
Network Working Group A. Dalela
Internet Draft Cisco Systems
Intended status: Informational M. Hammer
Expires: July 2012 January 4, 2012

Service Orchestration Protocol (SOP) Requirements
draft-dalela-orchestration-00.txt

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

 This Internet-Draft will expire on July 4, 2012.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Dalela Expires July 4, 2012 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft SOP Requirements January 2012

Abstract

 Cloud services need to interoperate across cloud providers, service
 vendors and private/public domains. To enable this interoperability,
 there is need for a standard protocol for exchanging service
 information. This draft describes requirements for such a protocol.
 Current cloud implementations expose application level APIs, which
 are not syntactically and semantically compatible with each other.
 One approach to interoperate cloud services is to standardize the
 protocol while leaving the API definition implementation specific.
 Standard protocols have been used widely in the Internet and can be
 extended to cloud. Use of such protocols is compatible with existing
 cloud APIs, which can exchange information in a standard protocol.
 New APIs may also be developed using a standard protocol. By this, it
 would be possible to interoperate diverse APIs across service
 providers, service vendors and service users.

Table of Contents

1. Introduction...3
2. Conventions used in this document..............................4
3. Terms and Acronyms...4
4. Interoperability Scenarios.....................................6
5. Cloud Open Source and Open Standards..........................10
6. Is Cloud Control an Internet Problem?.........................11
7. Overview of Standard Work.....................................13
8. Deficiencies of Current Models................................14

8.1. Service Discovery..15
8.2. Service Publishing.......................................15
8.3. Persistent Identities....................................15
8.4. Blocking Calls...16
8.5. Transaction Support......................................16
8.6. Interactive Behaviors....................................17

9. Extensibility Considerations..................................17
9.1. Service-Independent Components...........................17
9.2. Service-Dependent Components.............................19

10. Protocol Requirements..19
11. Separating Control and Policy Planes.........................20
12. Service Management Policies..................................23

12.1. Routing Policies..23
12.2. Security Policies.......................................24
12.3. Service Policies..24

13. Architecture Requirements....................................25
14. IANA Considerations..26
15. Conclusions..26
16. References...26

16.1. Normative References....................................26

Dalela Expires July 4, 2012 [Page 2]

Internet-Draft SOP Requirements January 2012

16.2. Informative References..................................26
17. Acknowledgments..27

1. Introduction

 Cloud computing has become important for an on-demand delivery of a
 variety of services, broadly called XaaS, such as Infrastructure,
 Platform and Software as a Service [NIST]. Users of such services may
 be individuals, enterprises, content providers, or other cloud
 providers. These users need to be able to request and manage services
 seamlessly across private, public, hybrid, or community clouds. Lack
 of interoperability across these domains will lead to new kinds of
 cloud silos, which will in turn hinder economies of scale.

 Current cloud deployments use web-services (SOAP or REST) to deliver
 services over the Internet. Each provider exposes different APIs that
 generally do not interoperate, because each API has different syntax
 and semantics. To interoperate, we must either converge on one API
 format, or translate between them. Both alternatives are hard. API
 translations are difficult because APIs have different semantics.
 Converging to one API means current services may be broken. We want
 to maintain diverse APIs, while enabling interoperability.

 Historically, in Internet, different APIs have interoperated through
 use of standard protocols. Basically, we separate the network view of
 information from the application view. Network carries information
 via protocols while applications consume information via APIs.

 Web-services equate the network view of information with the
 application view. Basically, each API has its own packet format which
 is derived from the API, and changes to API syntax or semantics will
 change the packet format. This is at the root of interoperability
 issues. As applications proliferate, each API will project its view
 of information into the network. As a result, there will be as many
 communications "protocols" as there are applications. This is
 contrary to the (unstated) assumption in Internet that there are far
 fewer protocols than there are applications, so that many
 applications can communicate using the same protocols.

 To remedy this problem we should separate the network and application
 views of information and design them independently. Applications may
 design APIs in many ways and two applications should communicate
 using a standard protocol whether or not they use the same API. This
 document describes requirements for such a standard protocol.

Dalela Expires July 4, 2012 [Page 3]

Internet-Draft SOP Requirements January 2012

2. Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC-2119 [RFC2119].

 In this document, these words will appear with that interpretation
 only when in ALL CAPS. Lower case uses of these words are not to be
 interpreted as carrying RFC-2119 significance.

3. Terms and Acronyms

 +------------+ +--------------------------------------+
 | Customer |<-------->| Provider | | | | | | |
 | +--------+ | | +----------------------------------+ |
 | | User | | | | Service=X +--------------------+ | |
 | | |**************| |Product-1 (Vendor-A)| | |
 | | | | | | +--------------------+ | |
 | | | | | +----------------------------------+ |
 | | | | | +----------------------------------+ |
 | | |**************| Service=Y +--------------------+ | |
 | | | | | | |Product-2 (Vendor-A)| | |
 | | | | | | +--------------------+ | |
 | | | | | | +--------------------+ | |
 | | | | | | |Product-3 (Vendor-B)| | |
 | | | | | | +--------------------+ | |
 | +--------+ | | +----------------------------------+ |
 +------------+ +--------------------------------------+

 Fig-1: Cloud Ecosystem and Relations

 Provider: A Provider is a supplier of cloud services who offers these
 services to cloud Customers and Users, per some business agreement.

 Service: Any virtual instance of a hardware or software product that
 can be owned by a Customer or User for their personal use.

 Vendor: A Vendor is a hardware/software product vendor who provides
 the technology implementation of a service. In some cases, Providers
 and Vendors may be the same business entity.

 Product: A unit of software or hardware entity that is sold by the
 Vendor to the Provider to be made available as a service.

