
Network Working Group L. Daigle
Internet-Draft A. Newton
Expires: December 28, 2004 VeriSign, Inc.
 June 29, 2004

Domain-based Application Service Location Using SRV RRs and the
Dynamic Delegation Discovery Service (DDDS)

draft-daigle-snaptr-01.txt

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on December 28, 2004.

Copyright Notice

 Copyright (C) The Internet Society (2004). All Rights Reserved.

Abstract

 This memo defines a generalized mechanism for application service
 naming that allows service location without relying on rigid domain

https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

 naming conventions (so-called name hacks). The proposal defines a
 Dynamic Delegation Discovery System (DDDS) Application to map domain
 name, application service name, and application protocol to target
 server and port, dynamically.

 [Note to be removed for RFC publication: this work was originally
 referred to as "napstr", and draft-daigle-napstr-04 is the immediate
 precursor of draft-daigle-snaptr-00.]

Daigle & Newton Expires December 28, 2004 [Page 1]

https://datatracker.ietf.org/doc/html/draft-daigle-napstr-04
https://datatracker.ietf.org/doc/html/draft-daigle-snaptr-00

Internet-Draft draft-daigle-snaptr-01 June 2004

Table of Contents

1. Introduction . 4
2. Straightforward-NAPTR (S-NAPTR) Specification 4
2.1 Key Terms . 4
2.2 S-NAPTR DDDS Application Usage 5
2.2.1 Ordering and Preference 5
2.2.2 Matching and non-Matching NAPTR Records 6
2.2.3 Terminal and Non-Terminal NAPTR Records 6
2.2.4 S-NAPTR and Successive Resolution 6
2.2.5 Clients Supporting Multiple Protocols 7

3. Guidelines . 7
3.1 Guidelines for Application Protocol Developers 7

 3.1.1 Registration of application service and protocol
 tags . 8

3.1.2 Definition of conditions for retry/failure 8
3.1.3 Server identification and handshake 9

3.2 Guidelines for Domain Administrators 9
3.3 Guidelines for Client Software Writers 9

4. Illustrations . 10
4.1 Use Cases . 10
4.2 Service Discovery within a Domain 10
4.3 Multiple Protocols . 11
4.4 Remote Hosting . 12
4.5 Sets of NAPTR RRs . 13
4.6 Sample sequence diagram 14

5. Motivation and Discussion 15
5.1 So, why not just SRV records? 15
5.2 So, why not just NAPTR records? 16

 6. Formal Definition of <Application Service Location>
 Application of DDDS . 16

6.1 Application Unique String 17
6.2 First Well Known Rule 17
6.3 Expected Output . 17
6.4 Flags . 17
6.5 Service Parameters . 17
6.5.1 Application Services 18
6.5.2 Application Protocols 18

6.6 Valid Rules . 18
6.7 Valid Databases . 18

7. IANA Considerations . 19
7.1 Application Service Tag IANA Registry 19
7.2 Application Protocol Tag IANA Registry 19
7.3 Registration Process 19

8. Security Considerations 20
9. Acknowledgements . 21

https://datatracker.ietf.org/doc/html/draft-daigle-snaptr-01

10. References . 21
10.1 Normative References . 21

Daigle & Newton Expires December 28, 2004 [Page 2]

Internet-Draft draft-daigle-snaptr-01 June 2004

10.2 Informative References 22
 Authors' Addresses . 22

A. Pseudo pseudocode for S-NAPTR 22
A.1 Finding the first (best) target 22
A.2 Finding subsequent targets 23

B. Availability of Sample Code 24
 Intellectual Property and Copyright Statements 25

https://datatracker.ietf.org/doc/html/draft-daigle-snaptr-01

Daigle & Newton Expires December 28, 2004 [Page 3]

Internet-Draft draft-daigle-snaptr-01 June 2004

1. Introduction

 This memo defines a generalized mechanism for application service
 naming that allows service location without relying on rigid domain
 naming conventions (so-called name hacks). The proposal defines a
 Dynamic Delegation Discovery System (DDDS -- see [4]) Application to
 map domain name, application service name, and application protocol
 to target server and port, dynamically.

 As discussed in Section 5, existing approaches to using DNS records
 to dynamically determining the current host for a given application
 service are limited in terms of the use cases supported. To address
 some of the limitations, this document defines a DDDS Application to
 map service+protocol+domain to specific server addresses using both
 NAPTR [5] and SRV ([3]) DNS resource records. This can be viewed as
 a more general version of the use of SRV and/or a very restricted
 application of the use of NAPTR resource records.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC2119 ([1]).

2. Straightforward-NAPTR (S-NAPTR) Specification

 The precise details of the specification of this DDDS application are
 given in Section 6. This section defines the usage of the DDDS
 application.

2.1 Key Terms

 An "application service" is a generic term for some type of
 application, indpendent of the protocol that may be used to offer it.
 Each application service will be associated with an IANA-registered
 tag. For example, retrieving mail is a type of application service,
 which can be implemented by different application-layer protocols
 (e.g., POP3, IMAP4). A tag, such as "RetMail", could be registered
 for it. (N.B.: this has not been done, and there are no plans to do
 so at the time of this writing).

 An "application protocol" is used to implement the application

https://datatracker.ietf.org/doc/html/draft-daigle-snaptr-01
https://datatracker.ietf.org/doc/html/rfc2119

 service. These are also associated with IANA-registered tags. Using
 the mail example above, "POP3" and "IMAP4" could be registered as
 application protocol tags. In the case where multiple transports are
 available for the application, separate tags should be defined for
 each transport.

