
Network Working Group Z. Czirkos
Internet-Draft G. Hosszu
Expires: March 4, 2008 BME EET
 Sept 2007

The Komondor Peer to Peer Security System
draft-czirkos-komondor-p2p-security-01

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on March 4, 2008.

Copyright Notice

 Copyright (C) The IETF Trust (2007).

Czirkos & Hosszu Expires March 4, 2008 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft The Komondor Peer to Peer Security System Sept 2007

Abstract

 This memo presents Komondor, an experimental peer-to-peer security
 system. Komondor is a network intrusion detection system. Hosts
 running this software organize themselves automatically in an overlay
 network, where they share information about intrusion attempts they
 detect. This way the security of all participants is increased, as
 they are able to prepare for some of the attacks in advance.

 The overlay created is a peer-to-peer network, which is completely
 decentralized. This communication model ensures stability, and by
 using this the system remains operational over an unstable network.

Czirkos & Hosszu Expires March 4, 2008 [Page 2]

Internet-Draft The Komondor Peer to Peer Security System Sept 2007

Table of Contents

1. Introduction . 4
2. The Structure of the Overlay 5
2.1. Overview . 5
2.2. The Structure . 5
2.3. The Lookup Procedure 6

3. Intrusion Detection . 7
3.1. Description of an Intrusion Attempt 7
3.2. Analysis of Reports 8
3.3. Report Example . 8

4. Centralized Logging . 10
5. Protocol Specification . 11
5.1. Transport Protocol . 11
5.2. Message Format . 11
5.3. Reliable Communication 12
5.4. Hashing Algorithm . 12
5.5. Message Details . 14
5.5.1. Acknowledgement Message 14
5.5.2. Ping Message . 14
5.5.3. Quit Message . 15
5.5.4. Findnode Message 15
5.5.5. Peer Message . 15
5.5.6. Attack Message . 16
5.5.7. Protection Message 17
5.5.8. Announce Message 17
5.5.9. Statistics Message 18

6. Configuration Parameters of the Komondor System 20
6.1. Replication Factor . 20
6.2. Intrusion Detection and Protection 20
6.3. Timing of Intrusion Detection 20
6.4. Protection Methods . 21
6.5. Overview of Configuration Parameters 21

7. Security Considerations 22
8. Implementation Details . 23
8.1. Communication over UDP 23
8.2. Kademlia Binary Tree 23
8.3. Usage of the Overlay 23

9. References . 24
 Authors' Addresses . 25
 Intellectual Property and Copyright Statements 26

Czirkos & Hosszu Expires March 4, 2008 [Page 3]

Internet-Draft The Komondor Peer to Peer Security System Sept 2007

1. Introduction

 This memo describes Komondor, a peer-to-peer based collaborative
 security system [2].

 Komondor is a host security software, which is able to detect
 network-sized intrusion attempts. Hosts running this software share
 information about detected intrusion attempts, for example by
 exchanging suspicious IP addresses. This way the security of all
 entities is increased, as they are able to prepare for the attacks in
 advance. The heterogenity of hosts in such a network also increases
 security, as different operating system and software versions are
 vulnerable to different kinds of attacks.

 Komondor entities organize themselves into a peer-to-peer network,
 where every entity is responsible for collecting and analyzing data.
 This network model has no central server, and therefore it can remain
 operational on the unstable network. A centralized model would be
 completely unfeasible for such an application, as an intruder
 attacking the central server would shut down the intrusion detection
 network completely.

 The Komondor system implements a Distributed Hash Table (DHT). In
 the overlay network, every Komondor entity (node) is assigned a
 unique identifier, a nodeID, which is a 32-bit number. The source IP
 address of every attacker identified is hashed with a hash function
 similar to SHA-1, which also results in a 32-bit number. Every node
 stores reports, which have a hash value close to its identifier.
 This way reports of the same attacker are collected by a single node,
 so it is able to analyze them to detect network-size attacks.

 If an IP address becomes suspicious, the entity collecting and
 analyzing its data issues a broadcast message in the overlay,
 alerting every other nodes. This way they can prepare their
 protection systems in advance, expecting the same attacker.

Czirkos & Hosszu Expires March 4, 2008 [Page 4]

Internet-Draft The Komondor Peer to Peer Security System Sept 2007

2. The Structure of the Overlay

2.1. Overview

 The Komondor intrusion detection system is built over an overlay
 network, which is similar to Kademlia [1].