 Customer: A business entity that enters into an agreement with a
 Provider to source cloud services for their users. A customer would
 be an enterprise that buys cloud services. A customer would define

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Dalela Expires July 4, 2012 [Page 4]

Internet-Draft SOP Requirements January 2012

 policies for service and may authenticate its users. Customers may
 also be called Subscribers of a cloud provider's services.

 User: A user is the end consumer of cloud services. Users belong to
 the customer and place service requests on the provider. These
 requests are controlled by Customers who could be enterprises,
 individuals or other cloud providers who source services from one
 cloud and provide them to another.

 Virtual Provider: A Provider who does not host or manage services,
 but redirects requests to other providers who do that. A Virtual
 Provider has customers but does not operate services.

 Orchestration: This is the act of creating, modifying, moving or
 deleting services. It may involve one or more actions performed in
 sequence or in parallel. These actions could be invoked on hardware
 and software services, or even on other cloud providers.

 Service Domain Name (SDN): This is a dotted-decimal notation to
 represent service names hierarchically. For example, a virtual
 machine can be represented as iaas.compute.virtual. Each SDN will be
 associated with a set of service specific attributes.

Dalela Expires July 4, 2012 [Page 5]

Internet-Draft SOP Requirements January 2012

4. Interoperability Scenarios

 The following interoperability scenarios should be covered by the
 protocol. We list them here because depending on the context
 interoperability may mean different things.

 Scenario S-1. Users Interoperate Across Cloud Providers. Users must
 be able to use cloud services from different cloud providers in the
 same way. This allows a user to move across providers, or source the
 same service in a different geography from a different provider. In
 Figure-2, a user accesses the compute service across various
 providers in the same way.

 | | | |
 Customer | Virtual | Provider 1 | Provider 2 |
 | Provider | | |
 +--------------------------------------S-1-------+ |
 | | | | | |
 +-----S-1-----+ | | | |
 | | | | | | |
 +-------+ | +-------+ | +-------+ | +--------+ |
 | Cloud | | | Cloud |--------| Cloud | | | Cloud | |
 |Control| | |Control| | |Control| | | Control| |
 +-------+ | +-------+ | +-------+ | +--------+ |
 | | | | | | |
 +-------+ | | +---------+ | +---------+ |
 | User | | | | Compute | | | Compute | |
 +-------+ | | +---------+ | +---------+ |
 * | | * | * |
 * | service usage| * | * |
 ** |
 | | | |

 Fig-2: Scenario S-1 - User Interoperates Across Providers

Dalela Expires July 4, 2012 [Page 6]

Internet-Draft SOP Requirements January 2012

 Scenario S-2. Users Interoperate Between Private and Public Clouds.
 Users should be able to interoperate private clouds with those in the
 provider domain. This could involve moving workloads between private
 and public clouds. It also means creating virtual services in the
 same way in the public cloud as that in the private cloud. In Figure-
 3, a user creates compute in the private and public clouds in same
 way. Private storage is accessed from public and private compute.

 | | | |
 Customer | Virtual | Provider 1 | Provider 2 |
 | Provider | | |
 | | | |
 +--------------------------------------S-2---------+ |
 | | | | | |
 +-----S-2-----+ | | | |
 | | | | | | |
 +-------+ | +-------+ | +-------+ | +-------+ |
 | Cloud | | | Cloud |--------| Cloud | | | Cloud | |
 +--|Control| | |Control| | |Control| | |Control| |
+-------+	+-------+	+-------+	+-------+				
+-------+							
	User	***					
				*		*	
+-------+		*		*			
*		*		*			
+-S-2--+ *		*		*			
	*		*		*		
+-------+		+---------+	+---------+				
	Compute	<-- move workload -->	Compute	<-move->	Compute		
+-------+		+---------+	+---------+				
 +-S-2--+ * | | * | * |
 | * | | * | * |
 +-------+ | | * | * |
 |Storage|*** |
 +-------+ | | | |

 Fig-3: Scenario S-2 - User Interoperates Across Private and Public

Dalela Expires July 4, 2012 [Page 7]

Internet-Draft SOP Requirements January 2012

 Scenario S-3. Providers Interoperate With Other Providers. Providers
 should be able to interoperate their services with other providers.
 This could mean sourcing each other services when the demand suddenly
 grows, or using one vendor's services as backup or for disaster
 recovery under an outage. Providers might agree to host services in
 each other clouds in a follow the sun models, where workload moves
 between providers located in different geographies. There could be
 "provider of providers" - a virtual provider that sources services
 across different providers by using interoperability. In Figure-4, a
 provider sources the storage service to complement their compute
 service, and offers compute and storage as a bundle to the user.

 | | | |
 Customer | Virtual | Provider 1 | Provider 2 |
 | Provider | | |
 | | | |
 +-------+ | +-------+ | +-------+ | +--------+ |
 | Cloud |-----| Cloud |--S-3---| Cloud |---S-3---| Cloud | |
 |Control| | |Control| | |Control| | | Control| |
 +-------+ | +-------+ | +-------+ | +--------+ |
 | | | | | | |
 | | | | | | |
 | | | | | | |
 +-------+ | | +---------+ | +---------+ |
 | User |*********************| Compute |*******| Storage | |
 | | | | +---------+ | +---------+ |
 +-------+ | | | |
 | | | |

 Fig-4: Scenario S-3 - Providers Interoperate Amongst Providers

Dalela Expires July 4, 2012 [Page 8]