 The intention is that the combination of application service and
 protocol tags should be specific enough that finding a known pair

Daigle & Newton Expires December 28, 2004 [Page 4]

Internet-Draft draft-daigle-snaptr-01 June 2004

 (e.g., "RetMail:POP3" is sufficient for a client to identify a server
 with which it can communicate.

 Some protocols support multiple application services. For example,
 LDAP is an application protocol, and can be found supporting various
 services (e.g., "whitepages", "directory enabled networking", etc).

2.2 S-NAPTR DDDS Application Usage

 As defined in Section 6, NAPTR records are used to store application
 service+protocol information for a given domain. Following the DDDS
 standard, these records are looked up, and the rewrite rules
 (contained in the NAPTR records) are used to determine the successive
 DNS lookups, until a desirable target is found.

 For the rest of this section, refer to the set of NAPTR resource
 records for example.com shown in the figure below, where "WP" is the
 imagined application service tag for "white pages", and "EM" is the
 application service tag for an imagined "Extensible Messaging"
 application service.

 example.com.
 ;; order pref flags
 IN NAPTR 100 10 "" "WP:whois++" (; service
 "" ; regexp
 bunyip.example. ; replacement
)
 IN NAPTR 100 20 "s" "WP:ldap" (; service
 "" ; regexp
 _ldap._tcp.myldap.example.com. ; replacement
)
 IN NAPTR 200 10 "" "EM:protA" (; service
 "" ; regexp
 someisp.example. ; replacement
)
 IN NAPTR 200 30 "a" "EM:protB" ; service
 "" ; regexp
 myprotB.example.com.; replacement
)

2.2.1 Ordering and Preference

https://datatracker.ietf.org/doc/html/draft-daigle-snaptr-01

 A client retrieves all of the NAPTR records associated with the
 target domain name (example.com, above). These are to be sorted in
 terms of increasing ORDER, and increasing PREF within each ORDER.

Daigle & Newton Expires December 28, 2004 [Page 5]

Internet-Draft draft-daigle-snaptr-01 June 2004

2.2.2 Matching and non-Matching NAPTR Records

 Starting with the first sorted NAPTR record, the client examines the
 SERVICE field to find a match. In the case of the S-NAPTR DDDS
 application, that means a SERVICE field that includes the tags for
 the desired application service and a supported application protocol.

 If more than one NAPTR record matches, they are processed in
 increasing sort order.

2.2.3 Terminal and Non-Terminal NAPTR Records

 A NAPTR record with an empty FLAG field is "non-terminal". That is,
 more NAPTR RR lookups are to be performed. Thus, to process a NAPTR
 record with an empty FLAG field in S-NAPTR, the REPLACEMENT field is
 used as the target of the next DNS lookup -- for NAPTR RRs.

 In S-NAPTR, the only terminal flags are "S" and "A". These are
 called "terminal" NAPTR lookups because they denote the end of the
 DDDS/NAPTR processing rules. In the case of an "S" flag, the
 REPLACEMENT field is used as the target of a DNS query for SRV RRs,
 and normal SRV processing is applied. In the case of an "A" flag, an
 address record is sought for the REPLACEMENT field target (and the
 default protocol port is assumed).

2.2.4 S-NAPTR and Successive Resolution

 As shown in the example NAPTR RR set above, it is possible to have
 multiple possible targets for a single application service+protocol
 pair. These are to be pursued in order until a server is
 successfully contacted or all possible matching NAPTR records have
 been successively pursued to terminal lookups and servers contacted.
 That is, a client must backtrack and attempt other resolution paths
 in the case of failure.

 "Failure" is declared, and backtracking must be used when

 o the designated remote server (host and port) fail to provide
 appropriate security credentials for the *originating* domain
 o connection to the designated remote server otherwise fails -- the

https://datatracker.ietf.org/doc/html/draft-daigle-snaptr-01

 specifics terms of which are defined when an application protocol
 is registered
 o the S-NAPTR-designated DNS lookup fails to yield expected results
 -- e.g., no A RR for an "A" target, no SRV record for an "S"
 target, or no NAPTR record with appropriate application service
 and protocol for a NAPTR lookup. Except in the case of the very
 first NAPTR lookup, this last is a configuration error: the fact
 that example.com has a NAPTR record pointing to "bunyip.example"

Daigle & Newton Expires December 28, 2004 [Page 6]

Internet-Draft draft-daigle-snaptr-01 June 2004

 for the "WP:Whois++" service and protocol means the administrator
 of example.com believes that service exists. If bunyip.example
 has no "WP:Whois++" NAPTR record, the application client MUST
 backtrack and try the next available "WP:Whois++" option from
 example.com. As there is none, the whole resolution fails.

 An application client first queries for the NAPTR RRs for the domain
 of a named application service. The application client MUST select
 one protocol to choose The PREF field of the NAPTR RRs may be used by
 the domain administrator to The first DNS query is for the NAPTR RRs
 in the original target domain (example.com, above).

2.2.5 Clients Supporting Multiple Protocols

 In the case of an application client that supports more than one
 protocol for a given application service, it MUST pursue S-NAPTR
 resolution completely for one protocol, exploring all potential
 terminal lookups in PREF and ORDER ranking, until the application
 connects successfully or there are no more possibilities for that
 protocol.

 That is, what the client MUST NOT do is start looking for one
 protocol, observe that a successive NAPTR RR set supports another of
 its preferred protocols, and continue the S-NAPTR resolution based on
 that protocol. For example, even if someisp.example offers the "EM"
 service with protocol "ProtB", there is no reason to believe it does
 so on behalf of example.com (since there is no such pointer in
 example.com's NAPTR RR set).