 Kademlia is a distributed hash table (DHT), which is using the XOR
 metric. In the DHT, every node has a unique identifier, which is a
 32-bit number for Komondor. Information to be stored must be in a
 key/value format. Here the key is the IP address of the attacker,
 and the value is a report of an intrusion attempt detected.

 When storing information in the overlay, a node uses a hash function
 to generate a 32-bit number from the key. (Note that this number is
 the same size as the node identifiers.) The report is then sent to
 the node which has its identifier closest to the hashed value. The
 distance is calculated using the XOR function.

 There is no routing defined in the overlay network. It is merely
 used to let nodes discover each other, e.g. to find out the IP
 address and port number of the participators. Once the destination
 of the message is known, the reports of intrusion attempts detected
 can be sent directly to it.

2.2. The Structure

 This section describes the structure of the Komondor overlay network,
 which is very similar to Kademlia.

 When joining the overlay, every node chooses a random 32-bit nodeID,
 which will essentially be its address in the application level
 network. The purpose of the overlay is to help nodes find out the
 Internet address of each other in logarithmically many steps.

 Nodes in Kademlia are leaves of a binary tree. Each node's position
 is determined by the shortest unique prefix in its nodeID. For any
 given node, the tree is divided into successively smaller subtrees,
 which do not contain the node. For node 0011, these subtrees are
 prefixed by the numbers 1, 01, 000 and 0010. These prefixes can be
 acquired by leaving the first n bits of the address untouched, then
 inverting the following bit. The tallest common subtree for node
 0011 is 0xxx, therefore the neighbouring subtree is 1xxx. The second
 smallest is 00xx, therefore the neighbouring subtree is 01xx, and so
 on.

 Nodes in the overlay are required to know at least one node in each
 subtree they belong to. If this is achieved, every node can be

Czirkos & Hosszu Expires March 4, 2008 [Page 5]

Internet-Draft The Komondor Peer to Peer Security System Sept 2007

 located by knowing its nodeID. Distance between two nodes (or a
 hashed value and an identifier) is calculated using the XOR function.
 Note that this effectively describes the binary tree representation
 of the system presented above, as a larger number will indicate a
 shortest common prefix of nodeID's.

 Every node should maintain a list of other nodes in the overlay it is
 aware of. For the system to be scalable, these list is handled using
 the binary tree. Every subtree is assigned a fixed length list of
 nodes. The members of such a list are IP address, port number,
 nodeID triplets. Kademlia calls these lists k-buckets, and refers to
 their maximum size as k [1].

 Nodes of a Komondor system can quit unexpectedly, because of having
 network errors or being under heavy attack. Therefore the system-
 wide configuration parameter k must be chosen big enough to ensure
 that not too many nodes leave the network, before all k-buckets of
 another one become empty (i.e. they contain only dead connection
 information). For the highest subtrees, which contain the closest
 nodes for a given node, these lists will be usually empty, as no
 appropriate nodes exist.

 K-buckets are to be propagated by two means. First, peer messages
 can contain addresses of other nodes in the overlay. Second, when a
 node receives a message, the source address and port can also be
 remembered.

2.3. The Lookup Procedure

 To find the IP address and port number of a participator with a
 specific nodeID, a node should initiate a recursive lookup procedure.

 Every node manages its own lookup procedures. Such a procedure
 consists of successive find node messages. It is started with
 sending a find node message to the closest node to the destination.
 The distances between the desired nodeID and the known IDs are
 calculated using the XOR function. As every node has greater
 knowledge of its surroundings, the reply will contain peer messages
 with addresses of nodes even closer. Then the initiator can issue
 another find node message.

 A lookup is complete, when the k closest nodes to the destination
 address have been queried. As the Internet address of the
 destination is known at this point, more reports about the same
 attacker can easily be sent at once.

Czirkos & Hosszu Expires March 4, 2008 [Page 6]

Internet-Draft The Komondor Peer to Peer Security System Sept 2007

3. Intrusion Detection

 This section describes the intrusion detection used by a Komondor
 overlay.

 The detection scenario can be summarized as follows. When a member
 of the overlay detects a suspicious event, it notes the IP address of
 the intruder. This IP address is hashed using the hash function used
 by all nodes. The result is a 32-bit number, which is treated as a
 nodeID, and looked up in the overlay. The report about the detected
 event is the sent to the specific node by an attack message.