Internet-Draft SOP Requirements January 2012

 Scenario S-4. Providers Interoperate Services Across Service Tiers.
 A cloud provider may deliver many kinds of services, layered on top
 of one another. For instance, SaaS may use PaaS, which in turn may
 use IaaS, network and security services, etc. Since cloud providers
 build services incrementally, it should be possible to interoperate
 services across these tiers, without having to build a new IaaS
 system for every new PaaS, or a new PaaS for every SaaS. In Figure-5,
 a provider sources IaaS services for their PaaS from another provider
 in the same way as they source them internally.

 | | | |
 Customer | Virtual | Provider 1 | Provider 2 |
 | Provider | | |
 | | | |
 +-------+ | +-------+ | +-------+ | +--------+ |
 | Cloud |-----| Cloud |--------| Cloud |---S-4---| Cloud | |
 |Control| | |Control| | |Control| | | Control| |
 +-------+ | +-------+ | +-------+ | +--------+ |
 | | | | | | | |
 | | | S-4 | | S-4 |
 | | | | | | | |
 +-------+ | | +------+ | | +------+ |
 | User |*******************| SaaS |**************| IaaS | |
 | | | | +------+ | | +------+ |
 +-------+ | | * | | * |
 | | * S-4 | * | | |
 | | +------+ | | * |
 | | | PaaS |--+ | * |
 | | +------+****************** |
 | | * | | |
 | | * S-4 | |
 | | +------+ | | |
 | | | IaaS |--+ | |
 | | +------+ | |

 Fig-5: Scenario S-4 - Providers Interoperate Across Tiers

Dalela Expires July 4, 2012 [Page 9]

Internet-Draft SOP Requirements January 2012

 Scenario S-5. Providers Interoperate Across Service Vendors. A cloud
 provider may source a service from more than one vendor. Examples of
 these include compute virtualization, storage, network, security,
 etc. A customer's existing orchestration solution should be able to
 orchestrate multi-vendor products and services. In Figure-6,
 providers deliver a service using offerings from multiple vendors in
 the same way. These inter-vendor services may also be connected.

 | | | |
 Customer | Virtual | Provider 1 | Provider 2 |
 | Provider | | |
 | | | |
 +-------+ | +-------+ | +-------+ | +-------+ |
 | Cloud |-----| Cloud |--------| Cloud |---S-4---| Cloud | |
 |Control| | |Control| | |Control| | |Control| |
 +-------+ | +-------+ | +-------+ | +-------+ |
 | | | | | | | | |
 | | | / S-5 | S-5 \ |
 | | | / | | | \ |
 +-------+ | | + +-------+ | +-------+ + |
 | User |********************|**|Compute|********|Compute| | |
 | | | | | |Vendor1|** | **|Vendor3| | |
 +-------+ | | | +-------+ * | * +-------+ | |
 | | S-5 +-------+ * | * +-------+ S-5 | | | | | | |
 | | | |Storage| * | * |Storage| | |
 | | +--|Vendor2|** | **|Vendor4|--+ |
 | | +-------+ | +-------+ |

 Fig-6: Scenario S-5 - Providers Interoperate Across Service Vendors

 The above scenarios are illustrative and non-exhaustive. There could
 be many permutations of the above scenarios. Standardization will
 benefit users, vendors and providers - the total cloud ecosystem.

5. Cloud Open Source and Open Standards

 Some efforts towards cloud openness today are focused on Open Source
 implementations of cloud services. This leads to the question of the
 relation between Open Source and Open Standards, as different ways to
 achieve interoperability. Obviously, cloud will not be totally open
 or closed source. The key problem in cloud is not the ability to
 inspect and modify code, which open source enables, but to integrate
 services, both open and closed. To integrate Open and Closed Source
 services, Open Standards are required, which may be implemented as
 Open Source. Open standards don't detract us from open source.

Dalela Expires July 4, 2012 [Page 10]

Internet-Draft SOP Requirements January 2012

 On the other hand, lack of open standards can make open source less
 attractive because there can be many open source implementations that
 are incompatible. Within an implementation, various versions may be
 incompatible. This means that Open Source alone cannot solve problems
 of interoperability unless everyone converges to a common code base
 and contributes their private changes back into the common base. This
 is impossible to mandate and unlikely to happen.

 Open Standard implementations on the other hand will be interoperable
 even when implementations are enhanced in different ways. So Open
 Standards enhance rather than detract from benefits of Open Source.
 The key problem for cloud is service integration across vendors,
 providers and customers. These services will be Open Source, Closed
 Source, or multiple variations of Open Source. Integrating the
 variety of services is best done through Open Standards.

6. Is Cloud Control an Internet Problem?

 Given that problems of cloud interoperability need to be addressed
 through standards, it may not be obvious that they need to be
 addressed by IETF. Why is cloud control an IETF problem?

 First, to create, modify or move a distributed system, orchestrators
 need to know network topology. For instance, if firewall rules have
 to be installed for a VM, they must be installed on a device that
 lies in the "path" to the VM. To know which firewall lies on the path
 to a given VM, topology needs to be known. Similarly, if bandwidth
 needs to be provisioned between two sites, it is necessary to know
 which routers are at the edge of the two sites so that bandwidth can
 be provisioned between those routers. Likewise, if a VM is moved from
 one location to another, all associated network port configuration
 (such as VLAN or policy) needs to be dragged along with the VM. That
 requires the orchestrator to know which port the VM was attached on,
 and where it is going to move next. In some cases, the VLAN and
 policy may need to be provisioned not just in the access but also on
 the trunk ports to permit the packet flow. That requires the
 orchestrator to know which access is mapped to which trunks. To
 ensure that performance of a VM does not degrade after a move, it may
 be necessary to determine whether sufficient bandwidth is available
 at the destination location before the move is made. That requires
 knowledge of the paths that will be used and if those paths are
 congested. An orchestrator may need to assess the "distance" between
 the compute and network storage and between the user's location and
 the service's location for optimal performance.