 It MAY choose which protocol to try first based on its own
 preference, or from the PREF ranking in the first set of NAPTR
 records (i.e., those for the target named domain). However, the
 chosen protocol MUST be listed in that first NAPTR RR set.

 It MAY choose to run simultaneous DDDS resolutions for more than one
 protocol, in which case the requirements above apply for each
 protocol independently. That is, do not switch protocols
 mid-resolution.

3. Guidelines

https://datatracker.ietf.org/doc/html/draft-daigle-snaptr-01

3.1 Guidelines for Application Protocol Developers

 The purpose of S-NAPTR is to provide application standards developers
 with a more powerful framework (than SRV RRs alone) for naming
 service targets, without requiring each application protocol (or
 service) standard to define a separate DDDS application.

Daigle & Newton Expires December 28, 2004 [Page 7]

Internet-Draft draft-daigle-snaptr-01 June 2004

 Note that this approach is intended specifically for use when it
 makes sense to associate services with particular domain names (e.g.,
 e-mail addresses, SIP addresses, etc). A non-goal is having all
 manner of label mapped into domain names in order to use this.

 Specifically not addressed in this document is how to select the
 domain for which the service+protocol is being sought. It is up to
 other conventions to define how that might be used (e.g., new
 messaging standards can define what domain to use from their URIs,
 how to step down from foobar.example.com to example.com, and so on,
 if that is applicable).

 Although this document proposes a DDDS application that does not use
 all the features of NAPTR resource records, it does not mean to imply
 that DNS resolvers should fail to implement all aspects of the NAPTR
 RR standard. A DDDS application is a client use convention.

 The rest of this section outlines the specific elements that protocol
 developers must determine and document in order to make use of
 S-NAPTR.

3.1.1 Registration of application service and protocol tags

 Application protocol developers that wish to make use of S-NAPTR must
 make provision to register any relevant application service and
 application protocol tags, as described in Section 7.

3.1.2 Definition of conditions for retry/failure

 One other important aspect that must be defined is the expected
 behaviour for interacting with the servers that are reached via
 S-NAPTR. Specifically, under what circumstances should the client
 retry a target that was found via S-NAPTR? What should it consider a
 failure that causes it to return to the S-NAPTR process to determine
 the next serviceable target (a less preferred target)?

 For example, if the client gets a "connection refused" from a server,
 should it retry for some (protocol-dependent) period of time? Or,
 should it try the next-preferred target in the S-NAPTR chain of
 resolution? Should it only try the next-preferred target if it

https://datatracker.ietf.org/doc/html/draft-daigle-snaptr-01

 receives a protocol-specific permanent error message?

 The most important thing is to select one expected behaviour and
 document it as part of the use of S-NAPTR.

 As noted earlier, failure to provide appropriate credentials to
 identify the server as being authoritative for the original taret
 domain is always considered a failure condition.

Daigle & Newton Expires December 28, 2004 [Page 8]

Internet-Draft draft-daigle-snaptr-01 June 2004

3.1.3 Server identification and handshake

 As noted in Section 8, use of the DNS for server location increases
 the importance of using protocol-specific handshakes to determine and
 confirm the identity of the server that is eventually reached.

 Therefore, application protocol developers using S-NAPTR should
 identify the mechanics of the expected identification handshake when
 the client connects to a server found through S-NAPTR.

3.2 Guidelines for Domain Administrators

 Although S-NAPTR aims to provide a "straightforward" application of
 DDDS and use of NAPTR records, it is still possible to create very
 complex chains and dependencies with the NAPTR and SRV records.

 Therefore, domain administrators are called upon to use S-NAPTR with
 as much restraint as possible, while still achieving their service
 design goals.

 The complete set of NAPTR, SRV and A RRs that are "reachable" through
 the S-NAPTR process for a particular application service can be
 thought of as a "tree". Each NAPTR RR retrieved points to more NAPTR
 or SRV records; each SRV record points to several A record lookups.
 Even though a particular client can "prune" the tree to use only
 those records referring to application protocols supported by the
 client, the tree could be quite deep, and retracing the tree to retry
 other targets can become expensive if the tree has many branches.

 Therefore,
 o Fewer branches is better: for both NAPTR and SRV records, provide
 different targets with varying preferences where appropriate
 (e.g., to provide backup services, etc), but don't look for
 reasons to provide more.
 o Shallower is better: avoid using NAPTR records to "rename"
 services within a zone. Use NAPTR records to identify services
 hosted elsewhere (i.e., where you cannot reasonably provide the
 SRV records in your own zone).

3.3 Guidelines for Client Software Writers

https://datatracker.ietf.org/doc/html/draft-daigle-snaptr-01

 To properly understand DDDS/NAPTR, an implementor must read [4].
 However, the most important aspect to keep in mind is that, if one
 target fails to work for the application, it is expected that the
 application will continue through the S-NAPTR tree to try the (less
 preferred) alternatives.

Daigle & Newton Expires December 28, 2004 [Page 9]

Internet-Draft draft-daigle-snaptr-01 June 2004

4. Illustrations

4.1 Use Cases

 The basic intended use cases for which S-NAPTR has been developed
 are:
 o Service discovery within a domain. For example, this can be used
 to find the "authoritative" server for some type of service within
 a domain (see the specific example in Section 4.2).
 o Multiple protocols. This is increasingly common as new
 application services are defined. This includes the case of
 extensible messaging (a hypothetical service) which can be offered
 with multiple protocols (see Section 4.3).
 o Remote hosting. Each of the above use cases applies within the
 administration of a single domain. However, one domain operator
 may elect to engage another organization to provide an application
 service. See Section 4.4 for an example that cannot be served by
 SRV records alone.