 The same hash function is used by all nodes, so report about the same
 attacker will be collected by a single node, no matter which nodes
 the events were detected by. The collector node is then able to
 summarize and analyze the reports. If the reports indicate an
 intrusion attempt, the collector initiates a broadcast message among
 nodes, which is called a protection message. This message contains
 the IP address of the attacker, against which nodes should take their
 own protective steps.

 Nodes are free to use their own means of intrusion detection and
 protection. One example for this is to monitor system log files for
 detection, and to configure a firewall for protection. Mandatory
 tasks for nodes is to report suspicious events, and to forward
 broadcast messages, as described by the Komondor protocol.

3.1. Description of an Intrusion Attempt

 Suspicious events detected do not necessarily indicate a real
 intrusion attempt. The common example for this is a mistyped
 password during an authentication. Every event which is reported
 should be therefore assigned a number, which denotes its importance.

 The parameters in a report are therefore:

 IP address: The IP address of the attacker.

 Importance: The weight of the event, which is a number between 0 and
 100.

 Event type: The name of the event. For statistical purposes.

 Detector: The host name of the node which detected the event. For
 statistical purposes.

Czirkos & Hosszu Expires March 4, 2008 [Page 7]

Internet-Draft The Komondor Peer to Peer Security System Sept 2007

3.2. Analysis of Reports

 Every node is responsible for collecting and analyzing reports
 received. Each report is to be remembered for one hour. Records
 older than one hour are to be deleted.

 An index should be calculated for every IP address which is suspected
 to be an attacker. This index is a summation of importance values
 seen in the reports, which are decreased with time. The importance
 of one report is:

 importance = reported importance * (3600s - report age),

 where the age of the report is the time that has elapsed since the
 report was received by the collector. Reports are expected to be
 received in a few seconds, so the current protocol does not require
 nodes to timestamp their reports.

 These decreased importance values are then summed up. The index
 should be recalculated every minute, or when a new report is received
 for an IP address. If the sum of these increases above 100, the
 collector node must initiate a broadcast message, signalling other
 nodes to prepare their protection against the attacker.

 The protection message contains the IP address of the attacker. Each
 protection message is valid for twenty minutes. After that period,
 if the index for an attacker is still above 100, the collector node
 should initiate another broadcast.

 As the importance values of each reports are summed up, nodes are
 free to summarize more events in a short time, of the same type and
 same attacker, in a single report. This reduces the network traffic
 induced. The short time interval should not exceed ten seconds,
 however, as that would possibly degrade detection efficiency. Nodes
 are also allowed to analyze their own reports, and initiate a
 protection broadcast message, if required. In either case, the
 reports must always be sent to the collector.

3.3. Report Example

 The importance indices for events can be freely chosen, when
 implementing and configuring a Komondor node. The specific value can
 be estimated by keeping the the 100-point limit in mind. For
 example, a failure of a user name and password type authentication
 can be assigned the importance of 40 points. This will allow users
 to mistype their password twice, and only the third failure will
 initiate the protection. The event type for this can be
 ssh_password_failed, for example.

Czirkos & Hosszu Expires March 4, 2008 [Page 8]

Internet-Draft The Komondor Peer to Peer Security System Sept 2007

 Events which indicate an attack on their own can be assigned an
 importance of more than 100 points. For example, an Internet worm
 attack can have the type slammer_worm, and importance 120.

Czirkos & Hosszu Expires March 4, 2008 [Page 9]

Internet-Draft The Komondor Peer to Peer Security System Sept 2007

4. Centralized Logging

 The Komondor system supports logging statistical data about detected
 intrusion attempts.

 Reports about the same attacker are always collected by a single node
 in the system. When the attack seems to be over, that is to say, the
 last report about the specific attacker times out, the collector node
 is allowed to send a summary about the attack types and detectors of
 the event.

 This procedure is not a vital part of the workings of the system.
 The logging works in a centralized way. The node collecting
 statistical data (apart from the fact that it is a completely
 functional Komondor node) is assigned the application level network
 address 0x00000001, instead of the normal randomly choosen address
 used by other nodes. There can be only one logging node in a
 Komondor overlay. Nodes in the system use the normal lookup
 procedure with address 0x00000001 to find out the IP address of the
 logging node.

 The statistical report of the intrusion attempt contains the
 following data:

 IP address: The IP address of the attacker.

 Interval: The time interval of the intrusion attempt, from the first
 to the last event detected.

 Event types: The list of all event types detected.

 Detectors: The host names of all nodes which detected the specific
 attacker.

 Protection: If the protection was successful for some node.

 Most of this information is valuable only to the network
 administrator who configured the Komondor nodes on his network, as
 the name of event types, and host names are assigned by him.