 There are also cases when knowledge of topology is needed for network
 optimization. For example, the network paths may not be optimal after

Dalela Expires July 4, 2012 [Page 11]

Internet-Draft SOP Requirements January 2012

 a VM move, and the paths may need to be re-provisioned. Such things
 are common with multicast and broadcast traffic that uses trees.
 During outages, network topologies are dynamically reconfigured.
 Recovery procedures must be aware of this network reconfiguration.
 The above examples illustrate a close relation between network
 information and orchestration of services. These two are currently
 treated as separate domains, and they need to be linked.

 Second, cloud service discovery is about knowing the capability of
 devices in the Internet. Today, IP routing allows us to discover the
 location of IP addresses, but not their capabilities. For instance,
 the same IP address can belong to a PC, a router, a storage array, an
 IP-TV, a mobile phone, etc. Network protocols don't tell us the
 "semantics" of the IP, namely what that IP can "do". This of course
 is not a new problem, but cloud makes this problem very important.
 Cloud is about the ability to know which capabilities are available
 where in the network. This would be achieved if some protocol
 advertizes capabilities of IP addresses. Ideally, the systems that
 advertize addresses and those that advertise capability should be
 linked because the capability is of the address. To reach that
 capability, we need to translate it into an address.

 When a service is yet to be created, it needs to be referred by its
 capability because the DN or IP for that service is yet to be
 created. This capability can be advertized by some service
 orchestrator that can create the service based on a request. In the
 Internet, a service naming mechanism is needed to advertize and
 request services by their "type" instead of DN or IP (DN and IP are
 useful for advertizing and requesting services that exist). These
 names can have a similar structure like DNS or IP addresses (dotted-
 decimal) but need to belong to a separate address space. We can call
 these "type" names Service Domain Names or SDNs.

 Third, a cloud user may not care about the IP or DN of a service.
 What users care about is the "type" of service they are looking for.
 This service may be fulfilled anywhere in the network. The user will
 issue a request referencing the SDN, and would expect the request to
 be automatically routed to its correct destination. This is possible
 if SDNs have been advertised in the network. A user can forward a
 request to service aware router, and the router will map the request
 to destination. Mappings between service types and addresses can be
 done at the edges of the Internet allowing users to be unaware of IP
 addresses while the Internet to be unaware of services. A variety of
 policy controls can be built at the network edges to determine how a
 service "prefix" is mapped into an IP "prefix".

Dalela Expires July 4, 2012 [Page 12]

Internet-Draft SOP Requirements January 2012

 The problem of routing based on "types" is similar to routing based
 on IP addresses. In both cases, addresses need to be discovered,
 aggregated by some meaningful prefix, and advertized to routers
 upstream. These similarities imply that service routing can be
 implemented in ways similar to Internet routing in the past.

 Fourth, thus far the link between capability and address has been
 done for services that are already created, generally within an
 administrative domain. For instance, it is possible to use DNS to
 discover the address of a printer or email server. Cloud deals with
 creation of services on-demand. This discovery over the Internet
 needs a somewhat different ability, such as policy control, routing,
 billing of services, authentication, security from denial of service,
 SLA announcements, etc. There is a greater amount of complexity in
 advertizing service information, publishing service interest,
 policies to control per-user services, etc. However, these issues are
 similar to things that have been done in IETF earlier.

 In summary, orchestration needs to know network topology. The network
 can learn and advertize service capabilities like IP addresses. A
 mapping between addresses and capability is needed to perform service
 request routing. Such mappings have been created in the past, but
 just not to the extent required for cloud. The problem is both
 relevant for IETF and optimally solved within IETF.

7. Overview of Standard Work

 To run the service exchange network over the current Internet, three
 important enhancements to the current schemes are proposed.

 First, we need a service naming convention that addresses services by
 their "types" rather than by their DN or IP addresses. This naming
 system should also be hierarchical, in order to aggregate service
 types into "classes" of services. For instance, virtual machines may
 be referred by the name iaas.compute.virtual and firewalls by the
 name iaas.network.services.firewall. Each class of service may be
 associated with one or more attributes, or may be further divided
 into sub-classes, or sub-sub-classes, with suitable names. We can
 refer to these names as Service Domain Names or SDNs.

 Second, we need a protocol that advertizes SDNs and routes service
 requests based upon these SDNs. This protocol will facilitate service
 aggregation based on names, service discovery, advertisement,
 selective publishing and indication of service interest, besides
 mechanisms to route the request based on where it can be fulfilled.
 We can refer to this as a Service Routing System (SRS).

Dalela Expires July 4, 2012 [Page 13]

Internet-Draft SOP Requirements January 2012

 The SRS needs to map service "prefixes" into IP "prefixes" and will
 interact with a policy based control system, where users, customers
 or providers can define rules for routing requests to a destination.
 The SRS discovers services and their locations and provides the
 mapping between Service Names and IP or DN. Using this mapping it is
 possible to identify the service by its name as well as type. The SN,
 DN and IP names are orthogonal name spaces. That is, any SN may map
 to any DN, which may in turn map to any IP.

 Third, there is need for a common format to specify service
 attributes. This common format can be XML and it is necessary to
 define cross-service-domain orchestration rules. For example, in a L3
 network, the IP of a host must belong to the subnet configured on the
 switch. The IP access-list on the switch must permit the IP address
 on the host. The ports open on a host must also be open on the
 firewall. The file systems accessible to a VLAN must align with the
 VLAN configured on the host access interface. The user-ids
 provisioned on the server must be available to authentication on the
 network storage. The speed of the virtual host interface must be
 equal to the bandwidth allowed to the host on the virtual or physical
 network interface. The virtual MAC allocated to a VM must not clash
 with any other virtual or physical MACs allocated anywhere else on
 the VLAN. The authentication system must use a combination of the
 tenant-id on the network in addition to the user-id on the host.