4.2 Service Discovery within a Domain

 There are occasions when it is useful to be able to determine the
 "authoritative" server for a given application service within a
 domain. This is "discovery", because there is no a priori knowledge
 as to whether or where the service is offered; it is therefore
 important to determine the location and characteristics of the
 offered service.

 For example, there is growing discussion of having a generic
 mechanism for locating the keys or certificates associated with
 particular application (servers) operated in (or for) a particular
 domain. Here's a hypothetical case for storing application key or
 certificate data for a given domain. The premise is that some
 credentials registry (CredReg) service has been defined to be a leaf
 node service holding the keys/certs for the servers operated by (or
 for) the domain. Furthermore, it is assumed that more than one
 protocol is available to provide the service for a particular domain.
 This DDDS-based approach is used to find the CredReg server that
 holds the information.

 Thus, the set of NAPTR records for thinkingcat.example might look
 like this:

https://datatracker.ietf.org/doc/html/draft-daigle-snaptr-01

 thinkingcat.example.
 ;; order pref flags
 IN NAPTR 100 10 "" "CREDREG:ldap:iris.beep" (; service
 "" ; regexp
 theserver.thinkingcat.example. ; replacement

Daigle & Newton Expires December 28, 2004 [Page 10]

Internet-Draft draft-daigle-snaptr-01 June 2004

)

 Note that another domain, offering the same application service,
 might offer it using a different set of application protocols:

 anotherdomain.example.
 ;; order pref flags
 IN NAPTR 100 10 "" "CREDREG:iris.lwz:iris.beep" (; service
 "" ; regexp
 foo.anotherdomain.example. ; replacement
)

4.3 Multiple Protocols

 A hypothetical application service, extensible messaging, will be
 used for the purpose of illustration. (For an example of a real
 application service with multiple protocols, see [9] and [10]).
 Assuming that "EM" was registered as an application service, this
 DDDS application could be used to determine the available services
 for delivering to a target.

 Two particular features of this hypothetical extensible messaging
 should be noted:
 1. gatewaying is expected to bridge communications across protocols
 2. extensible messaging servers are likely to be operated out of a
 different domain than the extensible messaging address, and
 servers of different protocols may be offered by independent
 organizations

 For example, "thinkingcat.example" may support its own servers for
 the "ProtA" extensible messaging protocol, but rely on outsourcing
 from "example.com" for "ProtC" and "ProtB" servers.

 Using this DDDS-based approach, thinkingcat.example can indicate a
 preference ranking for the different types of servers for the
 extensible messaging service, and yet the out-sourcer can
 independently rank the preference and ordering of servers. This
 independence is not achievable through the use of SRV records alone.

https://datatracker.ietf.org/doc/html/draft-daigle-snaptr-01

 Thus, to find the EM services for thinkingcat.example, the NAPTR
 records for thinkingcat.example are retrieved:

Daigle & Newton Expires December 28, 2004 [Page 11]

Internet-Draft draft-daigle-snaptr-01 June 2004

 thinkingcat.example.
 ;; order pref flags
 IN NAPTR 100 10 "s" "EM:ProtA" (; service
 "" ; regexp
 _ProtA._tcp.thinkingcat.example. ; replacement
)
 IN NAPTR 100 20 "s" "EM:ProtB" (; service
 "" ; regexp
 _ProtB._tcp.example.com. ; replacement
)
 IN NAPTR 100 30 "s" "EM:ProtC" (; service
 "" ; regexp
 _ProtC._tcp.example.com. ; replacement
)

 and then the administrators at example.com can manage the preference
 rankings of the servers they use to support the ProtB service:

 _ProtB._tcp.example.com.
 ;; Pref Weight Port Target
 IN SRV 10 0 10001 bigiron.example.com.
 IN SRV 20 0 10001 backup.em.example.com.
 IN SRV 30 0 10001 nuclearfallout.australia-isp.example.

4.4 Remote Hosting

 In the Instant Message hosting example in Section 4.3, the service
 owner (thinkingcat.example) had to host pointers to the hosting
 service's SRV records in the thinkingcat.example domain.

 A better way to approach this is to have one NAPTR RR in the
 thinkingcat.example domain pointing to all the hosted services, and
 the hosting domain has NAPTR records for each service to map them to
 whatever local hosts it chooses (and may change from time to time).

 thinkingcat.example.
 ;; order pref flags
 IN NAPTR 100 10 "s" "EM:ProtA" (; service
 "" ; regexp
 _ProtA._tcp.thinkingcat.example. ; replacement
)

https://datatracker.ietf.org/doc/html/draft-daigle-snaptr-01

 IN NAPTR 100 20 "" "EM:ProtB:ProtC" (; service
 "" ; regexp
 thinkingcat.example.com. ; replacement
)

Daigle & Newton Expires December 28, 2004 [Page 12]

Internet-Draft draft-daigle-snaptr-01 June 2004

 and then the administrators at example.com can break out the
 individual application protocols and manage the preference rankings
 of the servers they use to support the ProtB service (as before):

 thinkingcat.example.com.
 ;; order pref flags
 IN NAPTR 100 10 "s" "EM:ProtC" (; service
 "" ; regexp
 _ProtC._tcp.example.com. ; replacement
)
 IN NAPTR 100 20 "s" "EM:ProtB" (; service
 "" ; regexp
 _ProtB._tcp.example.com. ; replacement
)

 _ProtC._tcp.example.com.
 ;; Pref Weight Port Target
 IN SRV 10 0 10001 bigiron.example.com.
 IN SRV 20 0 10001 backup.em.example.com.
 IN SRV 30 0 10001 nuclearfallout.australia-isp.example.