 The last parameter named "protection" will show if the protection
 against the attacker was successful for some node. The availability
 of this information depends on the means of th protection. For
 example, a firewall can be configured to log dropped packets, and
 that way the node will know if it is still under attack. This
 enables network administrators to determine the efficiency of the
 system.

Czirkos & Hosszu Expires March 4, 2008 [Page 10]

Internet-Draft The Komondor Peer to Peer Security System Sept 2007

5. Protocol Specification

 The protocol described here is used between two Komondor entities.

5.1. Transport Protocol

 Komondor nodes must use UDP for communication. Currently, nodes are
 free to choose any port number. However, they must use the same port
 number for incoming and outgoing messages. This allows the k-buckets
 to be propagated by checking the remote address and port number of
 messages. For example, if a node receives a message with remote
 address 192.0.2.92:1705, it can send its reply to this address as
 destination.

5.2. Message Format

 The protocol is based on set of codes which are composed of eight
 bits (an octet), and uses the ASCII character set. Messages are
 essentially text lines, which consist of a node identifier, a message
 identifier, a command and optional parameters.

 Each message is prefixed by the nodeID of the sender. This
 identifier is expressed as a minimum of one, a maximum of eight
 hexadecimal digits, representing the 32-bit identifier. This is used
 to assign nodeID's to socket addresses, and to detect if a node is
 restarted.

 The second prefix of the message is also a 32-bit hexadecimal number
 in ASCII code. This is a random number which should be unique for
 each different message sent. As UDP does not guarantee message
 delivery, this number is used to implement a reliable communication
 channel.

 Each message is encapsulated in its own UDP packet (datagram), so
 there is no delimiter used between them.

 The BNF representation for the message is:

 message ::= <nodeID> <SPACE> <messageID> <SPACE> <command>
 [parameters]

 nodeID ::= <hex digit> { <hex digit> }

 messageID ::= <hex digit> { <hex digit> }

Czirkos & Hosszu Expires March 4, 2008 [Page 11]

Internet-Draft The Komondor Peer to Peer Security System Sept 2007

 command ::= <letter> { <letter> }

 SPACE ::= ' '

 parameters ::= { <SPACE> <any non-empty sequence of octects, not
 including SPACE> }

5.3. Reliable Communication

 As UDP does not guarantee reliable message delivery, each message
 contains a messageID mentioned above. This message identifier is a
 32-bit random number. When a node receives a message, it must reply
 with an acknowledge, unless the messageID is zero. The parameter of
 the acknowledgement is the messageID of the message which it
 acknowledges. The own messageID of the acknowledgement must be zero
 to prevent infinite loops.

 Unacknowledged messages should be resent to their destination. If
 there is no reply from the node, the connection is to be considered
 dead.

 Packet loss of acknowledgement messages can result in message
 duplicates. For this reason, every node should maintain a list of
 recently seen messages, to prevent processing it more than once.
 This list of seen messages should contain the messageID's received in
 the last minute.

5.4. Hashing Algorithm

 Komondor uses a modified version of SHA-1 algorithm, which processes
 ASCII strings with a maximum length of 64 bytes. The IP addresses of
 attackers are hashed as strings with the algorithm presented below.

 This is a C language implementation of the SHA-1 algorithm used by
 Komondor. It can be used for little-endian machines. uint32 is
 assumed to be a 32-bit unsigned integer type.

 #define S(x,n) (((x) << (n)) | (((x) & 0xFFFFFFFF) >> (32 - (n))))
 IDENTIFIER p2p_hash_string (const char *string)
 {
 /* rotating left an uint32 */

 uint32 w[80];
 uint32 h0, h1, h2, h3, h4;
 uint32 a, b, c, d, e;
 int i;

 h0 = 0x67452301;

Czirkos & Hosszu Expires March 4, 2008 [Page 12]

Internet-Draft The Komondor Peer to Peer Security System Sept 2007

 h1 = 0xEFCDAB89;
 h2 = 0x98BADCFE;
 h3 = 0x10325476;
 h4 = 0xC3D2E1F0;

 /* copy 64bytes max to w, rest filled with 0 */
 memset (w, sizeof(w), 0);
 strncpy ((char *)w, string, 64);

 /* Extend the sixteen 32-bit words (64 bytes)
 into eighty 32-bit words */
 for (i=16; i<80; i++)
 w[i] = S(w[i-3] ^ w[i-8] ^ w[i-14] ^ w[i-16],1);

