mule [Page 4]

Internet Draft SIP Key Events Package March 1, 2002

 detector/generator devices in scenarios where multiple network
 entities are interested in the events. Replicating media to
 multiple destinations is not a common feature of endpoints. In
 addition, the SDP session description to set up media replication is
 more complicated than that required to set up typical multi-media
 communications sessions.

 The mechanism defined here can be used as an alternative to DTMF
 detection when the detection of these tones is to gather input from
 a user or provide some user application control independent of any
 end-to-end media path. The relationship of the mechanism described
 in this specification to the transport of telephony tones via RTP
 defined in RFC 2833 [4] is further described in Section 2.1.

 It is intended that the event notification mechanism defined in this
 document might be used in scenarios that have the following
 attributes or requirements:

 - The amount of data to be conveyed is very small compared to the
 audio, video, text, etc. data in a session.
 - Dynamic user control of applications is required.
 - Collecting device input is needed when the device is not engaged
 in a session.
 - Security concerns exist due to multiplication attack possible with
 DTMF forking.
 - End-to-end security/privacy between caller and destination system
 is required.
 - Multiple Application Servers may be involved along the end-to-end
 call signaling path.
 - Authentication and/or Privacy of key sequences between an
 Application Server and an endpoint is desired.
 - Reliable delivery of key sequences is required even when short
 periods of network connectivity problems occur.
 - Support for a device with a user interface consisting of more than
 a simple keypad is required.

 A network entity subscribing to key events at another network entity
 may be interested in the events as they relate to an established
 communications session or as they relate to the device itself. Many
 network-based communications services require the user to identify
 themselves (for instance, by the user providing a PIN). Pre-paid
 and post-paid calling card services are a good example where a call-
 associated event subscription is useful. Key event subscriptions
 can also be useful outside of communications sessions. For example,
 an endpoint (SIP phone) may have a dedicated key used to
 asynchronously invoke some function on a remote network entity. In
 this case, the remote network entity subscribes to key events at the
 SIP phone in a non-dialog specific manner. When a key event of
 interest occurs, the remote endpoint can act on the event. RFC 2833

https://datatracker.ietf.org/doc/html/rfc2833
https://datatracker.ietf.org/doc/html/rfc2833

 does not support notification of key events outside of the context
 of an established session.

Culpepper/Cuninghame/Mule [Page 5]

Internet Draft SIP Key Events Package March 1, 2002

2.1. Relation To Telephony Tones And Events

RFC 2833 defines an RTP payload format for telephony tones and
 signals (including DTMF digits). It allows the transport of such
 events in the context of an established media session (in SIP, a
 session must be established with media description in order for
 endpoints to exchange RFC 2833 events or tones). This mechanism has
 several advantages: it is independent from any signaling protocol
 and can be used with SIP, MEGACO, MGCP and other protocols, it
 eliminates tone distortion, and it provides a reliable means for
 telephony endpoints to exchange telephony tones within RTP media
 flows.

 The purpose of the current document is to provide a general
 mechanism for SIP entities to request and report the notifications
 of key events (including keys in keypads or any kind of keyboards).
 This mechanism is specific to the SIP protocol and is based on SIP
 events (although the actual Key-Event Message Format is defined in a
 protocol independent manner). It offers several advantages:

 - SIP application servers not involved in the media path can now
 request and receive key state changes.
 - SIP entities supporting SUBSCRIBE/NOTIFY now have a generic
 mechanism to exchange key states.
 - It allows multiple SIP application servers to receive independent
 key event notification with each application server only receiving
 notifications for the key-events that it is interested in.

 In conclusion, this mechanism can be used in conjunction with RFC
2833 or it can also serve as an alternative to RFC 2833 in the cases

 where:

 - Key states beyond telephony tones and signals are desired.
 - A means for simple SIP telephony applications such as software
 phones or applications, not necessarily able to generate telephony
 tones, is needed to interact with applications.
 - IP telephony gateways wish to conserve DSP resources.
 - Supporting RFC 2833 for the sole purpose of indicating key
 presses, or supporting the duplication of RFC 2833 RTP payload
 events to the signaling planes, is not desirable.

2.2. Example Usage Scenarios

 As discussed in the previous section, the scenarios described in
 this section do not preclude the presence of tone data associated
 with a telephone keypad. Specifically, RFC 2833 may still be
 employed as an end-to-end media-layer transport mechanism for DTMF
 tones, that is, as an end-to-end transport mechanism between the
 caller and destination User Agent.

https://datatracker.ietf.org/doc/html/rfc2833
https://datatracker.ietf.org/doc/html/rfc2833
https://datatracker.ietf.org/doc/html/rfc2833
https://datatracker.ietf.org/doc/html/rfc2833
https://datatracker.ietf.org/doc/html/rfc2833
https://datatracker.ietf.org/doc/html/rfc2833
https://datatracker.ietf.org/doc/html/rfc2833
https://datatracker.ietf.org/doc/html/rfc2833

2.2.1. Example 1: Application Server acting as B2BUA/3pcc

Culpepper/Cuninghame/Mule [Page 6]

Internet Draft SIP Key Events Package March 1, 2002

 In this example the Application Server (AS) will generate the INVITE
 and BYE requests to perform call control. Due to the nature of this
 model, the AS can always inherently ensure that it remains on the
 call signaling path for the duration of the session. The general
 B2BUA network model is shown in Figure 1.

 Caller AS Callee
 +--------+ +---------+ +--------+
 | UAC |<--- SIP --->| UAS/UAC |<--- SIP --->| UAS |
 +--------+ +---------+ +--------+
 | |
 +-------------------- RTP ---------------------+

 Figure 1. Application Server (B2BUA/3pcc) Model

 The above figure depicts a caller establishing a session with the
 AS, after which the AS establishes a session with the callee. The
 AS provides one endpointÆs session description to the other
 endpoint. This results in the media being exchanged between the two
 endpoints and the SIP signaling occurring between the AS and each
 endpoint.

 In this scenario, it is desired for the caller and callee to be able
 to invoke application services & features by pressing keys on the
 terminal. The action required by the AS is simple: it sends a
 SUBSCRIBE to the callerÆs and/or calleeÆs User-Agent as described in

section 16.9. The subscription request should be dialog specific.
 Now the Application Server will receive all endpoint Key Events for
 the duration of the subscription.

2.2.2. Example 2: Application Server Acting As A Proxy.

 In this scenario, the Application Server normally functions as a SIP
 proxy. The application is co-located with the SIP proxy and may
 also function as a SIP UA if desired. The network model is shown in
 Figure 2 below.

 Caller AS AS Callee
 +------+ +-------+ +-------+ +------+
 | UAC |<-- SIP -->| Proxy |<-- SIP -->| Proxy |<-- SIP -->| UAS |
 +------+ +-------+ +-------+ +------+
 | |
 +--------------------------- RTP --------------------------+

 Figure 2. Application Server (Proxy) Model

 Any proxy that wants to stay in the signaling path inserts a Record-
 Route header into the session establishment request. The Record-
 Route mechanism will ensure the Proxy/AS sees all SIP requests and
 responses for the dialog established between the caller and callee.

 Applications deployed using this model do not manage user sessions
 as a user agent but rather exert call-control over the INVITE dialog
 and/or conversation space [5] using, for instance, the call control

Culpepper/Cuninghame/Mule [Page 7]

Internet Draft SIP Key Events Package March 1, 2002

 primitives and framework defined in [5] or using some other external
 mechanism.

 In this usage example the Application Server desires to take action
 after a certain sequence of key events occurs during a session. So
 after possibly record-routing the callerÆs initial INVITE request
 and forwarding it to the destination system, the AS will send a
 dialog specific subscription request to the desired User-Agents as
 described in Section 16.7 (and as for example 1). This allows any
 and all SIP proxies/AS in the signaling path to receive key-event
 notifications independently of any other SIP proxy/AS.

2.3. SIP Call-Control Interaction

 The Key Event Package allows multiple network entities to subscribe
 to key events for the same SIP session on the same device. Due to
 this fact, it is possible for multiple Application Servers to take
 part in the same call and thus the interaction between the servers
 must be considered.

 However, solving the problems of multiple AS interaction is beyond
 the scope of this document. This document simply defines a
 mechanism whereby Applications can monitor key events on a network
 device - it is does not specify the call-control mechanisms used by
 participating entities. Different call control models will have
 different interaction characteristics.

Part A -- Introducing a protocol independent Key-Event message format

 The following section introduces a transport protocol independent
 message format for the requesting and transport of Key-Events. Part
 A of this draft is intentionally protocol neutral such that the
 resulting message format is adaptable to any reliable, bi-
 directional transport mechanism. Part B of this draft details the
 use of Part A within the context of a SIP Event Package [2] using
 the SIP SUBSCRIBE and NOTIFY methods (an example of a transport
 mechanism profile). If there is sufficient non-SIP related interest,
 Part A will be split out into separate internet draft.

 The message format presented in Part A does not specify a complete
 protocol. However, the combination of the Key-Event Message Format
 and the transport mechanism profile (Part B) should specify a
 complete protocol.