4.5 Sets of NAPTR RRs

 Note that the above sections assumed that there was one service
 available (via S-NAPTR) per domain. Often, that will not be the
 case. Assuming thinkingcat.example had the CredReg service set up as
 described in Section 4.2 and the extensible messaging service set up
 as described in Section 4.4, then a client querying for the NAPTR RR
 set from thinkingcat.com would get the following answer:

 thinkingcat.example.
 ;; order pref flags
 IN NAPTR 100 10 "s" "EM:ProtA" (; service
 "" ; regexp
 _ProtA._tcp.thinkingcat.example. ; replacement
)
 IN NAPTR 100 20 "" "EM:ProtB:ProtC" (; service
 "" ; regexp
 thinkingcat.example.com. ; replacement
)

https://datatracker.ietf.org/doc/html/draft-daigle-snaptr-01

 IN NAPTR 200 10 "" "CREDREG:ldap:iris-beep" (; service
 "" ; regexp
 bouncer.thinkingcat.example. ; replacement
)

Daigle & Newton Expires December 28, 2004 [Page 13]

Internet-Draft draft-daigle-snaptr-01 June 2004

 Sorting them by increasing "ORDER", the client would look through the
 SERVICE strings to determine if there was a NAPTR RR that matched the
 application service it was looking for, with an application protocol
 it could use. The first (lowest PREF) record that so matched is the
 one the client would use to continue.

4.6 Sample sequence diagram

 Consider the example in Section 4.3. Visually, the sequence of steps
 required for the client to reach the final server for a "ProtB"
 service for EM for the thinkingcat.example domain is as follows:

 Client NS for NS for
 thinkingcat.example example.com backup.em.example.com
 | | |
 1 -------->| | |
 2 <--------| | |
 3 ------------------------------>| |
 4 <------------------------------| |
 5 ------------------------------>| |
 6 <------------------------------| |
 7 ------------------------------>| |
 8 <------------------------------| |
 9 --->|
 10 <---|
 11 --->|
 12 <---|
 (...)

 1. the name server (NS) for thinkingcat.example is reached with a
 request for all NAPTR records
 2. the server responds with the NAPTR records shown in Section 4.3.
 3. the second NAPTR record matches the desired criteria; that has an
 "s" flag and a replacement fields of "_ProtB._tcp.example.com".
 So, the client looks up SRV records for that target, ultimately
 making the request of the NS for example.com.
 4. the response includes the SRV records listed in Section 4.3.
 5. the client attempts to reach the server with the lowest PREF in
 the SRV list -- looking up the A record for the SRV record's
 target (bigiron.example.com).
 6. the example.com NS responds with an error message -- no such

https://datatracker.ietf.org/doc/html/draft-daigle-snaptr-01

 machine!
 7. the client attempts to reach the second server in the SRV list,
 and looks up the A record for backup.em.example.com

Daigle & Newton Expires December 28, 2004 [Page 14]

Internet-Draft draft-daigle-snaptr-01 June 2004

 8. the client gets the A record with the IP address for
 backup.em.example.com from example.com's NS.
 9. the client connects to that IP address, on port 10001 (from the
 SRV record), using ProtB over tcp.
 10. the server responds with an "OK" message.
 11. the client uses ProtB to challenge that this server has
 credentials to operate the service for the original domain
 (thinkingcat.example)
 12. the server responds, and the rest is EM.

5. Motivation and Discussion

 Increasingly, application protocol standards are using domain names
 to identify server targets, and stipulating that clients should look
 up SRV resource records to determine the host and port providing the
 server. This enables a distinction between naming an application
 service target and actually hosting the server. It also increases
 flexibility in hosting the target service:
 o the server may be operated by a completely different organization
 without having to list the details of that organization's DNS
 setup (SRVs)
 o multiple instances can be set up (e.g., for load balancing or
 secondaries)
 o it can be moved from time to time without disrupting clients'
 access, etc.
 This is quite useful, but Section 5.1 outlines some of the
 limitations inherent in the approach.

 That is, while SRV records can be used to map from a specific service
 name and protocol for a specific domain to a specific server, SRV
 records are limited to one layer of indirection, and are focused on
 server administration rather than on application naming. And, while
 the DDDS specification and use of NAPTR allows multiple levels of
 redirection before locating the target server machine with an SRV
 record, this proposal requires only a subset of NAPTR strictly bound
 to domain names, without making use of the REGEXP field of NAPTR.
 These restrictions make the client's resolution process much more
 predictable and efficient than with some potential uses of NAPTR
 records. This is dubbed "S-NAPTR" -- a "S"traightforward use of
 NAPTR records.

5.1 So, why not just SRV records?

https://datatracker.ietf.org/doc/html/draft-daigle-snaptr-01

 An expected question at this point is: this is so similar in
 structure to SRV records, why are we doing this with DDDS/NAPTR?

 Limitations of SRV include:

Daigle & Newton Expires December 28, 2004 [Page 15]

Internet-Draft draft-daigle-snaptr-01 June 2004

 o SRV provides a single layer of indirection -- the outcome of an
 SRV lookup is a new domain name for which the A RR is to be found.
 o the purpose of SRV is focused on individual server administration,
 not application naming: as stated in [3] "The SRV RR allows
 administrators to use several servers for a single domain, to move
 services from host to host with little fuss, and to designate some
 hosts as primary servers for a service and others as backups."
 o target servers by "service" (e.g., "ldap") and "protocol" (e.g.,
 "tcp") in a given domain. The definition of these terms implies
 specific things (e.g., that protocol should be one of UDP or TCP)
 without being precise. Restriction to UDP and TCP is insufficient
 for the uses described here.

