
Workgroup:

Operations and Management Area Working Group

Updates: RFC8907 (if approved)

Published: 2 June 2022

Intended Status: Informational

Expires: 4 December 2022

Authors: T. Dahm D. Gash

Cisco Systems, Inc.

A. Ota J. Heasley

NTT

TACACS+ Security and SSH Public Keys

Abstract

The TACACS+ Protocol [RFC8907] provides device administration for

routers, network access servers and other networked computing

devices via one or more centralized servers. This document, a

companion to the TACACS+ protocol [RFC8907], adds new packet formats

to improve security and function and support for SSH [RFC4716]

public keys.

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

[BCP14] when, and only when, they appear in all capitals, as shown

here.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 4 December 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfcRFC8907
https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Technical Definitions

2.1. AVP

2.2. Empty Value

2.3. Peer

3. TACACS+ Extended Authentication Packet Types

3.1. The Extended Authentication START Packet Body

3.2. The Extension Authentication REPLY Packet Body

3.3. The Extended Authentication CONTINUE Packet Body

4. SSH

4.1. New Enumerated TACACS+ Protocol Values and well-known AVPs

4.2. SSH Public Key Support

4.3. SSH Authorization and Accounting

5. Protocol Deprecations

6. Security Considerations

6.1. SSH Public Key Caching

7. Acknowledgments

8. Normative References

9. Informative References

Authors' Addresses

1. Introduction

The TACACS+ Protocol [RFC8907] provides device administration for

routers, network access servers and other networked computing

devices via one or more centralized servers. The protocol provides

authentication, authorization and accounting services for TACACS+

clients.

Authors of [RFC8907] and network operators have expressed interest

in deprecating a few antiquated protocol features, addressing a

limitation of authentication policy, and adding support for SSH

public keys. These are addressed herein.

To improve security and functionality of applying policy to the

authentication process in a TACACS+ Session, new authentication

packet formats are introduced that are uniform to authorization and

¶

¶

¶

https://trustee.ietf.org/license-info

accounting. For SSH authentication using public keys, highly desired

by the operator community, this document introduces a method to

support sending public keys to a TACACS+ client, allowing

centralized management.

2. Technical Definitions

The Technical Definitions section of the TACACS+ Protocol [RFC8907]

is fully applicable here and will not be repeated, though may be

augmented. The following terms are also used in this document.

2.1. AVP

An Attribute-Value Pair or AVP is another name a TACACS+ argument as

defined in [RFC8907] Sections 6.1 and 8.

2.2. Empty Value

An empty or zero-length value of an AVP as defined in [RFC8907]

Sections 8.1.

2.3. Peer

This refers to a TACACS+ Server or Client.

3. TACACS+ Extended Authentication Packet Types

Versions 1 and 2 of the TACACS+ Protocol, as defined in [RFC8907],

specify the TACACS+ Authentication Packets for START, REPLY and

CONTINUE which support the credential validation use case but does

not accommodate any further augmentation which may be used to give

context to the request.

Further, advanced use cases (such as SSH key distribution) would

otherwise rely on embedding structured information into the single

data fields, thus obfuscating the content of the protocol, can

instead augment the arguments.

To support these use cases, and allow clients to add environment

information to the request, the Extended Authentication Packets

brings the Authentication phase of the protocol inline with the

Authorization and Accounting Phase by incorporating extensible

argument s.

The server should expect Extended Authentication Packet Bodies if

the minor version in the Packet Header is: 0x2

¶

¶

¶

¶

¶

¶

¶

¶

¶

3.1. The Extended Authentication START Packet Body

Figure 1

The action, priv_level, authen_type, authen_service, user_len,

port_len, rem_addr_len, data_len, user, port, rem_addr and data

fields are used exactly as defined in the Authentication START

Packet Body in [RFC8907].

The following fields contain the arguments that may be used to

extend the authentication process. These are common to the Extended

Authentication START, Extended Authentication REPLY, and Extended

Authentication CONTINUE packet bodies; these fields represent the

sole update from the previous START, REPLY and CONTINUE packet

bodies.