 /* Initialize hash value */
 a = h0;
 b = h1;
 c = h2;
 d = h3;
 e = h4;

 /* Main loop */
 for (i=0; i<80; i++) {
 uint32 temp, f, k;
 if (i <= 19) {
 f = (b & c) | ((~b) & d);
 k = 0x5A827999;
 }
 else if (i >= 20 && i<= 39) {
 f = b ^ c ^ d;
 k = 0x6ED9EBA1;
 }
 else if (i >= 40 && i<= 59) {
 f = (b & c) | (b & d) | (c & d);
 k = 0x8F1BBCDC;
 }
 else { /* i >= 60 */
 f = b ^ c ^ d;
 k = 0xCA62C1D6;
 }

 temp = S(a,5) + f + e + k + w[i];
 e = d;
 d = c;
 c = S(b,30);
 b = a;
 a = temp;
 }

Czirkos & Hosszu Expires March 4, 2008 [Page 13]

Internet-Draft The Komondor Peer to Peer Security System Sept 2007

 /* Add this chunk's hash to result so far */
 h0 = h0 + a;
 h1 = h1 + b;
 h2 = h2 + c;
 h3 = h3 + d;
 h4 = h4 + e;

 /* Komondor uses 32bit identifiers,
 so we xor the five 32-bit */
 return h0 ^ h1 ^ h2 ^ h3 ^ h4;
 }

5.5. Message Details

 This section lists all messages which must be or should be
 implemented by Komondor entities. Every subsection describes a
 message and its parameters.

 The parameters are usually encoded as ASCII strings, and they are
 fixed in order.

5.5.1. Acknowledgement Message

 Command: ack

 Parameters: <messageID>

 This message should be the first immediate answer to any message
 received. The purpose of this is to implement reliable communication
 over UDP. The parameter should contain the messageID of the message
 received, which is acknowledged by this line.

 One exception for sending acknowledgements is when the messageID
 received is zero (0). Also, the messageID of the acknowledgement
 message should be zero to prevent infinite loops.

 Example: 78ae56cd 0 ack 12983efa

 Node 78ae56cd acknowledges message 12983efa.

5.5.2. Ping Message

 Command: ping

 Parameters: none

 This message tests if a connection is alive. The reply is the
 acknowledgement message described in the section above. Note that

Czirkos & Hosszu Expires March 4, 2008 [Page 14]

Internet-Draft The Komondor Peer to Peer Security System Sept 2007

 every message with a messageID other than zero generater an
 acknowledgement, not only the ping command.

5.5.3. Quit Message

 Command: quit

 Parameters: none

 This message informs its destination node, that the source node is
 intending to leave the overlay. The receiver should delete the
 connection from its k-buckets.

5.5.4. Findnode Message

 Command: findnode

 Parameters: identifier

 This message requests the destination to send the list of other nodes
 which it is aware of. The destination should reply with a peer
 message, containing connection information to other nodes. Those
 nodes must be closest ones to the identifier in XOR space, which the
 destination is aware of. The list is essentially a k-bucket, or
 information about nodes from several k-buckets, if the bucket in
 question did not contain at least k nodes [1].

 Example: 78ae56cd 39fa9912 findnode 98be1f7d

 Node 78ae56cd queries one of its neighbors about other nodes, which
 have identifiers close to 98be1f7d. The neighbor will answer this
 request with a peer message, containing k-bucket.

5.5.5. Peer Message

 Command: peer

 Parameters: <ipaddress:port> { ipaddress:port }

 This message contains the Internet address of one or more nodes. It
 is a reply to a findnode message. The IP address is to be expressed
 in dot notation as decimal numbers (for example 192.0.2.4). The port
 number must also be a decimal number.

 Example: 78ae56cd 2795aef5 peer 192.0.2.4:1232 192.0.2.9:1892

 Node 78ae56cd informs the receiver of the message about other nodes,
 reachable at 192.0.2.4:1232 and 192.0.2.9:1892.

Czirkos & Hosszu Expires March 4, 2008 [Page 15]

Internet-Draft The Komondor Peer to Peer Security System Sept 2007

5.5.6. Attack Message

 Command: attack

 Parameters: <ip> <importance> <hostname> <rulename{,rulename}>
 <protected>

 This message is a report of an intrusion attempt detected. The
 parameters have their meanings as follows:

 ip: first one, most important is the IP address of the attacker in
 dot notation, 192.0.2.107 for example.

 importance: the second parameter represents the importance of the
 event, and is a decimal number.

 hostname: The third is the name of the host which detected the
 attack (a string of any printable characters except space).

 rulename: This is the name of the attack type (also printable, non-
 whitespace characters).

 protected: This should be 1, if the protection is already active
 against this attacker, 0 otherwise.