 These relations represent semantic "rules" of orchestration. Today,
 we can't express these rules because information schemas across
 domains are incompatible. In effect it requires us to map some
 parameter in some CLI to some OID in another MIB. Or, some attribute
 in some XML schema to some TLV in another Protocol. Or, the value of
 a resource in a GUI to a range specified via another API. If all
 services are described in a common format (such as XML) then
 orchestration rules can be easily specified. This will allow rapid
 customization of services by defining orchestration rules in a high-
 level language rather than programming in a low-level language.

8. Deficiencies of Current Models

 Cloud deployments today use HTTP web-services (SOAP and REST) to
 distribute service information and manage services. Web-services were
 designed for distributed application objects, where one object
 executes requests on other objects. This leads to the question if
 treating cloud orchestration as a distributed application object is
 the right approach to thinking about cloud services. In this section
 we will describe limitations of the web-service model. The web-
 service model is constrained by the capabilities of HTTP in service
 discovery, publishing and transaction management.

Dalela Expires July 4, 2012 [Page 14]

Internet-Draft SOP Requirements January 2012

8.1. Service Discovery

 HTTP was designed to connect clients to servers, but not designed for
 clients and servers to discover each other. HTTP assumes that client-
 server discovery happens through other mechanisms. The Universal
 Description Discovery and Integration (UDDI) web-service standard for
 instance defines registries where providers could publish their
 services but this mechanism is manual and not widely used.

 In the cloud network, operators require services to be automatically
 discovered and advertized to consumers. Dynamic service discovery is
 also needed because as services are allocated or de-allocated,
 capacity dynamically changes. Manually detecting these changes would
 be nearly impossible for any large deployment.

 HTTP does not have procedures by which a network of clients and
 servers can DISCOVER others and ADVERTISE their presence. HTTP allows
 a client to connect to a server after it has been discovered.

8.2. Service Publishing

 With millions of possible services, users may rarely be interested in
 all such services. They may instead define selected types of service
 "interest" and expect to be "notified" when new services of interest
 are available. HTTP does not support SUBSCRIBE and PUBLISH mechanisms
 by which a client can SUBSCRIBE to select interests and would be
 notified of new services through a PUBLISH.

 To know of the existence of new services, a Client must query a
 registry periodically. This makes service publishing a synchronous
 phenomenon and can be very hard to scale if millions of users query
 available services at regular intervals. To scale service publishing,
 it is necessary to make publishing an asynchronous phenomenon. HTTP
 is not designed to deal with asynchronous publishing.

8.3. Persistent Identities

 HTTP loses the identity of a client after a transaction (such as GET
 or POST) has been completed. This means that every new transaction
 has to be authenticated and may require a new key-exchange. When
 millions of service instances have to advertize their presence or
 publish capabilities periodically, it is imperative that the
 underlying control protocol can maintain identity information
 persistently across these multiple transactions.

 For instance in Session Initiation Protocol [SIP] users REGISTER with
 a SIP Proxy, at which time they are authenticated. Subsequent session

Dalela Expires July 4, 2012 [Page 15]

Internet-Draft SOP Requirements January 2012

 initiations don't require authentication. The identity established at
 the time of registration can be used across all transactions. This
 mechanism can be very useful as a single sign-on capability because
 after registering once, every other service does not require the user
 to be authenticated. The user can interact with all services by using
 the identity established during the registration. HTTP does not
 enable this because authentication is done by the server.

8.4. Blocking Calls

 In a web-service call, a client blocks waiting for a response from
 the server. There is no mechanism for the client to timeout on a
 request, or cancel the request midway. If the server fails to respond
 to the request, the client must separately terminate the connection.
 This is not ideal because the server may in fact be taking a longer
 period of time to fulfill the request. When requests are used to
 orchestrate complex services, a server needs to send provisional
 responses indicating that a "session is in progress".

 When a service involves multiple independent but related components
 (such as network, storage and compute), failure in one component may
 render the entire service unusable. In such cases, it is necessary to
 cancel the request midway. HTTP blocks for the server to respond and
 cannot cancel on-going transactions. The only mechanism to terminate
 the transaction mid-way is to close the HTTP connection, which can
 then result in leaked resources or incomplete actions.

8.5. Transaction Support

 Complex orchestration scenarios need to treat multiple operations as
 a single atomic "transaction". For instance, an orchestration request
 may allocate compute, storage, network and security resources in a
 single request. Unless all of these operations have succeeded, the
 resulting service is not useful and must be cancelled as a whole. If
 all operations have succeeded, then they must be committed as a
 whole. Complex orchestrations thus need transaction support.

 There are two ways to build this transaction support. First, each
 service can have its own transactions and cancelations. Second,
 transactions can be available natively in the orchestration protocol.
 Obviously, the first approach is very complex, and the preferred
 route is to have transaction support in the protocol.

 HTTP does not have the ability to create transactions. HTTP request-
 response is atomic and considered complete individually. One HTTP
 request-response is independent of prior or subsequent request-
 response even to the same server, let alone another server.

Dalela Expires July 4, 2012 [Page 16]

Internet-Draft SOP Requirements January 2012

 Orchestration requires the ability to correlate request-responses
 across multiple servers and commit or cancel them as a whole.

 If an orchestrator that uses HTTP web-services fails after making a
 request, the client will believe that the transaction has failed,
 while the service nodes continue to allocate resources towards
 completion. The client cannot be billed for the service, although the
 services would be created. To address reliability issues, each
 service must build application level transactions, and these will
 rapidly grow as services are modified. A native mechanism at the
 protocol level is required to address this.