The new fields are as follows:

 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

+----------------+----------------+----------------+----------------+

| action | priv_lvl | authen_type | authen_service |

+----------------+----------------+----------------+----------------+

| user_len | port_len | rem_addr_len | data_len |

+----------------+----------------+----------------+----------------+

| arg_cnt |

+----------------+----------------+----------------+----------------+

| arg_1_len |

+----------------+----------------+----------------+----------------+

| ... |

+----------------+----------------+----------------+----------------+

| arg_N_len |

+----------------+----------------+----------------+----------------+

| user ...

+----------------+----------------+----------------+----------------+

| port ...

+----------------+----------------+----------------+----------------+

| rem_addr ...

+----------------+----------------+----------------+----------------+

| data...

+----------------+----------------+----------------+----------------+

| arg_1 ...

+----------------+----------------+----------------+----------------+

| arg_2 ...

+----------------+----------------+----------------+----------------+

| ...

+----------------+----------------+----------------+----------------+

| arg_N ...

+----------------+----------------+----------------+----------------+

¶

¶

¶

arg_cnt

This represents the number of arguments in the packet.

arg_1_len ... arg_N_len, arg_1 ... arg_N

Each argument is encoded in the packet as a single arg field (arg_1

... arg_N) with a corresponding length field that indicates the

length of each argument in bytes.

The arguments are argument-value pairs. The argument and the value

are in a single string and are separated by either a "=" (0X3D) or a

"*" (0X2A). The equals sign indicates a mandatory argument. The

asterisk indicates an optional one. For the rules regarding optional

and mandatory arguments, refer to [RFC8907]

Multiple arguments with the same name are permitted within a packet,

a common example is cmd-arg. The handling of repeated arguments is

specific to the semantics of the argument and so are documented with

that argument. Order is significant when processing arguments.

The addition of arguments to the authentication packets is intended

to permit the flexibility for the TACACS+ authentication phase that

has been available previously for authorization and accounting.

These fields are intended to be used as needed in deployment, they

are used in this document in the enhancements for SSH (Section 4):

origin_client

Contains the IP-Address of the originating TACACS+ client. This is

text encoded in line with the rest of the TACACS+ protocol, and may

be IPv4 or IPv6. This argument is optional and can be included in

all TACACS+ protocol START packets, Authentication, Authorization,

and Accounting. IPv4 addresses are specified as quad-octet numeric

values separated by dots ('.'). IPv6 address text representation is

defined in [RFC5952].

3.2. The Extension Authentication REPLY Packet Body

The TACACS+ server sends only one type of extended authentication

packet to the client.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Figure 2

The status, flags, server_msg_len, data_len, server_msg, and data

fields are used exactly as defined in the Authentication REPLY

Packet Body in [RFC8907]].

The new arg_cnt, arg_1 ... arg_N, and arg_1_len arg_N_len

fields are used as defined in The Extended Authentication START

Packet Body (Section 3.1).

3.3. The Extended Authentication CONTINUE Packet Body

This packet is sent from the client to the server following the

receipt of an Extended REPLY packet.

 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

+----------------+----------------+----------------+----------------+

| status | flags | server_msg_len |

+----------------+----------------+----------------+----------------+

| data_len |

+----------------+----------------+----------------+----------------+

| arg_cnt |

+----------------+----------------+----------------+----------------+

| arg_1_len |

+----------------+----------------+----------------+----------------+

| ... |

+----------------+----------------+----------------+----------------+

| arg_N_len |

+----------------+----------------+----------------+----------------+

| data ...

+----------------+----------------+----------------+----------------+

| server_msg ...

+----------------+----------------+----------------+----------------+

| arg_1 ...

+----------------+----------------+----------------+----------------+

| arg_2 ...

+----------------+----------------+----------------+----------------+

| ...

+----------------+----------------+----------------+----------------+

| arg_N ...