 When the Key-Event Messages are transported as MIME message bodies,
 the MIME content type for this message format is "application/key-
 event" and is officially defined in section 12.

3. Terminology

 To avoid confusion and to maintain a protocol neutral terminology,
 the following terms will be used in this section of the document.

Culpepper/Cuninghame/Mule [Page 8]

Internet Draft SIP Key Events Package March 1, 2002

 Requestor: the entity requesting Key-Event notification from a target
 entity (the Notifier).

 Notifier: the entity to which the Requestor is requesting to be
 notified of Key-Events.

 Transport Mechanism: The protocol mechanism used to reliably route
 and deliver messages between the Requestor and Notifier. It is the
 responsibility of the transport mechanism to inform the Requestor
 and Notifier when a Key-Event Session is terminated due to network
 or endpoint failure. The transport mechanism should also provide a
 mechanism whereby the Notifier (and optionally the Requestor) can
 indicate its desire to terminate an active Key-Event Session. The
 transport mechanism is not prescribed by the Key-Event Message
 Format.

 Subscription: the state information held by the Notifier regarding
 the key event notifications successfully requested by a particular
 Requestor.

 Key-Event Session: the time period when a subscription for key-events
 has been established (or in the process of being established).

4. Key-Event Messages

 The Key-Event Message Format consists of the following three message
 types:

 Key-Event Session Request: The Requestor sends a Session Request to
 the Notifier to request key-event notification and/or determine a
 NotifierÆs capabilities. In effect the Session Request creates a
 subscription to a set of key-events for which the Notifier will
 send notifications.

 Key-Event Session Response: The Notifier, in response to a Session
 Request will send this message to indicate the full state of the
 subscription created by the Session Request and the current full
 state of all subscribed key-events.

 Key-Event Notification: A Notifier normally sends a Notification
 whenever the state of any subscribed key-event changes. Each
 notification contains a state delta from the previous Key-Event
 Notification message.

 A typical Key-Event Session message flow:

 Requestor Notifier
 | |
 | Session Request |

 |---------------------->|
 | Session Response |
 |<----------------------|

Culpepper/Cuninghame/Mule [Page 9]

Internet Draft SIP Key Events Package March 1, 2002

 | |
 | Notification |
 |<----------------------|
 | Notification Ack |
 |---------------------->|
 | |
 | Notification |
 |<----------------------|
 | Notification Ack |
 |---------------------->|
 | |

 A Key-Event Session can be renegotiated or terminated by the
 Requestor by sending another Session Request message. This Session
 Request message replaces all state established by the previous
 Session Request and will always solicit a Session Response. A Session
 Request with no requested events terminates a Key-Event Session.

5. Key Representations

 The representation of keys in the key-event message format has been
 designed around a few central philosophies.

 Firstly, all keys that represent the same information must map to
 the same key-event. For instance, a key representing "1" on a
 keyboard, keypad, telephone, or vending machine will all map to the
 same key event; likewise, multiple equivalent keys (e.g., left and
 right shift keys) will also map to the same key-event. The key-
 event package does however allow an optional positional indicator to
 indicate the origin of a particular key event (if multiple
 equivalent keys are present). The value can be ignored if desired.
 This arrangement avoids the situation where an application must
 observe a (possibly unknown) set of equivalent key events.

 The positional indicator values currently defined are "alt"
 (alternate) & "keypad" as well as the assumed "pri" (primary) key
 position. When a keyboard has two or more equivalent keys, one is
 always defined to be the primary key and the others are defined to
 be the alternate/keypad positions. For Shift, Ctrl, Alt and similar
 equivalent keys, the bottom-left most key is defined to be the
 primary key. If a device has only one instance of a particular key
 it is always regarded as the primary key regardless of its physical
 position.

 The second design philosophy is that the event package is
 independent of key-cap arrangements on keyboards. A keyboard is
 represented by two distinct sub-packages: one sub-package represents
 all characters that are accessible on the keyboard, the second sub-
 package represents all non-character based keys, for instance,

 Shift, Caps Lock, Insert, Up, Alt, Pause. [For historical reasons
 Backspace, Delete, Enter/Carriage-Return & Escape have character
 representations.] This, for example, means that the representation
 of capital Q (i.e., 'Q') is independent of the Shift key event.

Culpepper/Cuninghame/Mule [Page 10]

Internet Draft SIP Key Events Package March 1, 2002

 Lastly, all basic keys were designed to have two possible states: up
 or down. Key presses are signaled by notifying the requestor when a
 key transitions into a new state ("keyup" or "keydown" state
 events). Each state notification is accompanied by state specific
 information such as key depression start time. The key-event
 package states have been arranged such that a "keyup" state event
 includes both key release event time as well as duration of the
 depression.

 This arrangement allows the "keydown" state event to be seamlessly
 delayed or omitted by the Notifier and/or ignored by the Requestor.
 The role of the "keydown" event is to provide rapid notification of
 key depression. For many applications, the "keydown" event
 notification is only useful for prolonged key depressions. The key-
 event package provides a useful mechanism whereby a Requestor
 application can delay "keydown" notifications to achieve a
 compromise between key response times and reduced bandwidth (1 or 2
 notify messages per key depression and release). [c.f., Section 7.1
 "dwndly" property.]

6. Key-Event Framework

 The Key-Event Message Format does not in itself define key events
 but rather defines the framework for specifying "Key-Event Sub-
 Packages". Each Key-Event Sub-Package defines the key-events that
 make up the sub-package along with the states and properties that
 the constituent key-events may possess.

 In section 7, this document defines Key-Event Sub-Packages for
 standard keyboards, telephones and user-defined buttons. Section 11
 provides guidelines for future sup-package authors.

7. Key-Event Sub-Package Definitions

 All Key-Event Sub-Package definitions consist of the following
 components:

 Sub-Package Name: The name of the sub-package as used in messages.

 Key-Event Values: This list defines the set of valid key-events of
 the sub-package. A key-event can have either a numeric value (e.g.,
 49) or a non-numeric value (e.g., shift).

 Key-Event States: This component defines the set of states that key-
 events in the sub-package can have (e.g., keyup or keydown). The
 sub-package must also define a default state.

 Key-Event Properties: This list defines any configurable or
 retrievable properties held by the key-events. Support for any

 particular sub-package property is NOT REQUIRED unless explicitly
 stated in the sub-package description.

Culpepper/Cuninghame/Mule [Page 11]

Internet Draft SIP Key Events Package March 1, 2002

 Enumerated Key-Event Sets: In order to simplify subscription, the
 sub-package can define a number of enumerated key-event sets. These
 enumerations are entirely equivalent to the set of key-events they
 represent (e.g., @dialpad = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, * and
 #} found on common telephones).

 By design, all key-events in a sub-package share the same states and
 properties.

7.1. Shared Key-Event States and Properties

 All currently defined sub-packages in this document share the
 following state and property definitions.

 These definitions have been grouped together for clarity however the
 definitions still belong to the individual Key-Event Sub-Packages.
 Future sub-packages may define additional states and/or properties;
 future sub-packages are also not forced to use existing key-event
 states and properties if they do not make sense within a new sub-
 package (e.g., for a slider/dimmer control). (c.f., Section 11 for
 further guidelines.)

 Key-Event States:

 - "keydown"
 State Parameters:
 * Start Time of Key Depression: Milliseconds offset from the
 event-time NTP value specified in the Time-header. Negative
 values are allowed.

 - "keyup"
 State Parameters:
 * Time of Key Release: Milliseconds offset from the event-time
 NTP value specified in the Time-header. Negative values are
 allowed.
 * Duration of Key Depression: Millisecond duration of key
 depression.

 Key-Event Properties:

 - "exists"
 Request Parameters: none
 Response Result: positional-indicator *("," positional-indicator)
 [List of non-primary key instances.]
 Default value: N/A
 Support: RECOMMENDED
 Description: Determines which non-primary key-events exist.
 e.g., "p: key[49].exists()" may yield a result of
 "p: key[49].exists(keypad)" which indicate that two '1' keys
 exists: a primary key instance and a keypad key instance.

 Note: This property only produces a result for key-events
 possessing non-primary key positions.

Culpepper/Cuninghame/Mule [Page 12]

Internet Draft SIP Key Events Package March 1, 2002

 - "name"
 Request Parameters: none
 Response Result: positional-indicator "=" quoted-string
 *("," positional-indicator "=" quoted-string)
 [Lists of names for all key instances.]
 Default value: N/A
 Support: RECOMMENDED
 Description:
 The property when requested (e.g., "p: keybd[49].name()")
 returns the printable name of the key-event in the Session
 Response result (e.g., "key[49].name(pri="1", keypad="Keypad
 1")").
 The description should be sufficiently detailed such that a
 user would be able to identify the key from the description.
 This property can also very useful when the name of the key
 is configured locally, for instance, a Session Request for
 "phone[line:*].name()" could conceivably yield a result of
 "phone[line:1].name(pri="Reception")".