 The third, fourth and fifth parameters serve statistical purposes
 only.

 The receiver of this message is a node selected by the DHT to collect
 information about the specific attacker. It should sum up the
 indexes of each event reported, and if the total is greater than 100,
 initiate a broadcast procedure to inform entities in the overlay
 about an undergoing attack.

 The last parameter allows the collector node to estimate the
 effectiveness of the system.

 Komondor entities are allowed to send information about more events
 in a single message. In this case, the importance indexes must be
 summed up. If there are different rule names, they must be separated
 by the comma (,) character. As the importance of each detection
 decreases with time, multiple events are only allowed to be sent in
 one message, if the interval between their detection is not longer
 than 10 seconds.

 Example: 78ae56cd 9efc56e1 attack 192.0.2.107 40 jutas
 ssh_invalid_password 0

Czirkos & Hosszu Expires March 4, 2008 [Page 16]

Internet-Draft The Komondor Peer to Peer Security System Sept 2007

 Node 78ae56cd with host name jutas detected an intrusion attempt from
 192.0.2.107. The event detected was an invalid password in an ssh
 session, and the severity of it is 40 points. Protection against the
 attacker at 192.0.2.107 was inactive at the time of the detection.
 Note that detection can be still possible with an active protection,
 for example by checking firewall log files.

5.5.7. Protection Message

 Command: protect

 Parameters: <ip address>

 When a suspicious IP address reaches the 100 point limit, it is
 considered an attacker. The Komondor entity collecting the reports
 belonging to the IP address must initiate a broadcast message in the
 overlay, informing other entities about the possibility of further
 intrusion attempts. The broadcast is initiated by sending the
 protection message to all its known neighbours.

 Every node receiving a protection message must check if it has
 recently (in one minute) received a protection message regarding the
 same attacker. If not, it must forward the message to all its known
 neighbours.

 The node collecting reports and initiating the broadcast message must
 also check if the points of the attacker did not decrease below the
 limit of 100 points in ten minutes. If this is the case, the
 broadcast must be resent. Therefore the nodes of the overlay are
 periodically informed about possible attackers, in every ten minutes.

 Example: 78ae56cd 57ab9ef1 protect 192.0.2.107

 Node 78ae56cd collected enough reports about events from 192.0.2.107,
 and it is now considered an attacker.

5.5.8. Announce Message

 Command: announce

 Parameters: <nodeID> <hostname> { attacker,index }

 Implementing this message is optional, but recommended. The purpose
 of this is to enable the central logging entity to monitor the state
 of the overlay, and the information that is stored in the hash table.
 Each entity should send an announce message to the logging server
 periodically. The first parameter of the message is its nodeID as
 hexadecimal digits, and the second one is its name (a string of

Czirkos & Hosszu Expires March 4, 2008 [Page 17]

Internet-Draft The Komondor Peer to Peer Security System Sept 2007

 printable, non-whitespace characters).

 Example: 78ae56cd 1731eacb announce 78ae56cd buda 192.0.2.107,45

5.5.9. Statistics Message

 Command: stat

 Parameters: <first detection> <last detection> <attacker>
 <detectors> <rules> <max susp> <success>

 This message is sent from a data collector entity to the central
 logging server, when the reports of the attack become outdated. It
 is not mandatory, but recommended behaviour, as the statistics
 provide useful information about attackers and the usefulness of the
 entire overlay.

 Parameters of this message are:

 First detection: the time of the first detection in Unix time format
 (seconds since 1970-01-01 00:00:00 UTC), expressed as a decimal
 number.

 Last detection: the time of the last event detected, in Unix time
 format.

 Attacker: the IP address of the attacker, in dot notation
 (192.0.2.107).

 Detectors: a comma separated list of names of hosts which detected
 this attacker.

 Rules: a comma separated list of types of attacks, which were
 detected from this attacker.

 Importance: the maximum event importance index which was calculated.

 Success: a 0 or 1 value indicating if the protection was successful,
 that is, an event was detected when the protection was already
 active. For example, the node detected further activity from the
 attacker by examining the firewall log files.