+----------------+----------------+----------------+----------------+

¶

¶

¶

Figure 3

The user_msg len, data_len, user_msg, and data fields are used

exactly as defined in the Authentication REPLY Packet Body in

[RFC8907]. However, the status field replaces the flags field and

has the following enumeration:

TAC_PLUS_AUTHEN_CONTINUE_STATUS_NONE := 00

TAC_PLUS_AUTHEN_CONTINUE_STATUS_PASS := 01

TAC_PLUS_AUTHEN_CONTINUE_STATUS_FAIL := 02

TAC_PLUS_AUTHEN_CONTINUE_STATUS_FRAGMENT := 03

TAC_PLUS_AUTHEN_CONTINUE_STATUS_ERROR := 04

TAC_PLUS_AUTHEN_CONTINUE_STATUS_ABORT := 05

TAC_PLUS_AUTHEN_CONTINUE_STATUS_NONE or

TAC_PLUS_AUTHEN_CONTINUE_STATUS_ABORT MUST be used when the Extended

Authentication Packets are used for the continuation of

authentication flows documented in [RFC8907].

 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

+----------------+----------------+----------------+----------------+

| status | user_msg len |

+----------------+----------------+----------------+----------------+

| data_len |

+----------------+----------------+----------------+----------------+

| arg_cnt |

+----------------+----------------+----------------+----------------+

| arg_1_len |

+----------------+----------------+----------------+----------------+

| ... |

+----------------+----------------+----------------+----------------+

| arg_N_len |

+----------------+----------------+----------------+----------------+

| user_msg ...

+----------------+----------------+----------------+----------------+

| data ...

+----------------+----------------+----------------+----------------+

| arg_1 ...

+----------------+----------------+----------------+----------------+

| arg_2 ...

+----------------+----------------+----------------+----------------+

| ...

+----------------+----------------+----------------+----------------+

| arg_N ...

+----------------+----------------+----------------+----------------+

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

TAC_PLUS_AUTHEN_TYPE_SSHPK := 0x07

TAC_PLUS_AUTHEN_STATUS_GETSSHPKTYPE := 0x22

TAC_PLUS_AUTHEN_STATUS_SSHPK := 0x23

TAC_PLUS_REPLY_FLAG_FRAGMENT := 0x02

TAC_PLUS_AUTHEN_CONTINUE_STATUS_PASS := 0x01

TAC_PLUS_AUTHEN_CONTINUE_STATUS_FAIL := 0x08

TAC_PLUS_AUTHEN_CONTINUE_STATUS_FRAGMENT := 0x03

The client may prematurely terminate a session by setting the

TAC_PLUS_AUTHEN_CONTINUE_STATUS_ABORT or

TAC_PLUS_AUTHEN_CONTINUE_STATUS_ERROR status in the CONTINUE

message. The remainder are detailed in SSH (Section 4).

The new arg_cnt, arg_1 ... arg_N, and arg_1_len arg_N_len

fields are used as defined in The Extended Authentication START

Packet Body (Section 3.1).

4. SSH

Most network equipment now support SSH [RFC4251] for Command Line

Interface (CLI) and NETCONF [RFC6242]. Operators SHOULD use SSH

public keys for authentication. Some devices support public keys in

native configuration, but there is desire to centrally manage keys

and SSH subsystem authorization.

4.1. New Enumerated TACACS+ Protocol Values and well-known AVPs

The following new enumerated TACACS+ protocol values and well-known

AVPs are needed to support SSH in the subsequent sections. These new

values augment those in [RFC8907] Sections 5.1 - 5.3, 6.1, and 8.2

as follows:

Extended Authentication START Packet authen_type for SSH pubkeys.

Extended Authentication REPLY Packet status to solicit SSH pubkey

type.

Extended Authentication REPLY Packet status to provide SSH

pubkeys.

Extended Authentication REPLY Packet flag indicating the REPLY is

incomplete.

Extended Authentication CONTINUE Packet flag indicating

authentication success.

Extended Authentication CONTINUE Packet flag indicating

authentication failure.

Extended Authentication CONTINUE Packet flag requesting the next

REPLY packet of an incomplete REPLY.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

TAC_PLUS_AUTHEN_CONTINUE_STATUS_ERROR := 0x04

AVP ssh_pubkey_type (String)

AVP ssh_pubkey (String)

TAC_PLUS_AUTHEN_METH_SSHPK := 0x21

AVP ssh_subsystem (String)

Extended Authentication CONTINUE Packet flag indicating

authentication error.

Attribute to carry SSH public key type names.

Attribute to carry SSH public keys.

Authorization REQUEST Packet authen_method for SSH pubkey

authentication.