 - "dwndly": (DownDelay)
 Request Parameters: 1*DIGIT (milliseconds delay)
 Response Result: 1*DIGIT (milliseconds delay)
 Default value: 0
 Support: OPTIONAL
 Description: Milliseconds delay that Notifier should/will
 wait before generating a "keydown" state event after a key is
 depressed. If the key is raised before this duration elapses
 then only the "keyup" state event will be generated. This
 allows a tradeoff between key responsiveness (for longer
 keypresses) and the number of Key-Event Notification messages
 per keypress. The Session Response result contains a
 confirmation of the new value.
 This value (and any change thereof) is local to the Key-Event
 Session in which it is requested.

7.2. Key Sub-package

 Sub-Package Name: "key"

 Key-Event Values: Decimal Unicode values [7].

 Key-Event States: keydown, keyup (default)

 Key-Event Properties: name, exists, dwndly

 Enumerated Key Event Sets:
 - "@dialpad" = "35,42,48-57"
 This set represents a standard telephone dialpad: 0-9, *, #.
 - "@uslatin" = "9-10,32-126"

 This set represents the printable and white space character
 key set found on a typical US keyboard (which is a subset of
 most other keyboards).
 - "@uslatin2" = "8-10,27,32-127"

Culpepper/Cuninghame/Mule [Page 13]

Internet Draft SIP Key Events Package March 1, 2002

 This set is similar to @uslatin but also includes the non-
 printable backspace, delete & escape keyboard characters (see
 notes below).

 Notes:
 For mainly historical reasons, the following keys belong to
 the key sub-package rather than the keybd sub-package:
 - Backspace: 8
 - Tab: 9
 - Enter: (treated as unix '\n') 10
 - Escape: 27
 - Delete: 127

7.3. Keyboard Sub-Package

 Sub-Package Name: "keybd"

 Key-Event Values:
 "shift": name="Shift" (or "Left/Right Shift" if applicable)
 "caps": name= "Caps Lock"
 "ctrl": name="Control"
 "alt": name="Alt"
 "home": name="Home"
 "end" : name="End"
 "insert": name="Insert"
 "pgup": name="Page Up"
 "pgdn": name="Page Down"
 "up": name="Up"
 "dn": name="Down"
 "right": name="Right"
 "left": name="Left"
 "pause": name="Pause"
 "numlk": name="Num Lock"
 "scrlk": name="Scroll Lock"
 "prtsc": name="Print Screen"
 "break": name="Break"
 + "func:*": name="Function Key x"
 + "os:*": name=<operating system defined>
 + "vendor:*": name=<vendor defined>

 + Key-events of the form "keyname:*" allow for multiple
 numbered keys to exist. These key-events must be always be
 used in this numbered key form (e.g., "func:3").

 Notes:
 The names provided for the Key-Event Values should be only
 regarded as examples. The actual Key Event Name should be
 sufficient to locate the individual key on the device
 (including the case when there are multiple key instances).

 Key-Event States: keydown, keyup (default)

 Key-Event Properties: name, exists, dwndly

Culpepper/Cuninghame/Mule [Page 14]

Internet Draft SIP Key Events Package March 1, 2002

 Enumerated Key-Event Sets:
 - "@basic" = "shift, caps, ctrl, alt, home, end, insert, pgdn,
 pgup, up, dn, right, left"
 (basic keyboard)
 - "@std" = "shift, caps, ctrl, alt, home, end, insert, pgdn,
 pgup, up, dn, right, left, pause, numlk, scrlk, prtsc,
 break"
 (standard keyboard)

7.4. Telephone Sub-Package

 Sub-Package Name: "phone"

 Key-Event Values:
 "hook": name = "Hookswitch"
 Notes: The state of this button is actually the opposite of
 the hook switch, that is, the "keyup" state represents the
 on-hook condition. Normally this key-event would only be
 available in non-dialog specific subscriptions.
 "hold": name = "Hold"
 "conf": name = "Conference"
 "flash": name = "Flash"
 "redial": name = "Redial"
 "transfer": name = "Transfer"
 + "line:*": name = "Line x" or locally defined
 + "speed:*": name = "Speed Dial x" or locally defined
 + "vendor:*": name = <vendor defined>

 + Key-events of the form "keyname:*" allow for multiple
 numbered keys to exist. These key-events must be always be
 used in this numbered key form.

 Key-Event States: keydown, keyup (default)

 Key-Event Properties: name, exists, dwndly

 Enumerated Key-Event Sets: None.

7.5. User Package

 This sub-package intentionally does not define any key-event values.
 This package is designed as a sub-package available for any device
 or user specific key-events and properties.

 Key-Event Values: None. (see note)

 Key-Event States: keydown, keyup (default)

 Key-Event Properties: name, exists, dwndly

 Enumerated Key-Event Sets: None. (see note)

Culpepper/Cuninghame/Mule [Page 15]

Internet Draft SIP Key Events Package March 1, 2002

8. Key-Event Message Body Format

 A Key-Event message body consists of a set of UTF8 header lines.
 The header lines resemble HTTP header formats however for efficiency
 all header, sub-package, property, state and key-event names are
 case-sensitive and multiple headers of the same type are not
 permitted. Parsers MUST be tolerant of spaces between header
 tokens.

 key-event-message = time-header CRLF
 [instance-header CRLF]
 [event-header CRLF]
 [properties-header CRLF]
 [state-header CRLF]
 [future-extension-header CRLF]

 The individual key-event headers may appear in Key-Event messages as
 detailed in the following table:

 Key-Event Header Request Response Notification
 ---------------- ------- -------- ------------
 Time-Header (t:) m m m
 Instance-Header (i:) o - -
 Event-Header (e:) m m -
 Properties-Header (p:) o o -
 State-Header (s:) - o m

 m = mandatory; o = optional; otherwise, the header is not allowed.

8.1. Time-Header Format

 The time-header indicates the NTP time [6] that the event message
 was first issued and a message sequence number.

 The exact starting/ending time of an event often requires greater
 granularity than is provided by NTP values (in seconds) and so key-
 event state transitions also include a millisecond offset that is
 added to this NTP time value. It must also be remembered that the
 time a key-event message is generated may not always be the same as
 the time of the actual key-event event (for instance, initial state
 indications).

 The sequence number allows the key-event message bodies to be
 sequenced independently of the transport protocol.

 time-header = "t:" event-time sequence-number
 event-time = 1*DIGIT
 sequence-number = 1*DIGIT

 The event-time is set equal to the NTP time value when the message

 body was first issued. The sequence-number is a 32-bit non-zero
 integer that is incremented each time a new message is generated

Culpepper/Cuninghame/Mule [Page 16]

Internet Draft SIP Key Events Package March 1, 2002

 within each key-event session. The sequence number spaces for the
 Requestor and Notifier are independent.

 Examples:

 t: 36539655 1

8.2. Instance-Header Format

 This optional header allows for a protocol specific identifier to be
 placed in a Session Request message to identify the target endpoint
 instance (and association parameters) when the transport mechanism
 cannot provide such functionality.

 instance-header = "i:" *(";" | "/" | "?" | ":" | "@" | "&" | "="
 | "+" | "$" | SP | TAB | unreserved | escaped)

 The headerÆs format and interpretation must be specified in the
 transport mechanism profile if used.

8.3. Event-Header Format

 The event-header allows the Requestor to request a set of key-events
 and the Notifier to confirm/indicate the set of key-events
 subscribed/supported.

 The event-header in a Session Request is used to request a
 subscription to a set of key events. The event header in a Session
 Response is used to indicate the actual set of subscribed key
 events.

 event-header = "e:" [(event-set ("," event-set)) | "*"]
 event-set = sub-package-name [key-event-list]
 sub-package-name = token
 key-event-list = "[" key-event-set *("," key-event-set) "]"
 key-event-set = key-event-identifier | key-event-range |
 enumerated-key-event-set
 key-event-identifier = key-event-name | key-event-value |
 key-event-numid | key-event-numidwild
 key-event-name = token
 key-event-value = 1*DIGIT
 key-event-numid = token ":" 1*DIGIT
 key-event-numidwild = token ":" "*"
 key-event-range = (key-event-value "-" key-event-value) |
 (key-event-numid "-" key-event-numid)
 enumerated-key-event-set = "@" token

 If the key-event-list is not present in a Session Request message
 (e.g., "e: key") then it is assumed that the Requestor wants to be
 notified of all available key-events in the sub-package. The key-

 event-list MUST always be present in Session Response messages and
 indicates all key-events that are subscribed (e.g., e: key[48-57]).

Culpepper/Cuninghame/Mule [Page 17]

Internet Draft SIP Key Events Package March 1, 2002

 Likewise, the "*" wildcard can only appear in Session Request
 messages. Wildcards must be expanded in Session Response messages
 as described in Section 9.2.

 Key-event-ranges with numbered keys (e.g, a "Line 3" telephone
 button) must have the same key-event type on both sides of the range
 (e.g., "phone[line:1-line:10]"). Each numbered key is treated as an
 independent key-event.

 An empty event-header ("e:") in a Session Request or Response
 message indicates the termination of the Key-Event Session. The
 event-header is the only key-event header which may be present but
 empty.