8.6. Interactive Behaviors

 Incompatibilities between a cloud request and cloud policies or
 partial failures in service orchestration may require an orchestrator
 to prompt a user with questions and/or confirmation before
 proceeding. For example, if a VM has been allocated but the requested
 amount of network storage is not available, the orchestrator may need
 to prompt the user to allocate a reduced amount of storage. Such
 interactive behaviors need to pause a transaction waiting for a
 confirmation from a user. HTTP does not allow a server to make
 another client connection to ask this question during an on-going
 transaction. Also, if the question is passed as a provisional
 response to the user, a user's response would be treated as a new
 request. HTTP has no schemes to tie a request to another request in
 the past, as all requests are independent.

9. Extensibility Considerations

 One of the key issues in standardizing service orchestration is how
 this standard can be extended for service variety. To make the
 orchestration standard extensible to many services, we need to
 separate things that are service independent from those that are
 service dependant. Through this separation, it would be possible to
 extend a service protocol to transmit information about a variety of
 diverse services. This separation is described below.

9.1. Service-Independent Components

 - Orchestration Verbs. Regardless of the kind of service that is
 being offered, there is need for service Discovery, Creation,
 Modification, Deletion, Migration, etc. There is also need for
 Confirming and Canceling requests midway through a transaction or
 indicating Successes and Failures upstream. Cloud involves many
 such useful "verbs" which are service independent. Whether we are
 creating a VM, VPN or Disk, the "CREATE" verb can be used to

Dalela Expires July 4, 2012 [Page 17]

Internet-Draft SOP Requirements January 2012

 indicate the operation of service creation. This common "CREATE"
 can be used for a variety of create tasks, and its meaning can
 depend on the receiver. Defining the verb once eliminates the need
 to redefine the same operation for each new service. A collection
 of such verbs can be standardized for any service to use.

 - Transaction Nouns. To construct orchestration message
 transactions, there is need to address messages to destinations and
 identify their source, match requests with responses, bundle
 multiple such messages into a single complex exchange, sequence
 requests in the correct order with sequence numbers, have message
 fields to identify type of content and content lengths, common
 procedures for challenge and authentication of requestors, and many
 other such transaction level functions. Like orchestration verbs,
 these are service independent and can be standardized, without
 limiting service diversity and flexibility.

 - Workflow and Task Language. Different users will request different
 combinations of services. One user might request a VM with only an
 IP address, but another user may also require storage allocation,
 bandwidth reservation, a secure firewall and a VPN to be setup
 automatically when a VM is allocated. To accommodate variety of
 service requests, a generic mechanism to define Workflows is
 required. A Workflow identifies a set of tasks to be performed for
 service orchestration. Users or providers may define Workflows at
 various levels of abstractions. Hence, it is important to
 distinguish Workflows from actual Tasks. A Workflow might equal to
 one Task, or a Workflow might comprise of several Tasks bundled as
 a single request. A service independent language to describe Tasks
 and Workflows is needed. A User should be able to refer to
 Workflows and Tasks using unique identifiers.

 - Service Domain Names. To name services, a classification scheme is
 required. Classification allows us to combine attributes across
 similar types of services. We can take an object oriented approach
 for defining service domains. For example, "network" can be a root
 domain, "switching", "routing" and "network-services" can be child
 domains of the root "network" domain, "security" and "packet
 inspection" can be child domains of the "network-services" domain,
 etc. Child domains may inherit properties of the parent domain. A
 child domain may override the parent domain's attributes by
 redefining them in the child domain. Once a domain naming is well
 understood, service Proxies only need to advertize domains, with
 references to well-understood domain schemas. Users who request
 services will know what they are requesting based on domain name of
 the service. They will also know each domain's attributes. This
 abstracts a service implementation from the service user.

Dalela Expires July 4, 2012 [Page 18]

Internet-Draft SOP Requirements January 2012

9.2. Service-Dependent Components

 - Service Domain Parameters. Each service domain can have its own
 service specific parameters. They can reuse existing parameters by
 inheriting an existing domain. Domain parameters are inputs into a
 request, and effectively can be used like parameters being passed
 into APIs. Each domain may be associated with its own schema so
 that an orchestrator that does not understand a domain can still
 validate the request before forwarding it. The parameters of a
 domain can be defined in a sufficiently generalized way to apply to
 a wide variety of services in that domain.

 - Vendor Specific Domains. Some service might not be standardized
 through well-defined domain definitions. These definitions cannot
 be understood by all clients or users. These may however be
 understood between select network end-points that choose to use
 such definitions. Using Vendor Specific Domains, experimental or
 customized domains may be defined.

10. Protocol Requirements

 A protocol that supports service variety must separate service-
 independent and service-dependant parts of information. The service-
 dependant and service-independent information may be carried in the
 same message. This section describes needed capabilities for various
 service-independent and service-dependant functions.

 P-1. N-way transactions - an orchestration controller will need to
 perform multi-domain (e.g. storage, compute, network, etc.) service
 operations. The protocol should be able to stitch these varieties of
 service domains into a single context. All transactions in the
 client-server model are 2-way, so this needs a new protocol.

 P-2. It should be possible to sequence and parallelize messages
 within a single context. Sequences or parallelization would depend on
 the specific needs of a particular kind of service. For instance,
 compute and network services may be provisioned in parallel, while
 workload movement across geographical regions must take place
 sequentially. Accordingly, the responses to such requests may also be
 received in sequential or parallel fashion.

 P-3. When using requests in a parallel or sequential fashion, it
 should be possible to "commit" these operations as a whole. If errors
 are encountered in any one of the transactions, it should be possible
 to "cancel" the entire service context as a whole.