Attribute to carry SSH subsystem name for authorization

4.2. SSH Public Key Support

To support central management of SSH public keys via TACACS+, the

Authentication sequence of [RFC8907] Section 5.4 is extended using

Extended Authentication Packet (Section 3) sequences to deliver SSH

public keys to devices for local verification.

Besides new header values and flags and AVPs for Extended

Authentication Packets, the SSH public key authentication process

differs from other TACACS+ authentication types in that there may be

more Authentication Reply and Authentication Continue Packets pairs

than previously.

The process follows:

The client begins an authentication session with an Extended

Authentication START Packet. The START packet MUST include a

non-zero-length username and the server MUST send an

Authentication REPLY Packet with status

TAC_PLUS_AUTHEN_STATUS_ERROR, if the client fails to do so.

The client MAY include one or more instances of the

ssh_pubkey_type AVP, indicating the SSH public key types that

it wants. The set of permissible values for this AVP are the

SSH public algorithm names defined in the IANA SSH Protocol

Parameters Registry [SSHALGS], which are case-sensitive as

specified and otherwise constrained by [RFC4250] Section 4.6.1.

Multiple values MUST be separated by a comma, therefore

multiple ssh_pubkey_type AVPs MUST include commas for

separation when the Peer concatenates them and the Peer MUST be

prepared to ignore a leading or trailing comma in the

concatenated value. The server MUST NOT reply with status

TAC_PLUS_AUTHEN_STATUS_ERROR if it receives an algorithm name

¶

¶

¶

¶

¶

¶

¶

¶

1.

that it does not recognize. If the client marks a

ssh_pubkey_type AVP as mandatory, the server MUST reply with at

least one key of that type for the given user or reply with

status TAC_PLUS_AUTHEN_STATUS_SSHNOPK with the relevant

ssh_pubkey_type AVP.

The client MAY send an Empty Value for the algorithm name to

request all types available for the given user.

The process ends and the client MUST start a new authentication

session if it receives status SSHNOPK or ERROR.

If a ssh_pubkey_type AVP was not provided in the START packet,

the server replies with the status code

TAC_PLUS_AUTHEN_STATUS_GETSSHPKTYPE. The client MUST send a

CONTINUE packet with one or more ssh_pubkey_type AVPs, else the

server sends a REPLY packet with status

TAC_PLUS_AUTHEN_STATUS_ERROR.

If the server has none of the requested ssh_pubkey_type(s) or

any of the mandatory ssh_pubkey_types for the user or no

pubkeys at all, the server MUST send a REPLY packet with status

TAC_PLUS_AUTHEN_STATUS_SSHNOPK with the ssh_pubkey_type AVP(s)

that it received.

The process ends and the client MUST start a new authentication

session if it receives status SSHNOPK or ERROR.

The server sends REPLY packets with status

TAC_PLUS_AUTHEN_STATUS_SSHPK and includes one or more

ssh_pubkey optional AVPs, each containing one or more keys. The

ssh_pubkey AVPs are formatted according to the rules of SSH

Public Key File Format [RFC4716]. As such, the client MUST be

prepared to accept keys with Key File Markers. To address

concatenation of multiple ssh_pubkey AVPs or multiple keys in a

single AVP, the server MUST terminate each key file End Marker

with a Line Termination sequence as specified in RFC4716

Section 3.1.

Since it is possible to have more ssh_pubkey AVPs than fit in a

REPLY packet, the server SHOULD set the REPLY packet flag

TAC_PLUS_REPLY_FLAG_FRAGMENT if two or more packets are

required, indicating that the client SHOULD request the

remainder.

An AVP SHALL NOT span multiple fragments; each must be

contained entirely in the fragment in which it begins.

If the TAC_PLUS_REPLY_FLAG_FRAGMENT flag is set, the client MAY

reply with the same CONTINUE packet as before with the

¶

2.

¶

3.

¶

4.

¶

5.

TAC_PLUS_AUTHEN_CONTINUE_STATUS_FRAGMENT flag set. The server

replies with the next REPLY fragment as before, clearing the

TAC_PLUS_REPLY_FLAG_FRAGMENT flag of the last REPLY fragment.

This repeats until the last REPLY fragment is received, the

client aborts the authentication process, or an error occurs.