 The basic answer is that SRV records provide mappings from protocol
 names to host and port. The use cases described herein require an
 additional layer -- from some service label to servers that may in
 fact be hosted within different administrative domains. We could
 tweak SRV to say that the next lookup could be something other than
 an address record, but that is more complex than is necessary for
 most applications of SRV.

5.2 So, why not just NAPTR records?

 That's a trick question. NAPTR records cannot appear in the wild --
 see [4]. They must be part of a DDDS application.

 The purpose here is to define a single, common mechanism (the DDDS
 application) to use NAPTR when all that is desired is simple
 DNS-based location of services. This should be easy for applications
 to use -- some simple IANA registrations and it's done.

 Also, NAPTR has very powerful tools for expressing "rewrite" rules.
 That power (==complexity) makes some protocol designers and service
 administrators nervous. The concern is that it can translate into
 unintelligible, noodle-like rule sets that are difficult to test and
 administer.

 This proposed DDDS application specifically uses a subset of NAPTR's
 abilities. Only "replacement" expressions are allowed, not "regular
 expressions".

https://datatracker.ietf.org/doc/html/draft-daigle-snaptr-01

6. Formal Definition of <Application Service Location> Application of
 DDDS

 This section formally defines the DDDS application, as described in
 [4].

Daigle & Newton Expires December 28, 2004 [Page 16]

Internet-Draft draft-daigle-snaptr-01 June 2004

6.1 Application Unique String

 The Application Unique String is domain label for which an
 authoritative server for a particular service is sought.

6.2 First Well Known Rule

 The "First Well Known Rule" is identity -- that is, the output of the
 rule is the Application Unique String, the domain label for which the
 authoritative server for a particular service is sought.

6.3 Expected Output

 The expected output of this Application is the information necessary
 to connect to authoritative server(s) (host, port, protocol) for an
 application service within a given a given domain.

6.4 Flags

 This DDDS Application uses only 2 of the Flags defined for the URI/
 URN Resolution Application ([6]): "S" and "A". No other Flags are
 valid.

 Both are for terminal lookups. This means that the Rule is the last
 one and that the flag determines what the next stage should be. The
 "S" flag means that the output of this Rule is a domain label for
 which one or more SRV [3] records exist. "A" means that the output
 of the Rule is a domain name and should be used to lookup address
 records for that domain.

 Consistent with the DDDS algorithm, if the Flag string is empty the
 next lookup is for another NAPTR record (for the replacement target).

6.5 Service Parameters

 Service Parameters for this Application take the form of a string of
 characters that follow this ABNF ([2]):

https://datatracker.ietf.org/doc/html/draft-daigle-snaptr-01

Daigle & Newton Expires December 28, 2004 [Page 17]

Internet-Draft draft-daigle-snaptr-01 June 2004

 service-parms = [[app-service] *(":" app-protocol)]
 app-service = experimental-service / iana-registered-service
 app-protocol = experimental-protocol / iana-registered-protocol
 experimental-service = "x-" 1*30ALPHANUMSYM
 experimental-protocol = "x-" 1*30ALPHANUMSYM
 iana-registered-service = ALPHA *31ALPHANUMSYM
 iana-registered-protocol = ALPHA *31ALPHANUM
 ALPHA = %x41-5A / %x61-7A ; A-Z / a-z
 DIGIT = %x30-39 ; 0-9
 SYM = %x2B / %x2D / %x2E ; "+" / "-" / "."
 ALPHANUMSYM = ALPHA / DIGIT / SYM
 ; The app-service and app-protocol tags are limited to 32
 ; characters and must start with an alphabetic character.
 ; The service-parms are considered case-insensitive.

 Thus, the Service Parameters may consist of an empty string, just an
 app-service, or an app-service with one or more app-protocol
 specifications separated by the ":" symbol.

 Note that this is similar to, but not the same as the syntax used in
 the URI DDDS application ([6]). The DDDS DNS database requires each
 DDDS application to define the syntax of allowable service strings.
 The syntax here is expanded to allow the characters that are valid in
 any URI scheme name (see [8]). Since "+" (the separator used in the

RFC3404 service parameter string) is an allowed character for URI
 scheme names, ":" is chosen as the separator here.

6.5.1 Application Services

 The "app-service" must be an IANA-registered service; see Section 7
 for instructions on registering new application service tags.

6.5.2 Application Protocols

 The protocol identifiers that are valid for the "app-protocol"
 production are standard, registered protocols; see Section 7 for
 instructions on registering new application protocol tags.

6.6 Valid Rules

https://datatracker.ietf.org/doc/html/draft-daigle-snaptr-01
https://datatracker.ietf.org/doc/html/rfc3404

 Only substitution Rules are permitted for this application. That is,
 no regular expressions are allowed.

6.7 Valid Databases

 At present only one DDDS Database is specified for this Application.
 [5] specifies a DDDS Database that uses the NAPTR DNS resource record
 to contain the rewrite rules. The Keys for this database are encoded

Daigle & Newton Expires December 28, 2004 [Page 18]

Internet-Draft draft-daigle-snaptr-01 June 2004

 as domain-names.

 The First Well Known Rule produces a domain name, and this is the Key
 that is used for the first lookup -- the NAPTR records for that
 domain are requested.