Dalela Expires July 4, 2012 [Page 19]

Internet-Draft SOP Requirements January 2012

 P-4. For reliability, the protocol should support timers and
 timeouts on requests. These timers may be used to expect a response
 to a request within the specified timeframe. When the timer expires,
 recovery actions should be possible. This is also useful in case of
 network failures, and on-going transactions can be automatically
 reversed. Through use of timers, and automated reversal, failures
 would not result in leaked resources, incorrect accounting, etc.

 P-5. The protocol should support explicit mechanisms to advertize
 services and discover other service agents in a network. That is,
 configuration of service agents should be minimized and the protocol
 should facilitate automated discovery and advertisement.

 P-6. The protocol should support selective propagation of service
 information through use of publish-subscribe mechanisms. It should be
 possible for a client to request specific kinds of service
 information that it supports and expects to know about.

 P-7. It should be possible to define workflows and tasks at various
 levels of abstraction. Some users will prefer abstract requests that
 are translated to concrete requests at some point before fulfillment.
 Others may prefer that they define every service parameter. The
 protocol must be able to support both these cases.

 P-8. The protocol must support the CRUD (Create, Read, Update and
 Delete) operations to transact services, after discovery of agents
 and selective service exchange. These operations are part of HTTP and
 should be present in the new protocol as well.

 P-9. It should be possible to refer to services using standard
 names. Use of standard names establishes convention on how services
 will be referred to, which in turn facilitates interoperable service
 publishing, advertizing, discovery and requests.

 P-10. It should be possible to associate each service name with
 service-specific properties. These properties may be mandatory or
 optional. It should be possible to re-use these properties by
 inheriting a service name into another service name.

11. Separating Control and Policy Planes

 Each service may be customized according to a variety of needs such
 as customer profile, user roles, location awareness, service design,
 SLAs, etc. The set of rules that are used to customize a service
 represent the "policy plane" as they specify how a service must be
 designed. This policy must obviously interact with the protocol
 messages ("control plane") to control service orchestration.

Dalela Expires July 4, 2012 [Page 20]

Internet-Draft SOP Requirements January 2012

 There are two broad approaches in which policy and control can
 interact. First, we might collapse the difference between control and
 policy, and just have a single plane that is designed for specific
 services. Second, we might separate control and policy planes, and
 allow independent evolution of policy and control planes. These
 options and their relative merits are discussed below.

 In many orchestration schemes, the policy and control planes are
 collapsed into one. The orchestrator is designed and pre-programmed
 to automate a few types of services. This scheme works well if the
 desired service variety is small. Basically, for a small number of
 service types, a few service templates can be hardcoded and published
 to users. Users may choose from amongst available service templates
 to create services on-demand. A service template defines a set of
 business rules using which services would be created, deleted,
 modified or moved. If pre-defined rules meet the requirements of
 users, this is a huge simplification over manual service creation,
 and a good starting point for service automation.

 +----------+ +----------+
 | Policy | | Policy |
 +----------+ +----------+
 | |
 | |
 +----------+ +----------+ +----------+ +----------+
 | Client |<--->| Server | | Client |<--->| Server |
 +----------+ +----------+ +----------+ +----------+
 Option (a) Policy at Clients: Option (b) Policy at Servers:
 Client Mgmt Complexity Server Mgmt Complexity

 +----------+ +----------+ +----------+
 | Client |<-----------| Policy |---------->| Server |
 +----------+ +----------+ +----------+
 Option (c) In-Band Policies - Complexity Centralized

 Figure-7 Policy Deployment Models

 However, as the service variety grows, this approach cannot scale
 because the number of orchestrators will increase linearly with the
 number of service types, and the complexity in each orchestrator will
 increase exponentially with customization of business rules. Now, it
 is necessary to separate definition of business rules ("policy") from
 execution of rules ("control"). Interoperable control requires a
 protocol and interoperable policy requires an abstract high-level
 language to define orchestration rules. If the language of rules and

Dalela Expires July 4, 2012 [Page 21]

Internet-Draft SOP Requirements January 2012

 protocol have been separated and standardized, then the hurdles to
 deploying new services have been significantly reduced.

 There are still multiple policy deployment options where policy is
 deployed at different points in the network, and these options can
 make important differences to the ease of service management.
 Different policy deployment options are shown in Figure-7.

 First, policy may be attached to the user, such that users tune their
 personalized policies about services. Second, policy may be attached
 to each service, and the hardware-software vendor must give a
 configurable system for policy controlling each service, which the
 provider will have to customize to suit the needs of their
 deployment. Third, policy may be attached to the orchestrator, which
 may be defined either by provider or customer or jointly. The key
 difference between these options is who controls the service.

 Client-based policies are totally in control of clients. Server-based
 policies are in provider control, but require the provider to
 individually manage policies on each service instance. When services
 are created dynamically, these service instances may have to download
 policies dynamically and refresh them when policies change. Dynamic
 changes to policies may disrupt existing services unless each server
 has the intelligence to process policy rules per request. If common
 policies have to be implemented across a set of clients, then these
 clients must be updated with the new policy rules. There must also be
 intelligence in client or server to deal with policy inconsistencies
 across client and servers. All this entails a significant amount of
 complexity in implementing and managing services.

 Orchestrator based policies in contrast are easy to manage because
 they can be controlled at few network points. When policies change,
 the client and server don't have to be updated because policies are
 enforced run-time. Orchestrator policies can also be controlled
 either by provider or customer or jointly. It is architecturally
 important to place this control in the right point in the network to
 facilitate the best control scenarios. Obviously, orchestrator based
 policy control is more flexible and easier than others.