 Example Session Request message headers:

 e: key[@dialpad, 65-68], keybd

 In this example, the Requestor is requesting event notification
 for keys: 0-9, *, #, A, B, C, D from the key sub-package and all
 supported keybd sub-package events.

 e: *

 In this example the Requestor is requesting a subscription to all
 key-events supported by the Notifier.

 e: phone[line:*]

 In this example the Requestor is requesting all available "line"
 buttons within the phone sub-package.

 Example Session Response headers for the above Session Request
 message headers:

 e: key[@dialpad]

 In this example the Notifier is indicating that subscription only
 occurred for the key-events 0-9,*,#.

 e: key[48-57,8,10], keybd[insert,numlk]

 In this example, the Notifier is indicating that subscriptions
 have been created for the key-events 0-9, Backspace, Enter, Insert
 & NumLock.

 e: phone[line:1-line:5]

 In this example, the Notifier is indicating that subscriptions
 have been created for the "line" buttons 1 through 5.

8.4. Properties-Header Format

Culpepper/Cuninghame/Mule [Page 18]

Internet Draft SIP Key Events Package March 1, 2002

 The properties-header in a Session Request message is used to set or
 retrieve the properties of subscribed key-events. The properties-
 header in a Session Response message indicates the value of each of
 the listed properties.

 properties-header = "p:" properties-set *("," properties-set)
 properties-set = (event-set | "*") "." property-name
 "(" [parameter-list] ")"
 property-name = token
 parameter-list = parameter *("," parameter)
 parameter = *(";" | "/" | "?" | ":" | "@" | "&" | "=" | "+"
 | "$" | SP | TAB | unreserved | escaped | quoted-string)

 As with the event-header, "*" wildcards and empty key-event-listÆs
 can only appear in Session Request messages. Wildcards and key-
 event-listÆs must be expanded in Session Response messages as
 described in Section 7.2.

 NOTE: The set of key-events that each property operates on is always
 equal to the intersection of the set of subscribed key-events and
 the set of key-events requested in the properties-header.

 Examples for Session Request message headers:

 p: key.dwndly(500)

 In this example the Requestor is requesting that a value of 500 is
 assigned to the "dwndly" property for all subscribed "key" sub-
 package key-events.

 p: *.exists()

 In this example the Requestor is requesting to know the existence
 of all non-primary key instances for all subscribed key-events.

 p: keybd[ctrl].name()

 The Requestor is requesting the name of all ctrl key instances.

 Example Session Response message headers for above Session Request
 message examples:

 p: key[@dialpad].dwndly(500)

 In response to the above dwndly set request, the Notifier is
 confirming the new value for all subscribed key-events in the key
 sub-package.

 p: key[47-58, 10].exists(keypad)

 The Notifier is indicating that in addition to the primary
 instances of all subscribed key-events, additional key instances
 for 0-9 & Enter exist on a keypad.

Culpepper/Cuninghame/Mule [Page 19]

Internet Draft SIP Key Events Package March 1, 2002

 p: keybd[ctrl].name(pri="Left Control", alt="Right Control")

 In this example, the name property indicates the names for the
 various control key instances possessed by the device.

8.5. State-Header Format

 The state-header allows the Notifier to indicate the initial key-
 event states and subsequent key-event state changes. The header
 only appears in Session Response and Notification messages. In a
 Session Response message the state header gives key-event state
 information for all subscribed key-events in non-default states. In
 a Notification message the state header only indicates a change in
 key-event state.

 state-header = "s:" state-indication *("," state-indication)
 state-indication = event-descriptor "." state-name
 "(" [parameter-list] ")"
 event-descriptor = sub-package-name "[" key-event-descriptor "]"
 key-event-descriptor = (key-event-name | key-event-value |
 key-event-numid)
 ["(" positional-indicator ")"]
 positional-indicator = "pri" | "alt" | "keypad" | token
 state-name = token

 An empty positional-indicator infers the request/result applies to
 the primary key of this key-event type.

 Examples:

 s: key[49].keydown(-1532)

 This example is a keydown state indication for the primary '1' key
 (Unicode [7] value 49). It indicates that the button was first
 depressed 1532 milliseconds before the NTP value in the time-
 header.

 s: key[49(keypad)].keyup(126,1206)

 This example is a keyup state indication for the keypad '1' key.
 It also indicates that the button was released 126 milliseconds
 after the NTP value in the time-header and was depressed for 1206
 milliseconds.

9. Key-Event Message Generation

9.1. Generating a Session Request message

 The Session Request message is generated to establish, renegotiate

 or terminate a Key-Event Session. The values placed in the
 messageÆs time-, instance-, event- and properties- headers are
 described in the relevant sections of section 8.

Culpepper/Cuninghame/Mule [Page 20]

Internet Draft SIP Key Events Package March 1, 2002

9.2. Generating a Session Response message

 A Session Response message is generated in response to a Session
 Request. Generating the Initial NOTIFY request is the most
 complicated part of this specification, however, the headers were
 constructed so that the event-, property- and state- headers have a
 similar syntax and semantics.

 The procedure for generating the Response is decomposed into the
 procedures for generating each of the possible Session Response
 message headers.

9.2.1. Event Header Processing

 This section describes how the subscribed key-events set is
 generated and how the Session Response event-header is derived from
 this set. The subscribed key-events set also forms part of the
 subscription state information and is used in generating the other
 headers. The set is formed from the event header in the Session
 Request message.

 To summarize, the subscribed key-events set is formed by expanding
 all wildcards in the requested key-events set and intersecting the
 resulting key-event set with the supported key-event set.

 Procedure:

 An event header of "*" results in a subscribed key-event set equal
 to the supported key-event set. If the event header does not
 contain a "*" then the following procedure is performed for each
 element on the event header line:

 If the key-event-list for the sub-package is empty (e.g., "e: user")
 then all supported key-events in the specified sub-package are added
 to the subscribed key-events set. Otherwise, the following
 procedure is performed for each element in the key-event-list:

 For enumerated key-event sets (e.g., "@dialpad"), if all key-events
 in the set are supported, then the enumerated key-event set is added
 to the subscribed key-events set. Otherwise the enumerated key-
 event set is simply replaced by its equivalent key-event list for
 individual evaluation.

 All key-event identifiers and ranges are checked against the
 supported key-event set and supported key-events are added to the
 subscribed key-event set.

 The resulting set is the subscribed key-event set.

 The event header in the Session Response message is generated from
 the subscribed key-events set by grouping together all key-events in
 the same sub-package. This is done to keep header length down, for

Culpepper/Cuninghame/Mule [Page 21]

Internet Draft SIP Key Events Package March 1, 2002

 example, "key[47-58,10,35]" is preferred over "key[47], key[48],
 key[49], ...".

 If the subscribed key-event set is empty then an empty event-header
 is generated ("e:") and the subscription is terminated after the
 message is delivered.

9.2.2. Properties Header Processing

 The properties header in the Session Request message is evaluated to
 form the properties header used in the Session Response message as
 follows:

 Each element in the Session Request properties header is checked.
 If the property is not supported for any sub-package then no action
 is taken for this element. Otherwise, the input key-event set is
 calculated (the key-event set on which the property will operate).
 This set is generated in a similar manner to the subscribed key-
 event set described in the previous section except that the
 subscribed key-event set is used instead of the supported key-event
 set (properties only operate on subscribed key-events) and the
 requested key-event set is equal to the event-set of the current
 properties header element. The resulting input key-event set is
 further reduced by removing all key-events for which the property is
 not supported. At this point, the property is evaluated for each
 element in the input key-event set. For each evaluation, if the
 property generated a result then the result is added to the output
 set, otherwise no action is taken.

 Like the event header, the properties header is generated from the
 output set by grouping together all key-events with the same
 property result (and in the same sub-package). For example,
 "key[47-58].exists(keypad)" is preferred over
 "key[47].exists(keypad), key[48].exists(keypad),
 key[49].exists(keypad), ...".

 If the output set is empty then the properties header is not added
 to the message.

9.2.3. State Header Processing

 A state notification is generated for each key-event in the
 subscribed key-event set for which the current state is not equal to
 the default state. This set of state notifications forms the
 Session Response state-header.

 If all subscribed key-events are in the default state then a state-
 header is not added to the message.

9.3. Generating Key-Event Notification messages

 Notification messages generated in response to key state changes
 only possess two headers: the time-header and the state-header.

Culpepper/Cuninghame/Mule [Page 22]

Internet Draft SIP Key Events Package March 1, 2002

 The information in the state-header is a delta indication of the
 key-event state. In other words, each Notification message only
 includes the state information of key-events that have changed since
 the last notification.

10. Minimal Implementation for Key-Event Notifiers

 Firstly, even a minimal implementation MUST address the security
 considerations prescribed in each transport profile.

 When a device does not have any user-defined keys, locally-
 configured names, multiple key instances or numbered buttons (e.g.,
 a simple DTMF telephone dialpad) then the implementation can be made
 quite simple. In these cases the "exists" and "name" properties can
 be deemed OPTIONAL. If remote configuration of "dwndly" is also not
 required then the properties header line MAY be ignored completely.