 DNS servers MAY interpret Flag values and use that information to
 include appropriate NAPTR, SRV or A records in the Additional
 Information portion of the DNS packet. Clients are encouraged to
 check for additional information but are not required to do so. See
 the Additional Information Processing section of [5] for more
 information on NAPTR records and the Additional Information section
 of a DNS response packet.

7. IANA Considerations

 This document calls for 2 IANA registries: one for application
 service tags, and one for application protocol tags.

7.1 Application Service Tag IANA Registry

 IANA is to establish and maintain a registry for S-NAPTR Application
 Service Tags, listing at least the following information for each
 such tag:
 o Application Service Tag: a string conformant with the
 iana-registered-service defined in Section 6.5.
 o Defining publication: the RFC used to define the Application
 Service Tag, as defined in the registration process, below.

 An initial Application Service Tag registration is contained in [9].

7.2 Application Protocol Tag IANA Registry

 IANA is to establish and maintain a registry for S-NAPTR Application
 Protocol Tags, listing at least the following information for each
 such tag:
 o Application Protocol Tag: a string conformant with the
 iana-registered-protocol defined in Section 6.5.
 o Defining publication: the RFC used to define the Application
 Protocol Tag, as defined in the registration process, below.

https://datatracker.ietf.org/doc/html/draft-daigle-snaptr-01

 An initial Application Protocol Tag registration is defined in [10].

7.3 Registration Process

 All application service and protocol tags that start with "x-" are
 considered experimental, and no provision is made to prevent
 duplicate use of the same string. Use them at your own risk.

Daigle & Newton Expires December 28, 2004 [Page 19]

Internet-Draft draft-daigle-snaptr-01 June 2004

 All other application service and protocol tags are registered based
 on the "specification required" option defined in [7], with the
 further stipulation that the "specification" is an RFC (of any
 category).

 There are no further restrictions placed on the tags other than that
 they must conform with the syntax defined below (Section 6.5).

 The defining RFC must clearly identify and describe, for each tag
 being registered:
 o Application protocol or service tag
 o Intended usage
 o Interoperability considerations
 o Security considerations (see Section 8 of this document for
 further discussion of the types of considerations that are
 applicable)
 o Any relevant related publications

8. Security Considerations

 The security of this approach to application service location is only
 as good as the security of the DNS servers along the way. If any of
 them is compromised, bogus NAPTR and SRV records could be inserted to
 redirect clients to unintended destinations. This problem is hardly
 unique to S-NAPTR (or NAPTR in general). A full discussion of the
 security threats pertaining to DNS can be found in [11].

 To protect against DNS-vectored attacks, secured DNS (DNSSEC) [12]
 can be used to ensure the validity of the DNS records received.

 Whether or not DNSSEC is used, applications should define some form
 of end-to-end authentication to ensure that the correct destination
 has been reached. Many application protocols such as HTTPS, BEEP,
 IMAP, etc... define the necessary handshake mechansims to accomplish
 this task. Newly-defined application protocols should take this into
 consideration and incorporate appropriate mechanisms.

 The basic mechanism works in the following way:
 1. During some portion of the protocol handshake, the client sends
 to the server the original name of the desired destination (i.e.
 no transformations that may have resulted from NAPTR

https://datatracker.ietf.org/doc/html/draft-daigle-snaptr-01

 replacements, SRV targets, or CNAME changes). In certain cases
 where the application protocol does not have such a feature but
 TLS may be used, it is possible to use the "server_name" TLS
 extension.
 2. The server sends back to the client a credential with the
 appropriate name. For X.509 certificates, the name would either
 be in the subjectDN or subjectAltName fields. For Kerberos, the

Daigle & Newton Expires December 28, 2004 [Page 20]

Internet-Draft draft-daigle-snaptr-01 June 2004

 name would be a service principle name.
 3. Using the matching semantics defined by the application protocol,
 the client compares the name in the credential with the name sent
 to the server.
 4. If the names match and the credentials have integrity, there is
 reasonable assurance that the correct end point has been reached.
 5. The client and server establish an integrity-protected channel.

 It is important to note that this document does not define either the
 handshake mechanism, the specific credential naming fields, nor the
 name matching semantics. Definitions of S-NAPTR for particular
 application protocols MUST define these.

9. Acknowledgements

 Many thanks to Dave Blacka, Patrik Faltstrom, Sally Floyd, and Ted
 Hardie for discussion and input that has (hopefully!) provoked
 clarifying revisions of this document.

10. References

10.1 Normative References

 [1] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [2] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", RFC 2234, November 1997.

 [3] Gulbrandsen, A., Vixie, P. and L. Esibov, "A DNS RR for
 specifying the locatio n of services (DNS SRV)", RFC 2782,
 February 2000.

 [4] Mealling, M., "Dynamic Delegation Discovery System (DDDS) Part
 One: The Comprehensive DDDS", RFC 3401, October 2002.

 [5] Mealling, M., "Dynamic Delegation Discovery System (DDDS) Part
 Three: The Domain Name System (DNS) Database", RFC 3403, October
 2002.

https://datatracker.ietf.org/doc/html/draft-daigle-snaptr-01
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2234
https://datatracker.ietf.org/doc/html/rfc2782
https://datatracker.ietf.org/doc/html/rfc3401
https://datatracker.ietf.org/doc/html/rfc3403

 [6] Mealling, M., "Dynamic Delegation Discovery System (DDDS) Part
 Four: The Uniform Resource Identifiers (URI)", RFC 3404, October
 2002.

 [7] Narten, T. and H. Alvestrand, "Guidelines for Writing an IANA
 Considerations Section in RFCs", BCP 26, RFC 2434, October 1998.