The client MUST NOT set

TAC_PLUS_AUTHEN_CONTINUE_STATUS_FRAGMENT if the REPLY packet

did not have the TAC_PLUS_REPLY_FLAG_FRAGMENT flag set and the

server MUST reply with TAC_PLUS_AUTHEN_STATUS_ERROR if it does

so.

Once the client has all of the pubkeys, it performs the ssh

pubkey authentication with its ssh client. The client MUST then

reply to the server with the status of that authentication by

sending a CONTINUE packet with one of the following new or

existing CONTINUE flags: TAC_PLUS_CONTINUE_FLAG_ABORT,

TAC_PLUS_AUTHEN_CONTINUE_STATUS_PASS,

TAC_PLUS_AUTHEN_CONTINUE_STATUS_FAIL, or

TAC_PLUS_AUTHEN_CONTINUE_STATUS_ERROR.

The client MUST give the server the final consent, by waiting

for a REPLY packet with one of the status:

TAC_PLUS_AUTHEN_STATUS_PASS, TAC_PLUS_AUTHEN_STATUS_FAIL, or

TAC_PLUS_AUTHEN_STATUS_ERROR, thus ending the authentication

session.

4.3. SSH Authorization and Accounting

To support central management of SSH and SSH subsystem authorization

and accounting via TACACS+, this document adds a new authen_method

to RFC8907 Section 6.1 Authorization REQUEST [RFC8907] and a well-

known AVP to Section 8.2 Authorization Arguments [RFC8907].

The new authen_method TAC_PLUS_AUTHEN_METH_SSHPUBKEY indicates that

the user was authenticated with a SSH public key.

The well-known ssh_subsystem AVP defines the SSH subsystem for which

the authorization is requested and MUST be present any time the

authorization is for a SSH connection.

The set of permissible values for this AVP are the SSH Subsystem

Names defined in the IANA SSH Connection Protocol Subsystem Names

Registry [SSHSUBSYS], which are case-sensitive as specified and

otherwise constrained by [RFC4250] Section 4.6.1. The client MAY

send an Empty Value for the subsystem name to indicate no subsystem,

also known as a shell or CLI. The server MUST NOT reply with status

TAC_PLUS_AUTHOR_STATUS_ERROR if it receives a subsystem name whose

syntax is valid but whose value is not recognized. Subsystems might

need additional data for authorization or accounting that will be

¶

6.

¶

7.

¶

¶

¶

¶

[BCP14]

[RFC4250]

particular to that subsystem and are therefore out of scope for this

document.

These new authen_methods and AVPs apply equally to accounting.

5. Protocol Deprecations

This section deprecates features from the TACACS+ Protocol.

MS-CHAPv1: has been replaced by MS-CHAPv2 in most deployments, the

intent of this deprecation is to complete the transition. MD4 is

still required to support MS-CHAPv2 so cannot be deprecated at this

point It should be noted that the use of MD4 is purely to allow

compatible MS-CHAPv2 operation and not for security; the TLS

transport is intended to provide that function.

TAC_PLUS_AUTHEN_SENDAUTH: the sendauth mechanism can not be

supported, as it permits the leak of sensitive information.

6. Security Considerations

6.1. SSH Public Key Caching

A Client MUST NOT cache SSH public keys received from a Server for

future SSH client authentication. Doing so would deny the Server the

opportunity to deny authentication for other reasons than key

validity or to revoke a key. The Server has no method to revoke a

key, except by not offering the key in future authentication

sessions.

7. Acknowledgments

The author(s) would like to thank Russ Housley, Steven M. Bellovin,

Stephen Farrell, Alan DeKok, Warren Kumari, and Tom Petch for their

support, insightful review, and/or comments. [RFC5425] was also used

as a basis for the approach to TLS.

8. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, March 1997.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, May 2017.

<https://www.rfc-editor.org/bcp/bcp14.txt>

Lehtinen, S. and C. Lonvick, Ed., "The Secure Shell (SSH)

Protocol Assigned Numbers", RFC 4250, DOI 10.17487/

RFC4250, January 2006, <https://www.rfc-editor.org/info/

rfc4250>.