 Example: 78ae56cd 1731eacb stat 1183394505 1183475323 192.0.2.107
 nemere,buda sshd_invalid_password,sshd_unknown_user 290 1 Node
 78ae56cd sends statistics about attacker at 192.0.2.107. The first
 event was detected at 1183394505, and the last one at 1183475323.
 Nodes with host name nemere and buda were the ones who detected this
 attacker, and the types of the events were invalid passwords and

Czirkos & Hosszu Expires March 4, 2008 [Page 18]

Internet-Draft The Komondor Peer to Peer Security System Sept 2007

 unknown user names sent to the ssh service. The maximum importance
 points of the attack at the full interval was 290. The protection
 was successful against the attacker for at least one of the detector
 hosts: it was already aware of this attacker when it detected some
 activity from it.

Czirkos & Hosszu Expires March 4, 2008 [Page 19]

Internet-Draft The Komondor Peer to Peer Security System Sept 2007

6. Configuration Parameters of the Komondor System

6.1. Replication Factor

 The replication factor is defined in Section 2.2, and is referred to
 as k, the size of k-buckets in the Kademlia overlay.

 It has two important effects on the workings of the overlay. As the
 size of the k-buckets, it determines the number of nodes a specific
 node is aware of, in every subtree of the overlay. The number must
 be high enough to maintain the stability of the overlay, as nodes
 under attack can even disappear from the network.

 It also determines, who many nodes an attack message is to be sent
 to, that is to say, reports of intrusion attempts detected are
 replicated at different nodes of the overlay. Increasing replication
 increases network traffic, but makes the overlay and detection more
 reliable. A recommended value is between 3 and 5 for smaller
 networks. The original Kademlia paper chooses 20, which should be
 enough for an overlay with tens of thousands of nodes [1].

6.2. Intrusion Detection and Protection

 Currently, Komondor implementations are encouraged to use their own
 ways of intrusion detection and protection. This is unlikely to
 change in the future, as it would limit the portability of the
 system, and collaboration of Komondor nodes running on different
 platforms.

 This is why the names of attack types in the attack messages serve
 informational and statistical purposes only (see Section 5.5.9 and

Section 5.5.6.) The parameters having direct effect on the workings
 of an overlay are the event importance indexes in messages. As
 different platforms have different vulnerabilities, this is not
 operating system independent, either. Implementations are currently
 advised to set the importance indexes assigned to different events
 reasonably. A suspicious IP address collecting 100 points is
 considered an attacker by Komondor entities. Therefore, a failed
 login should be assigned 40 points for example, allowing for two
 mistyped passwords before the protection mechanisms would become
 active at the third failed attempt.

6.3. Timing of Intrusion Detection

 Reports of intrusion attempts detected are sent to Komondor entities
 chosen using their nodeID's. Received reports are collected, and the
 importance is calculated. Importance points should decrease
 linearly, according to the formula described in Section 3.2. The

Czirkos & Hosszu Expires March 4, 2008 [Page 20]

Internet-Draft The Komondor Peer to Peer Security System Sept 2007

 time the importance of each report decreases to zero is also a
 configuration parameter of the detection. Increasing this interval
 increases the sensitivity of intrusion detection, but also increases
 the possibility of false alarms.

6.4. Protection Methods

 Possible methods for protection are platform-dependent. The current
 protocol specification enables Komondor implementations to exchange
 information about IP addresses belonging to possible attackers. One
 possible way of protection against them is using the firewall of the
 host running the Komondor entity. However, implementations are free
 to use any other method.

 Suspicious IP addresses, which collect 100 points, are treated as
 attackers. If a Komondor entity collected enough intrusion attempt
 reports about an attacker, and the sum of the indexes reach the 100
 point limit, the entity is required to broadcast a protection message
 using the overlay, as described in Section 5.5.7. This message
 should be resent every 10 minutes, until the collected points drop
 below the limit.

6.5. Overview of Configuration Parameters

 The following table gives an overview of configuration parameters
 used in a Komondor overlay. It also shows their recommended values.

 Replication factor (k) 3
 Protection limit 100
 Protection message resend 10 minutes
 Attack report lifetime 20 minutes
 Interval to remember 1 minute
 seen messageID's
 Interval between detected 10 seconds
 events which can be sent
 in one message

 The first four parameters directly affect the behavior of the overlay
 and the intrusion detection. The recommended practice is to have
 these parameters be adjustable through a configuration file.

Czirkos & Hosszu Expires March 4, 2008 [Page 21]

Internet-Draft The Komondor Peer to Peer Security System Sept 2007

7. Security Considerations

 The current version of the Komondor protocol does not describe
 authentication among nodes.