 This allows simple devices to scale down to a simple implementation
 without affecting the functionality available to more complicated
 user interface devices.

11. Guidelines to Future Sub-Package Authors

 Future sub-packages must not duplicate key-events contained in
 existing sub-packages.

 If the relevant sub-package already exists then an extension for the
 existing sub-package should be proposed rather than a new sub-
 package.

 Once published as a standard, new key-event states or enumerated
 key-event sets SHOULD NOT be added to an existing sub-package. Only
 new key-event values and OPTIONAL key-event properties may be added
 to existing sub-packages.

 New sub-packages should reuse the states and properties of the
 existing sub-packages where possible.

12. MIME type information for the Key-Event Message Format

 The MIME definition for the key state message bodies defined in this
 document follows.

 Media type name: application
 Media subtype name: key-event
 Required parameters: none
 Optional parameters: none
 Encoding scheme: text

 The media subtype is used to indicate the message content as defined
 in this document. A typical header would look like the following.

Culpepper/Cuninghame/Mule [Page 23]

Internet Draft SIP Key Events Package March 1, 2002

 Content-Type: application/key-event

Part B -- The use of SIP SUBSCRIBE & NOTIFY for Key-Event Transport

 This section describes the transport of key state data defined in
 Part A using the SIP Event Notification framework.

13. Subscription to Key Events

 Subscriptions to key events are established, maintained, and
 terminated as described in the SIP-Specific Event Notification
 framework specification [2]. Key event subscriptions are indicated
 using "key-event" for the event-type in the Event header of
 SUBSCRIBE and NOTIFY requests. Details of the events being
 subscribed to and being reported are specified in message body of
 the Key-Event Session request. (See sections 7 and 8 for normative
 descriptions of Key-Event Sub-Packages and their message bodies.)

 As specified later, SUBSCRIBE requests contain Key-Event Session
 Request message bodies that indicate the events being subscribed to.
 Once accepted, an "event notification dialog" is established and
 event state is established in the Notifier according to the contents
 of the SUBSCRIBE message body. It is possible to modify the set of
 events being subscribed to by sending another SUBSCRIBE request,
 with a key events message body, for a previously established event
 notification dialog. In this case, the new message body should
 replace the state established by a previous SUBSCRIBE.

 This document describes two types of key-event subscriptions. The
 first is a subscription associated with a SIP dialog or conversation
 space. That is, the subscription is only valid for key-events
 directly associated with the specified session and the subscription
 ends when the SIP dialog or conversation-space ceases to exist. The
 term "dialog specific subscription" will be used to describe this
 type of subscription. The second type of key-event subscription
 described here is a non-dialog associated subscription. Where the
 subscribing device is interested in key events regardless of what
 the device is doing. The term "non-dialog specific subscription"
 will be used to describe this second type of key event subscription.
 Devices supporting the mechanisms defined in this document MUST
 support dialog specific subscriptions. Support for non-dialog
 specific subscriptions is OPTIONAL.

13.1. Non-Dialog Specific Subscriptions

 Key-Event subscriptions that apply to a device, regardless of any
 on-going or active SIP dialogs, are established by SUBSCRIBE
 requests that do not include an instance-header in the Session
 Request message body. Notifiers that support non-dialog specific

 subscriptions MUST support multiple concurrent subscriptions from
 the same or different subscribers.

Culpepper/Cuninghame/Mule [Page 24]

Internet Draft SIP Key Events Package March 1, 2002

13.2. Dialog Specific Subscriptions

 A dialog specific subscription is requested by the subscriber by
 including an instance-header in the Session Request message body of
 the SUBSCRIBE request. This header identifies the particulars of
 the dialog specific subscription; the format of the inserted header
 is described in section 14.

 There are two modes of dialog specific subscriptions: dialog
 attached mode and conversation-space attached mode. The primary
 difference between the two modes is the conditions under which the
 subscription terminates.

13.2.1. Dialog Attached Mode

 In this mode, the subscription receives key-events from the user
 endpoint associated with the specified dialog whenever the user is
 actively communicating through that user endpoint. [An example of
 a user endpoint in this context could be a single virtual "line" on
 a multi-line SIP phone.]

 The subscription is terminated when the dialog is terminated. The
 RECOMMENDED subscription expiry timeout is on the order of a day.
 When a subscription is terminated due to dialog termination, the
 Notifier MAY send a NOTIFY with "Subscription-State:
 terminated;reason=noresource" header however this is deemed
 unnecessary in most cases.

13.2.2. Conversation Space Attached Mode

 Just as for dialog attached subscriptions, the subscription receives
 key-events from the user endpoint associated with the specified
 dialog (at the time of subscription) whenever the user is *actively*
 communicating through that user endpoint.

 However for conversation space attached dialogs, the subscription is
 terminated when the conversation space of the user endpoint is
 reduced to a conversation space containing only the user endpoint
 (or an empty conversation space). For instance, in this mode the
 subscription would *not* be terminated when an INVITE with a
 Replaces header was received from the network but would be
 terminated when all other participants leave a distributed
 conference. It is RECOMMENDED that the subscription expiry timeout
 have a value ranging from minutes up to an hour. The Notifier MUST
 send a NOTIFY with "Subscription-State: terminated;
 reason=noresource" header when the subscription terminates.

13.2.3. Multi-dialog Capable Endpoints

 Dialog specific subscriptions can present a challenge to user

 devices that support multiple simultaneous dialogs but only have a
 single user interface (keypad, speaker, microphone) that is shared
 between all session (e.g., a multi-line SIP phone). Most devices of

Culpepper/Cuninghame/Mule [Page 25]

Internet Draft SIP Key Events Package March 1, 2002

 this type have the concept of a single "active" session among the
 established sessions. That is, only one session has the use of the
 shared user interface resources at any point in time. This
 characteristic should be applied to key event subscriptions, in
 other words, notifications will only be sent to subscribers (if any)
 of the dialog with which the keypad is assigned to at the time of
 the event detection. This behavior is consistent with common
 circuit-based multi-line telephones.

 This should not be confused with devices which terminate multiple
 dialogs but where each dialog is associated with a different user,
 for instance, a SIP-PSTN gateway.

13.2.4. "Early" Dialog Subscriptions

 In order for a subscriber to reliably receive all Callee generated
 key-events from the time a session is fully established/answered, a
 Callee must be able to receive and setup a dialog specific
 subscription prior to the associated dialog being fully established.
 This is accomplished by the caller/AS sending a SUBSCRIBE request
 after an early dialog has been established (by a provisional INVITE
 response) but before any final response has been sent by the callee.
 As with any SUBSCRIBE request received, recipients should process
 the request according to its policies, however early dialog
 subscriptions do not produce Key-Event information until the
 associated dialog is established/answered. It should be remembered
 that the SIP Events draft requires that a NOTIFY request is
 generated immediately, however, the NOTIFY will simply not contain
 Key-Event message bodies until the subscriptionÆs associated device
 or dialog becomes active.

 A Caller can also receive a dialog specific subscription for a
 dialog before it has been fully established. The same issues with
 authentication and authorization apply as in the previous case,
 however, the notification of caller key presses before the dialog is
 fully established may benefit certain applications (for instance,
 pre-answer or pre-alerting caller pin-code authorization). Thus,
 when the instance-header does not specify a remote tag the early
 subscription should become active immediately. If the subscriber
 does specify a remote tag in the instance-header, then the
 subscription is only valid while the caller has an end-to-end
 association with the specified callee (for instance while early
 media from the specified callee is being played to the caller). In
 this case, the subscription is terminated if and when the session is
 eventually established with a different callee.

13.2.5. Multiple Subscriptions

 A User-Agent/Notifier MUST support multiple concurrent subscriptions

 for the same dialog from both the same subscriber and from different
 subscribers.

Culpepper/Cuninghame/Mule [Page 26]

Internet Draft SIP Key Events Package March 1, 2002

14. Instance-Header format for SIP Dialog Specific Subscriptions

 The purposed of an instance-header in the key-event message body of
 a SUBSCRIBE request is to identify a SIP dialog and specify the
 subscription attachment mode; in a SIP SUBSCRIBE, the headerÆs
 presence indicates that the subscription is dialog specific.

 If a subscriber places an instance-header in the initial SUBSCRIBE
 request then it MUST also be placed unchanged in all subsequent
 SUBSCRIBE requests for the SIP dialog specified initially. However,
 a Notifier MUST ignore the instance-header in all but the initial
 SUBSCRIBE request.

 This allows a Notifier to restart but ensures that the
 subscription does not change over time. Notifiers can ignore
 the instance-header in SUBSCRIBE requests that refresh
 subscriptions since SUBSCRIBE established dialogs are
 identified by the Call-ID, Local-Tag, and Remote-Tag present in
 the initial SUBSCRIBE request.

 instance-header = "i:" instance-component *("," instance-component)
 instance-component = "call-id" "=" Call-ID
 | "local-tag" "=" UUID
 | "remote-tag" "=" UUID
 | "attach" = ("dialog" | "cspace" | token)
 | future-extension

 No minimum set of components has been specified for the instance-
 header - it is the responsibility of the generator to ensure that
 the instance-header uniquely identifies a dialog on the target. To
 ensure uniqueness it is RECOMMENDED that the instance-header contain
 the call-id, local-tag and remote-tag components.