¶

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/bcp/bcp14.txt
https://www.rfc-editor.org/info/rfc4250
https://www.rfc-editor.org/info/rfc4250

[RFC4716]

[RFC5425]

[RFC8907]

[SSHALGS]

[SSHSUBSYS]

[RFC4251]

[RFC5952]

[RFC6242]

Galbraith, J. and R. Thayer, "The Secure Shell (SSH)

Public Key File Format", RFC 4716, DOI 10.17487/RFC4716,

November 2006, <https://www.rfc-editor.org/info/rfc4716>.

Miao, F., Ed., Ma, Y., Ed., and J. Salowey, Ed.,

"Transport Layer Security (TLS) Transport Mapping for

Syslog", RFC 5425, DOI 10.17487/RFC5425, March 2009,

<https://www.rfc-editor.org/info/rfc5425>.

Dahm, T., Ota, A., Medway Gash, D.C., Carrel, D., and L.

Grant, "The Terminal Access Controller Access-Control

System Plus (TACACS+) Protocol", RFC 8907, DOI 10.17487/

RFC8907, September 2020, <https://www.rfc-editor.org/

info/rfc8907>.

IANA, "Public Key Algorithm Names", <https://

www.iana.org/assignments/ssh-parameters/ssh-

parameters.xhtml#ssh-parameters-19>.

IANA, "SSH Protocol Subsystem Names", <https://

www.iana.org/assignments/ssh-parameters/ssh-

parameters.xhtml#ssh-parameters-15>.

9. Informative References

Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)

Protocol Architecture", RFC 4251, DOI 10.17487/RFC4251,

January 2006, <https://www.rfc-editor.org/info/rfc4251>.

Kawamura, S. and M. Kawashima, "A Recommendation for IPv6

Address Text Representation", RFC 5952, DOI 10.17487/

RFC5952, August 2010, <https://www.rfc-editor.org/info/

rfc5952>.

Wasserman, M., "Using the NETCONF Protocol over Secure

Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,

<https://www.rfc-editor.org/info/rfc6242>.

Authors' Addresses

Thorsten Dahm

Email: thorsten.dahm@gmail.com

Douglas Gash

Cisco Systems, Inc.

Email: dcmgash@cisco.com

https://www.rfc-editor.org/info/rfc4716
https://www.rfc-editor.org/info/rfc5425
https://www.rfc-editor.org/info/rfc8907
https://www.rfc-editor.org/info/rfc8907
https://www.iana.org/assignments/ssh-parameters/ssh-parameters.xhtml#ssh-parameters-19
https://www.iana.org/assignments/ssh-parameters/ssh-parameters.xhtml#ssh-parameters-19
https://www.iana.org/assignments/ssh-parameters/ssh-parameters.xhtml#ssh-parameters-19
https://www.iana.org/assignments/ssh-parameters/ssh-parameters.xhtml#ssh-parameters-15
https://www.iana.org/assignments/ssh-parameters/ssh-parameters.xhtml#ssh-parameters-15
https://www.iana.org/assignments/ssh-parameters/ssh-parameters.xhtml#ssh-parameters-15
https://www.rfc-editor.org/info/rfc4251
https://www.rfc-editor.org/info/rfc5952
https://www.rfc-editor.org/info/rfc5952
https://www.rfc-editor.org/info/rfc6242
mailto:thorsten.dahm@gmail.com
mailto:dcmgash@cisco.com

Andrej Ota

Email: andrej@ota.si

John Heasley

NTT

Email: heas@shrubbery.net

mailto:andrej@ota.si
mailto:heas@shrubbery.net

	TACACS+ Security and SSH Public Keys
	Abstract
	Requirements Language
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Technical Definitions
	2.1. AVP
	2.2. Empty Value
	2.3. Peer

	3. TACACS+ Extended Authentication Packet Types
	3.1. The Extended Authentication START Packet Body
	3.2. The Extension Authentication REPLY Packet Body
	3.3. The Extended Authentication CONTINUE Packet Body

	4. SSH
	4.1. New Enumerated TACACS+ Protocol Values and well-known AVPs
	4.2. SSH Public Key Support
	4.3. SSH Authorization and Accounting

	5. Protocol Deprecations
	6. Security Considerations
	6.1. SSH Public Key Caching

	7. Acknowledgments
	8. Normative References
	9. Informative References
	Authors' Addresses