Daigle & Newton Expires December 28, 2004 [Page 21]

https://datatracker.ietf.org/doc/html/rfc3404
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc2434

Internet-Draft draft-daigle-snaptr-01 June 2004

10.2 Informative References

 [8] Berners-Lee, T., Fielding, R. and L. Masinter, "Uniform
 Resource Identifiers (URI): Generic Syntax", RFC 2396, August
 1998.

 [9] Newton, A. and M. Sanz, "IRIS Domain Registry Schema",
draft-ietf-crisp-iris-dreg-06 (work in progress), April 2004.

 [10] Newton, A. and M. Sanz, "Using the Internet Registry
 Information Service (IRIS) over the Blocks Extensible Exchange
 Protocol (BEEP)", draft-ietf-crisp-iris-beep-04 (work in
 progress), April 2004.

 [11] Atkins, D. and R. Austein, "Threat Analysis Of The Domain Name
 System", draft-ietf-dnsext-dns-threats-07 (work in progress),
 April 2004.

 [12] Arends, R., Larson, M., Austein, R. and D. Massey, "Protocol
 Modifications for the DNS Security Extensions",

draft-ietf-dnsext-dnssec-protocol-06 (work in progress), May
 2004.

Authors' Addresses

 Leslie Daigle
 VeriSign, Inc.
 21355 Ridgetop Circle
 Dulles, VA 20166
 US

 EMail: leslie@verisignlabs.com; leslie@thinkingcat.com

 Andrew Newton
 VeriSign, Inc.
 21355 Ridgetop Circle
 Dulles, VA 20166
 US

https://datatracker.ietf.org/doc/html/draft-daigle-snaptr-01
https://datatracker.ietf.org/doc/html/rfc2396
https://datatracker.ietf.org/doc/html/draft-ietf-crisp-iris-dreg-06
https://datatracker.ietf.org/doc/html/draft-ietf-crisp-iris-beep-04
https://datatracker.ietf.org/doc/html/draft-ietf-dnsext-dns-threats-07
https://datatracker.ietf.org/doc/html/draft-ietf-dnsext-dnssec-protocol-06

 EMail: anewton@verisignlabs.com

Appendix A. Pseudo pseudocode for S-NAPTR

A.1 Finding the first (best) target

 Assuming the client supports 1 protocol for a particular application

Daigle & Newton Expires December 28, 2004 [Page 22]

Internet-Draft draft-daigle-snaptr-01 June 2004

 service, the following pseudocode outlines the expected process to
 find the first (best) target for the client, using S-NAPTR.

 target = [initial domain]
 naptr-done = false

 while (not naptr-done)
 {
 NAPTR-RRset = [DNSlookup of NAPTR RRs for target]
 [sort NAPTR-RRset by ORDER, and PREF within each ORDER]
 rr-done = false
 cur-rr = [first NAPTR RR]

 while (not rr-done)
 if ([SERVICE field of cur-rr contains desired application
 service and application protocol])
 rr-done = true
 target= [REPLACEMENT target of NAPTR RR]
 else
 cur-rr = [next rr in list]

 if (not empty [FLAG in cur-rr])
 naptr-done = true
 }

 port = -1

 if ([FLAG in cur-rr is "S"])
 {
 SRV-RRset = [DNSlookup of SRV RRs for target]
 [sort SRV-RRset based on PREF]
 target = [target of first RR of SRV-RRset]
 port = [port in first RR of SRV-RRset]
 }

 ; now, whether it was an "S" or an "A" in the NAPTR, we
 ; have the target for an A record lookup

 host = [DNSlookup of target]

https://datatracker.ietf.org/doc/html/draft-daigle-snaptr-01

 return (host, port)

A.2 Finding subsequent targets

 The pseudocode in Appendix A is crafted to find the first, most

Daigle & Newton Expires December 28, 2004 [Page 23]

Internet-Draft draft-daigle-snaptr-01 June 2004

 preferred, host-port pair for a particular application service an
 protocol. If, for any reason, that host-port pair did not work
 (connection refused, application-level error), the client is expected
 to try the next host-port in the S-NAPTR tree.

 The pseudocode above does not permit retries -- once complete, it
 sheds all context of where in the S-NAPTR tree it finished.
 Therefore, client software writers could
 o entwine the application-specific protocol with the DNS lookup and
 RRset processing described in the pseudocode and continue the
 S-NAPTR processing if the application code fails to connect to a
 located host-port pair;
 o use callbacks for the S-NAPTR processing;
 o use an S-NAPTR resolution routine that finds *all* valid servers
 for the required application service and protocol from the
 originating domain, and provides them in sorted order for the
 application to try in order.

Appendix B. Availability of Sample Code

 Sample Python code for S-NAPTR resolution is available from
http://www.verisignlabs.com/pysnaptr-0.1.tgz .

https://datatracker.ietf.org/doc/html/draft-daigle-snaptr-01
http://www.verisignlabs.com/pysnaptr-0.1.tgz

Daigle & Newton Expires December 28, 2004 [Page 24]

Internet-Draft draft-daigle-snaptr-01 June 2004

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF's procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

Full Copyright Statement

 Copyright (C) The Internet Society (2004). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be

https://datatracker.ietf.org/doc/html/draft-daigle-snaptr-01
https://datatracker.ietf.org/doc/html/bcp11

 revoked by the Internet Society or its successors or assignees.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION

Daigle & Newton Expires December 28, 2004 [Page 25]

Internet-Draft draft-daigle-snaptr-01 June 2004

 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/draft-daigle-snaptr-01

Daigle & Newton Expires December 28, 2004 [Page 26]