 If none of the "call-id", "local-tag", "remote-tag" components are
 present then it is assumed that the dialog specific subscription is
 associated with the subscriptionÆs own dialog "call-id", "local-tag"
 & "remote-tag" values. This does not preclude the use of the attach
 component.

 The "attach" component indicates whether the subscription is
 associated to the dialog itself or to the conversation space to
 which the dialog currently belongs (as described in section 13.2).
 The assumed value for the "attach" component (when not present) is
 "attach=dialog".

15. SIP specific Key-Event error handling

15.1. Handling of unacceptable instance-header values.

 When a SUBSCRIBE request is received containing an instance-header

 referring to a non-existent or unacceptable dialog then the Notifier
 SHOULD generate a NOTIFY request with a "Subscription-State:
 terminated;reason=noresource" SIP header.

Culpepper/Cuninghame/Mule [Page 27]

Internet Draft SIP Key Events Package March 1, 2002

15.2. Handling of unknown key-event-set enumerations.

 When a Notifier receives a Key-Event Session Request with an unknown
 key-event-set enumeration in a supported key-event sub-package
 (e.g., "e: key[@polish]") then the Notifier MUST generate a SIP
 Warning header in the Initial NOTIFY request. Unknown key-event-set
 enumerations in the "user" sub-package MAY be silently ignored.

 The "warn-text" of the SIP Warning header SHOULD include the unknown
 enumeration, for instance:

 Warning: 390 host53.company.com "Unknown key-event-set enumeration:
 key[@polish]"

 The subscription should proceed as normal with the unknown key-
 event-set enumerations ignored.

 A warn-code of 390 is chosen as the information to be conveyed falls
 in the miscellaneous category (as defined in [3]) and to allow
 automated actions to occur. For example, a subscriber can modify the
 subscription and use Key-Event values instead of using an enumerated
 Key-Event set.

16. Event Package Definition

 This section contains the formal definition of the Key-events SIP
 Event Package described in this document. This information is
 provided to conform to the requirements for SIP Event Packages as
 outlined in [2]. As part of these requirements this section details
 how Key-Event message bodies are generated by the subscriber and
 Notifier entities.

16.1. Event Package Name

 The event package token name for the Key Events package is "key-
 event". The token name is used in the Event and Allow-Event headers
 defined in [2].

16.2. Event Package Parameters

 There are no parameters used in the Event header for the key-events
 package/sub-packages.

16.3. SUBSCRIBE Bodies

 SUBSCRIBE requests for Key-Event subscriptions MUST contain a Key-
 Event message body if the SIP Expires header value is non-zero and
 MAY contain one if the SIP Expires header value is zero. SUBSCRIBE
 responses do not contain a message body. The Content-Type for the

 Key-Event message body is "application/key-event". The grammatical
 specifications for the message body are defined in section 8.

Culpepper/Cuninghame/Mule [Page 28]

Internet Draft SIP Key Events Package March 1, 2002

16.4. Subscription Duration

 Dialog specific subscriptions implicitly end when the associated
 dialog or conversation-space ends. Please refer to section 13.2.1 &
 13.2.2 for recommended dialog specific subscription expiry timeout
 values. It is recommended that the subscription expiry timeout for
 non-dialog specific subscriptions be from a few minutes to an hour.

 As detailed in [2] a SUBSCRIBE with an "Expires: 0" header indicates
 the termination of a subscription. However, if the accepted
 SUBSCRIBE message also contains a Session Request message body, then
 the SUBSCRIBE message body should be processed and the normal NOTIFY
 Session Response message body is generated (ignoring any persistent
 subscription side effects). This mechanism can be used to determine
 the sub-packages & key-events supported as well as the current
 property values without creating an ongoing subscription.

 If the terminating SUBSCRIBE does not contain a Key-Event message
 body then a NOTIFY request MUST still be sent (with no message body)
 as described in [2].

16.5. NOTIFY Bodies

 NOTIFY requests MUST contain a Key-Event message body if the
 associated device, dialog or conversation space of the subscription
 is in an active state. Conversely, the lack of a message body in a
 NOTIFY request with a non-zero Subscription-Expires header value
 indicates that the Key-Event subscription state is pending (for
 example, awaiting authorization or for the associated dialog to
 become active). NOTIFY responses do not contain a message body.
 The Content-Type for the Key-Event message body is "application/key-
 event". The grammatical specifications for the message body are
 defined in section 8.

16.6. Notifier Processing of SUBSCRIBE Requests

 The Notifier takes the following basic steps:

 1. Before processing a received SUBSCRIBE request a state-agent MUST
 check that the subscriber is authorized to perform the requested
 subscription (c.f., Section 18 and [2]).

 2. If the SUBSCRIBE includes an instance-header in the key-event
 message body then the Notifier MUST check that the dialog exists and
 if not, take action as described in section 15.

 3. The SUBSCRIBE message body is parsed for consistency and a
 SUBSCRIBE response is generated as described in [2].

 4. The state-agent will then clear existing Key-Event subscription

 state for this subscription and proceed to generate a Key-Event
 Session Response message body in a NOTIFY request as described in

Section 16.7.1.

Culpepper/Cuninghame/Mule [Page 29]

Internet Draft SIP Key Events Package March 1, 2002

 5. If the value of the SUBSCRIBEÆs Expires header is non-zero then
 the new subscription state information is stored.

16.7. Notifier Generation of NOTIFY Requests

 This section describes both the generation of NOTIFY requests when
 the subscription is established or modified by the Notifier, and
 when reporting state changes in the subscribed resource.

16.7.1. Generating Initial NOTIFY Requests

 The Initial NOTIFY request is generated when the subscription state
 initially transitions to "active" or a subsequent SUBSCRIBE message
 is received by the Notifier. The initial NOTIFY request may only
 contain a Session Response message body which is generated in
 response to the accepted SUBSCRIBE request (although it need not be
 generated immediately). The Initial NOTIFY request always reports
 complete state information and can be differentiated from a NOTIFY
 reporting a change in state by the presence of the event-header in
 the Key-Event message body.

 If the SUBSCRIBE request did not contain a Key-Event message body
 (which infers that the request also has an "Expires: 0" header) then
 the resulting NOTIFY request will also not have a Key-Event message
 body. If the SUBSCRIBE request does contain a Session Request
 message body but has a "Expires: 0" SIP header then an Initial
 NOTIFY Session Response request is still generated however the
 subscription is not kept after the Initial NOTIFY request is sent.

 The Key-Event Session Request message body in the Initial NOTIFY
 request contains the following information:
 - A confirmation of the subscribed key-events (event-header).
 - The result of all key-event property evaluations (properties-
 header).
 - The initial state of subscribed key-events that have a non-default
 state (state-header).

16.7.2. Generating Subsequent NOTIFY Requests

 NOTIFY requests that are not generated in response to an accepted
 SUBSCRIBE request MAY include a Key-Event Notification message body
 to indicate a change in key-event state.

 Once a NOTIFY request with an application/key-event message body has
 been sent, further "key-event" NOTIFY messages can be delayed until
 a final response is received for the NOTIFY request. Thus, the key-
 event state-header MAY contain multiple key-state changes.

16.8. Subscriber Processing of NOTIFY Requests

Culpepper/Cuninghame/Mule [Page 30]

Internet Draft SIP Key Events Package March 1, 2002

 The NOTIFY response is generated as described in [2]. NOTIFY
 responses do not contain key-event Event message bodies.

16.9. Subscriber Generation of SUBSCRIBE Requests

 The SUBSCRIBE request for "key-event" SIP events is generated as
 described in [2] with the following clarifications:
 . the Event header is set to "Event: key-event".
 . the Content-Type header is set to "Content-Type:
 application/key-event" if a Key-Event message body is included.
 . if dialog specific subscription is required then the instance-
 header is added to the Key-Event message body as described in

section 13.2.

 The event-header will contain the list of desired key-events to
 receive notifications for and MAY include wildcards. The
 properties-header will contain the set of key-event properties for
 which the subscriber wishes to set or retrieved the value of.

 A new "key-event" SUBSCRIBE request for an existing subscription
 dialog will entirely replace the subscription state of previous
 SUBSCRIBE requests in that dialog.

 If the SIP Expires header has a value of zero then the subscriber
 application can still always expect at least one further NOTIFY
 request to be sent by the Notifier (as described in [2]).

 When using the "key-event" package, if the SIP Expires header does
 not have a value of zero then the subscriber application MUST
 include a Key-Event message body.

16.10. Pre-loaded Routes in SUBSCRIBE requests

 The following section applies only to dialog-specific subscriptions
 where the subscriber application is located along the associated
 INVITE dialog signaling path and wishes to collect key-events from
 one of the User Agent endpoints.