 A misbehaving Komondor node does not cause a possibility of
 information leak for the hosts of the overlay. It may, however,
 present false attack reports. This might cause denial of service to
 the IP addresses which are reported as attackers.

 Another harm a misbehaving Komondor node can do is that is simply
 ignores attack reports it receives, thereby not alerting other nodes
 about possible dangers. This problem can be solved by using
 replication.

Czirkos & Hosszu Expires March 4, 2008 [Page 22]

Internet-Draft The Komondor Peer to Peer Security System Sept 2007

8. Implementation Details

 This section contains useful information which can be used when
 implementing the Komondor system.

8.1. Communication over UDP

 The current implementation of the Komondor system identifies nodes by
 their IP address:port numbers and nodeID's. Nodes are required to
 use the same port number with their outgoing messages, as the port
 number they are receiving UDP packets at. That is to say, a node
 which is reachable at UDP address 192.0.2.99:2001, must send its
 messages with source address 192.0.2.99:2001. This can easily be
 implemented by using the same socket and file descriptor for sending
 and receiving packets, on any operating system using the BSD sockets
 interface.

8.2. Kademlia Binary Tree

 As described in Section 2.2, the Kademlia overlay organizes nodes to
 a binary tree. This is not a real topology, but rather a reasonable
 way for each node to store information about other nodes it is aware
 of.

 Every node is required to have detailed knowledge about its
 surroundings in the DHT address space. More specifically, every node
 maintains a list of other nodes for every successively smaller
 subtree of the overlay, which it does not reside in. The size of
 these lists, the k-buckets, is fixed, and it is referred to as k. As
 it is described in the original paper [1], the most reasonable way to
 implement this is using a binary tree of lists for storing connection
 data. The program starts off with one single list, and as it gains
 knowledge about other nodes, the single list is split into multiple
 lists, arranged in the binary tree.

 Kademlia advises the k-buckets to be sorted by the time the nodes
 were last seen. This is unnecessary for Komondor, when implementing
 an intrusion detection system over the DHT.

8.3. Usage of the Overlay

 The Komondor overlay is best used on a local area network, as it is
 unlikely for the same intruder to attack hosts at different
 locations, due to the big number of Internet addresses.

Czirkos & Hosszu Expires March 4, 2008 [Page 23]

Internet-Draft The Komondor Peer to Peer Security System Sept 2007

9. References

 [1] Maymounkov, P. and D. Mazieres, "Kademlia: A peer-to-peer
 information system based on the xor metric",
 <http://citeseer.ist.psu.edu/maymounkov02kademlia.html>.

 [2] Czirkos, Z., "Komondor Security System - the home page of a
 sample implementation with dynamic monitoring of the overlay",
 <http://jutas.eet.bme.hu>.

 [3] Czirkos, Z., Hosszu, G., and F. Kovacs, "E-Collaboration
 Enhanced Host Security", Encyclopedia of E-Collaboration, edited
 by Ned Kock, Information Science Reference, Hershey, USA, 2007,
 ISBN: 978-1-59904-000-4.

 [4] Czirkos, Z. and G. Hosszu, "Peer-to-Peer Methods for Operating
 System Security", Encyclopedia of Networked and Virtual
 Organizations, edited by Goran D. Putnik and Maria Manuela
 Cunha, Information Science Reference, Hershey, USA, 2007, ISBN:
 978-1-59904-885-7.

http://citeseer.ist.psu.edu/maymounkov02kademlia.html
http://jutas.eet.bme.hu

Czirkos & Hosszu Expires March 4, 2008 [Page 24]

Internet-Draft The Komondor Peer to Peer Security System Sept 2007

Authors' Addresses

 Zoltan Czirkos
 BME EET
 Goldmann Gy. ter 3.
 Budapest H-1111
 Hungary

 Phone: +36 1 463 4034
 Email: czirkos@nimrud.eet.bme.hu

 Gabor Hosszu
 BME EET
 Goldmann Gy. ter 3.
 Budapest H-1111
 Hungary

 Phone: +36 1 463 2724
 Email: hosszu@nimrud.eet.bme.hu

Czirkos & Hosszu Expires March 4, 2008 [Page 25]

Internet-Draft The Komondor Peer to Peer Security System Sept 2007

Full Copyright Statement

 Copyright (C) The IETF Trust (2007).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgment

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Czirkos & Hosszu Expires March 4, 2008 [Page 26]