 In order to maximize the likelihood that a SUBSCRIBE request will
 successfully reach the desired User Agent, it is RECOMMENDED the
 subscriber place pre-loaded Route headers in the SUBSCRIBE request
 to reproduce any Record-Routes established in the associated INVITE
 dialog. The presence of record-routed Application Level Gateways
 controlling firewalls and/or NATÆs is a typical example of when this
 may be helpful.

 When the subscriber wishes to send a SUBSCRIBE request to the
 caller, the Route set is constructed (in the manner that the callee
 would normally use) from the Record-Route and Contact headers in the
 original INVITE request.

Culpepper/Cuninghame/Mule [Page 31]

Internet Draft SIP Key Events Package March 1, 2002

 When the subscriber wishes to send a SUBSCRIBE request to the
 callee, the Route set is constructed (in the manner that the caller
 would normally use) from the Record-Route and Contact headers in the
 original 200 OK INVITE response. However in the case where the
 subscriber application is acting as a proxy in the original INVITE
 dialog (c.f., Usage Scenario 2, Section 2.2.2), then the subscriber
 should ignore all Record-Route headers up to and including the
 Record-Route inserted by the subscriber application in the 200 OK
 INVITE response.

16.11. Handling of Forked Subscriptions

 A SUBSCRIBE request may fork and arrive at multiple devices. In
 this case, the subscriber can terminate those subscriptions it
 wishes by sending a SUBSCRIBE with an Expires value set to 0. It
 can also respond to any NOTIFYs from a UA with a 481 Transaction
 Does Not Exist.

 If the subscriber wishes to accept multiple subscriptions, merging
 of state is not defined due to the fact that the multiple
 subscriptions represent the state of multiple devices.

 A Notifier SHOULD return 482 Request Merged response to subsequent
 multiple subscriptions having the same SUBSCRIBE request transaction
 id (even if they have differing request-uriÆs).

16.12. Rate of Notifications

 The use of the Key Events packages should be limited to situations
 that require limited amount of data to be transported. As each key
 press can cause a notification (and response) to be sent, this
 mechanism is inefficient in scenarios where a significant amount of
 data is to be transferred between two endpoints. However, as key
 event packages are designed to transport user indications, the rate
 of notifications should not be much more than ten per second nor
 more than 10 to 20 events at a time.

17. Examples

 In the example call flow below, an application server subscribes to
 the status of a caller's keypad events. NOTIFY requests are sent
 for two key presses, in addition to the initial NOTIFY indicating
 those key-events the Notifier supports and their initial state. Via
 headers are omitted for clarity.

 Subscriber Notifier
 | |
 | F1: SUBSCRIBE |
 |---------------------->|
 | F2: 200 OK |

 |<----------------------|
 | |
 | F3: NOTIFY | Init. State: '*' key down

Culpepper/Cuninghame/Mule [Page 32]

Internet Draft SIP Key Events Package March 1, 2002

 |<----------------------|
 | F4: 200 OK |
 |---------------------->|
 | |
 | F5: NOTIFY | 'A' key pressed and
 |<----------------------| released quickly
 | A6: 200 OK |
 |---------------------->|
 | |
 | F5: NOTIFY | '1' key depressed
 |<----------------------|
 | A6: 200 OK |
 |---------------------->|
 | |
 | F7: NOTIFY | '*' key released
 |<----------------------|
 | F8: 200 OK |
 |---------------------->|
 | |
 | F9: NOTIFY | '1' key released
 |<----------------------|
 | F10: 200 OK |
 |---------------------->|
 | |
 | F11: (un)SUBSCRIBE |
 |---------------------->|
 | F12: 200 OK |
 |<----------------------|
 | |
 | F13: NOTIFY |
 |<----------------------|
 | F14: 200 OK |
 |---------------------->|
 | |

 F1: Subscriber -> Notifier

 SUBSCRIBE sip:caller@access-22.isp.net SIP/2.0
 To: <sip:caller@isp.net>
 From: <sip:appl@appsrv.sp.com>;tag=2356
 Call-Id: 321123@appsrv.sp.com
 CSeq: 2 SUBSCRIBE
 Contact: <sip:appl@appsrv.sp.com>
 Event: key-event
 Expires: 3600
 Content: application/key-event
 Content-Length: xx

 t: 36539655 1

 i: call-id=8347-da8d-7657-ab32@192.144.22.1; local-tag=2342354556;
 remote-tag=00993k23ff8; attach=cspace
 e: key, keybd
 p: *.exists(), *.dwndly(1000)

Culpepper/Cuninghame/Mule [Page 33]

Internet Draft SIP Key Events Package March 1, 2002

 The subscriber is requesting all key and keyboard sub-package key-
 events and also requesting to know the presence of multiple key
 instances and a delay in keydown notification of 1000ms.

 F2: Notifier -> Subscriber

 SIP/2.0 200 OK
 To: <sip:caller@isp.net>;tag=789
 From: <sip:appl@appsrv.sp.com>;tag=2356
 Call-Id: 321123@appsrv.sp.com
 CSeq: 2 SUBSCRIBE
 Contact: <sip:caller@isp.net>
 Expires: 3600
 Content-Length: 0

 F3: Notifier -> Subscriber

 NOTIFY sip:appl@appsrv.sp.com SIP/2.0
 To: <sip:appl@appsrv.sp.com>;tag=2356
 From: <sip:caller@isp.net>;tag=789
 Call-Id: 321123@appsrv.sp.com
 CSeq: 403 NOTIFY
 Contact: <sip:caller@isp.net>
 Event: key-event
 Content: application/key-event
 Content-Length: xx

 t: 36539658 1
 e: key[@dialpad, 65-68]
 p: key[@dialpad, 65-68].dwndly(1000)
 s: key[42].keydown(-1902)

 The Notifier confirms subscribed key-events and property values
 along with non-default initial key-event states. In this example
 the Notifier has created a subscription for keys { '0' - '9', '*',
 '#', 'A' - 'D' } and confirms that the dwndly property has been set.
 All keys except '*' are in the default (keyup) state; '*' has been
 depressed since 1.902 seconds before the specified NTP time value,
 that is, the key was depressed at 36539656.098 seconds past the
 epoch. No multiple key instances exist.

 F4: Subscriber -> Notifier

 SIP/2.0 200 OK
 To: <sip:appl@appsrv.sp.com>;tag=2356
 From: <sip:caller@isp.net>;tag=789
 Call-Id: 321123@appsrv.sp.com
 CSeq: 403 NOTIFY
 Content-Length: 0

 F5: Notifier -> Subscriber

Culpepper/Cuninghame/Mule [Page 34]

Internet Draft SIP Key Events Package March 1, 2002

 NOTIFY sip:appl@appsrv.sp.com SIP/2.0
 To: <sip:appl@appsrv.sp.com>;tag=2356
 From: <sip:caller@isp.net>;tag=789
 Call-Id: 321123@appsrv.sp.com
 CSeq: 404 NOTIFY
 Contact: <sip:caller@isp.net>
 Event: key-event
 Content: application/key-event
 Content-Length: xx

 t: 36539663 2
 s: key[65].keyup(17, 537)

 The Notifier reports that the 'A' key has been pressed and released.
 As the duration of depression was less that 1000ms, only the keyup
 state indication has been generated. In this case, the depression
 can be determined to have started at time 36539662.480 and lasted
 for 537ms.

 F6: Subscriber -> Notifier

 SIP/2.0 200 OK
 To: <sip:appl@appsrv.sp.com>;tag=2356
 From: <sip:caller@isp.net>;tag=789
 Call-Id: 321123@appsrv.sp.com
 CSeq: 404 NOTIFY
 Content-Length: 0

 F7: Notifier -> Subscriber

 NOTIFY sip:appl@appsrv.sp.com SIP/2.0
 To: <sip:appl@appsrv.sp.com>;tag=2356
 From: <sip:caller@isp.net>;tag=789
 Call-Id: 321123@appsrv.sp.com
 CSeq: 405 NOTIFY
 Contact: <sip:caller@isp.net>
 Event: key-event
 Content: application/key-event
 Content-Length: xx

 t: 36539668 2
 s: key[49].keydown(-987)

 The Notifier reports that the '1' key was pressed at time
 36539667.13. The keydown has been generated because the key has
 been depressed for more than 1000ms. In this example the NOTIFY
 request was actually generated at time 36539668.13 which explains
 the -987ms offset from the NTP time.

 F8: Subscriber -> Notifier

Culpepper/Cuninghame/Mule [Page 35]

Internet Draft SIP Key Events Package March 1, 2002

 SIP/2.0 200 OK
 To: <sip:appl@appsrv.sp.com>;tag=2356
 From: <sip:caller@isp.net>;tag=789
 Call-Id: 321123@appsrv.sp.com
 CSeq: 405 NOTIFY
 Content-Length: 0

 F9: Notifier -> Subscriber

 NOTIFY sip:appl@appsrv.sp.com SIP/2.0
 To: <sip:appl@appsrv.sp.com>;tag=2356
 From: <sip:caller@isp.net>;tag=789
 Call-Id: 321123@appsrv.sp.com
 CSeq: 406 NOTIFY
 Contact: <sip:caller@isp.net>
 Event: key-event
 Content: application/key-event
 Content-Length: xx

 t: 36539669 3
 s: key[42].keyup(756, 13658)

 This notification indicates that the '*' key has eventually been
 released at time 36539669.756. The duration of depression is 13658
 milliseconds; this value is consistent with the time of depression
 indicated in the initial (keydown) state indication of message F3.

 F10: Subscriber -> Notifier

 SIP/2.0 200 OK
 To: <sip:appl@appsrv.sp.com>;tag=2356
 From: <sip:caller@isp.net>;tag=789
 Call-Id: 321123@appsrv.sp.com
 CSeq: 406 NOTIFY
 Content-Length: 0

 F11: Notifier -> Subscriber

 NOTIFY sip:appl@appsrv.sp.com SIP/2.0
 To: <sip:appl@appsrv.sp.com>;tag=2356
 From: <sip:caller@isp.net>;tag=789
 Call-Id: 321123@appsrv.sp.com
 CSeq: 407 NOTIFY
 Contact: <sip:caller@isp.net>
 Event: key-event
 Content: application/key-event
 Content-Length: xx

 t: 36539672 4
 e: key
 p: key[49].keyup(154, 5141)

Culpepper/Cuninghame/Mule [Page 36]

Internet Draft SIP Key Events Package March 1, 2002

 This notification indicates that the '1' key has been released at
 time 36539672.154. The duration of depression is 5141 milliseconds;
 this value is consistent with the time of depression indicated in
 the (keydown) state indication of message F7.

 F12: Subscriber -> Notifier

 SIP/2.0 200 OK
 To: <sip:appl@appsrv.sp.com>;tag=2356
 From: <sip:caller@isp.net>;tag=789
 Call-Id: 321123@appsrv.sp.com
 CSeq: 407 NOTIFY
 Content-Length: 0

 F13: Subscriber -> Notifier

 SUBSCRIBE sip:caller@access-22.isp.net SIP/2.0
 To: <sip:caller@isp.net>;tag=789
 From: <sip:appl@appsrv.sp.com>;tag=2356
 Call-Id: 321123@appsrv.sp.com
 CSeq: 3 SUBSCRIBE
 Contact: <sip:appl@appsrv.sp.com>
 Event: key-event
 Expires: 0
 Content-Length: 0

 The subscriber indicates it wishes to terminate the subscription.

 F14: Notifier -> Subscriber

 SIP/2.0 200 OK
 To: <sip:caller@isp.net>;tag=789
 From: <sip:appl@appsrv.sp.com>;tag=2356
 Call-Id: 321123@appsrv.sp.com
 CSeq: 3 SUBSCRIBE
 Contact: <sip:caller@isp.net>
 Expires: 0
 Content-Length: 0

 F15: Notifier -> Subscriber

 NOTIFY sip:appl@appsrv.sp.com SIP/2.0
 To: <sip:appl@appsrv.sp.com>;tag=2356
 From: <sip:caller@isp.net>;tag=789
 Call-Id: 321123@appsrv.sp.com
 CSeq: 408 NOTIFY
 Contact: <sip:caller@isp.net>

 Subscription-Expires: 0
 Content-Length: 0

Culpepper/Cuninghame/Mule [Page 37]

Internet Draft SIP Key Events Package March 1, 2002

 As described in [1], the Notifier must always send one NOTIFY
 request in response to any accepted SUBSCRIBE request.

 F16: Subscriber -> Notifier

 SIP/2.0 200 OK
 To: <sip:appl@appsrv.sp.com>;tag=2356
 From: <sip:caller@isp.net>;tag=789
 Call-Id: 321123@appsrv.sp.com
 CSeq: 408 NOTIFY
 Content-Length: 0

18. Security Considerations

 Key-Event Subscriptions are very likely to reveal sensitive
 information such as pin-numbers and destination numbers. Therefore,
 it is REQUIRED that devices accepting SUBSCRIBE requests perform
 some level of authentication before establishing a subscription.
 When such authentication is not provided by the network layer (e.g.,
 IPSEC or private/trusted networks), then it MUST be provided by the
 transport-layer (e.g., TLS) or application-layer (e.g., SIP
 message/header authentication).

 Likewise, the information provided in the NOTIFY request is also
 likely to contain sensitive information and so the Notifier MUST
 ensure that the NOTIFY requests are transported securely. Once
 again, this protection could be provided by the network-layer (e.g.,
 IPSEC encryption or private networks), transport layer (e.g., TLS
 encryption) or application layer (e.g., S/MIME or SIP message body
 encryption).

 Alternatively, it is possible for the Notifier to allow
 unsecured/unauthenticated subscribers to subscribe to key-events
 that will not divulge sensitive information. For instance,
 subscriptions to the "*" and "#" keys should not divulge sensitive
 information but may provide sufficient functionality for some
 3pcc/B2BUA pre-paid calling card applications.

19. IANA Considerations

Section 12 provides the registration information needed to register
 the "application/key-event" MIME type with IANA.

19.1. Key-Event Package Registration

 This document specifies an event package as defined in [2]. The
 following information is specified as required by "SIP-Specific
 Event Notification" [RFC xxxx].

 Package Name: key-events
 Type: package

Culpepper/Cuninghame/Mule [Page 38]

Internet Draft SIP Key Events Package March 1, 2002

 Contact: Robert Fairlie-Cuninghame <rfairlie@nuera.com>, Bert
 Culpepper <bert.culpepper@intervoice-brite.com>, Jean-Francois Mule
 <jf.mule@cablelabs.com>

19.2. Key-Event Sub-Package Registration

 This document defines a Key-Event Sub-Package namespace that should
 be maintained by a centralized coordinating organization. Sub-
 Package names share the same namespace. The following Key-Event
 Sub-Package registration information is specified in anticipation of
 the mechanisms and namespace defined in this document being accepted
 in the IETF.

 Sub-Package Name Contact Reference
 ---------------- ------------ ---------------
 Key [RFC,BC,JFM] [RFC xxxx]
 Keyboard [RFC,BC,JFM] [RFC xxxx]
 Telephone [RFC,BC,JFM] [RFC xxxx]
 User [RFC,BC,JFM] [RFC xxxx]

 People:
 [RFC] Robert Fairlie-Cuninghame <rfairlie@nuera.com>
 [BC] Bert Culpepper <bert.culpepper@intervoice-brite.com>
 [JFM] Jean-Francois Mule <jf.mule@cablelabs.com>

 References:
 [RFC xxxx] B. Culpepper, R. Fairlie-Cuninghame, J. Mule, "SIP Event
 Package for Keys", March 2002.

 Guidelines for registering key event packages with IANA will be
 completed in a future draft revision.

20. Authors

 Robert Fairlie-Cuninghame
 Nuera Communications, Inc.
 50 Victoria Rd
 Farnborough, Hants GU14-7PG
 United Kingdom
 Phone: +44-1252-548200
 Email: rfairlie@nuera.com

 Bert Culpepper
 InterVoice-Brite, Inc.
 701 International Parkway
 Heathrow, FL 32746
 Phone: 407-357-1536
 Email: bert.culpepper@intervoice-brite.com

 Jean-Francois Mule

 Cable Television Laboratories, Inc.
 400 Centennial Parkway
 Louisville, CO 80027-1266
 Phone: 303-661-3708
 Email: jf.mule@cablelabs.com

Culpepper/Cuninghame/Mule [Page 39]

Internet Draft SIP Key Events Package March 1, 2002

21. References

 1 S. Bradner, "The Internet Standards Process -- Revision 3", BCP
9, RFC 2026, October 1996.

 2 A. Roach, "SIP-Specific Event Notification", Internet-Draft
draft-ietf-sip-events-04, February 2002, Work in progress.

 3 M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg, "SIP:
 Session Initiation Protocol", RFC 2543, March 1999.

 4 H. Schulzrinne, S. Petrack, "RTP Payload for DTMF Digits,
 Telephony Tones and Telephony Signals", RFC 2833, May 2000.

 5 R. Mahy, "A Call Control Model for SIP", Internet-Draft, November
 2001, Work in progress.

 6 D. Mills, "Network Time Protocol (Version 3)", RFC1305, March
 1992.

 7 The Unicode Consortium, "The Unicode Standard -- Version 3.0",
 ISBN 0-201-61633-5. Described at

http://www.unicode.org/unicode/standard/versions/Unicode3.0.html

https://datatracker.ietf.org/doc/html/bcp9
https://datatracker.ietf.org/doc/html/bcp9
https://datatracker.ietf.org/doc/html/rfc2026
https://datatracker.ietf.org/doc/html/draft-ietf-sip-events-04
https://datatracker.ietf.org/doc/html/rfc2543
https://datatracker.ietf.org/doc/html/rfc2833
https://datatracker.ietf.org/doc/html/rfc1305
http://www.unicode.org/unicode/standard/versions/Unicode3.0.html

Culpepper/Cuninghame/Mule [Page 40]