 When policies are attached to orchestrators, clients and servers
 remain unaware of policy. Policy is now enforced at a small number of
 customer and provider edges. While the total number of policy rules
 remains unchanged, the complexity in managing these rules is reduced
 by centralizing the intelligence to define and apply policies.
 Challenges related to policy consistency are also addressed.

Dalela Expires July 4, 2012 [Page 22]

Internet-Draft SOP Requirements January 2012

 To apply these policies, client requests must be intercepted, policy
 transformed and policy routed before they reach the server. The
 clients and servers don't need to be aware of this behavior. The
 rules for controlling service requests can be defined through
 configuration in a policy server. Now, an orchestrator can download
 policy rules for a service, and execute those rules in real-time.

 The separation of the control and policy planes allows the same
 control plane to be re-used for a variety of policies. Policies can
 be defined through configuration instead of being programmed in the
 orchestrator. And a common control plane can be used to orchestrate
 variety of services. Through this separation, a service orchestrator
 becomes a "Programmable Orchestrator", because it does not hardcode
 service logic. Rather, orchestrators can be "programmed" through
 policies defined by users in a user-friendly language. This approach
 eases service creation and customization of existing services while
 reducing overall management complexity.

12. Service Management Policies

 This section describes different types of policies that might be used
 in cloud services. A few of these policies are currently being
 employed in the industry today, while many of them are desired
 features of cloud services in future. The totality of these policy
 types create a level of complexity that cannot be deployed by
 embedding policy in client or server. These policies should exist in
 a separate policy plane that interacts with the control plane.

12.1. Routing Policies

 A service may be sourced from multiple destinations and to route a
 request to the correct destination, various types of routing policies
 may be applied. For example, a service request may be routed to the
 geographically nearest provider. Or, it might be routed to a location
 that offers the cheapest service rate or, to a different location
 based on time of day. There might be routing rules based on SLAs.
 Each user's request may be routed differently based on their roles.
 There could be rules specific to a type of service, or routing may be
 determined by the locations that have the necessary capacity. Routing
 may be determined by legal or governmental regulations.

 These rules may be dynamically changed, and different rules may apply
 to different types of services, users, locations, roles etc. The
 provider and customer may independently or jointly define these
 policies, and enforce them at customer edge, provider edge, or both.

Dalela Expires July 4, 2012 [Page 23]

Internet-Draft SOP Requirements January 2012

12.2. Security Policies

 Security in the context of services encompasses a broad spectrum of
 issues spanning authentication, authorization and accounting (AAA).
 For instance, a customer may authenticate its users based on internal
 user-databases, while a provider owns the authorization and
 accounting of the service request. Or, a customer may own user-
 specific authorization and authentication while the provider owns the
 accounting. As users join or leave a customer, the provider may not
 own user-specific authentication and policies.

 The AAA functions are best performed at the provider or customer
 edges. First, each service should not be required to do AAA; it is
 inefficient and complex. Second, service nodes must be protected from
 DoS attacks by preventing unauthorized requests from entering the
 network. Third, services may only be accounted as a bundle (e.g.
 network, compute and storage form a single usable service bundle) and
 not individually. Fourth, request logging for business analytics is
 best done at the network edges and not in individual services.

 A provider may also wish to hide network topology of services, and
 may abstract locations from user-visibility. For instance, a provider
 may publish one interface to access all services although these
 services are orchestrated by service-specific orchestrators. And
 these orchestrators may be situated in different locations.

12.3. Service Policies

 Complex services require coordination of multiple resources. A VM for
 instance may need network attached storage, network based security
 and network quality of service. The VM service may be regarded
 incomplete without the combination of all services. But, much of this
 is a matter of policy. Some VMs may require network attached storage,
 while others don't. Some VMs may need firewalls, while others may
 just need encryption of data. Some services may need a specific
 amount of network bandwidth to be available.

 Policies associated with services can be abstracted from clients and
 servers. Accordingly, when a client requests for a VM, the request
 may be modified to include storage, security and quality of service
 requests before it reaches the server. Likewise, if a user is not
 authorized to request high-end services, their requests might be
 automatically downgraded to the appropriate grade of service. This is
 a function of policies that a provider and customer define.

 This means that an AllocateVM request may do different things for
 different classes of users. Users may be upgraded or downgraded in

Dalela Expires July 4, 2012 [Page 24]

Internet-Draft SOP Requirements January 2012

 the level of services, while using the same AllocateVM request. This
 means that the syntax and semantics of a request is not fixed in
 advance. Rather, it is determined based on context, and different
 factors may be used to modify these requests in transit.

 It is important to restrict the syntax and semantics of a request
 from an end-user perspective. It is also important to offload this
 restriction from the service itself. Thus, a server should be able to
 support a superset of request parameters, to allow any user to access
 the service in different ways. But each client may only request a
 well-defined subset of those parameters, based on prior customer or
 provider defined policies or SLAs. The validation and tweaking of
 request parameters in a user-specific manner should be controlled by
 policy in transit. In effect, the requests that a client makes and
 the requests that a server receives can be very different based upon
 the policies that modify the request in the middle.

13. Architecture Requirements

 The general principle embedded in the following requirements is sub-
 system re-use by identifying common requirements and avoiding
 duplication for every new service (XaaS) needing to be deployed.

 A-1. To ease the creation of varied services, there SHOULD be a
 separation between policy and protocol. Policy MUST deal with
 abstract rules about which components make up a service, and how
 those individual components must be created, deleted, modified or
 moved. Protocol MUST deal with the execution of these rules.

 A-2. The interaction between policy and protocol SHOULD take place
 at the service orchestrators. Embedding this interaction in the
 client and server increases complexity and makes it harder to deploy
 new services or customize existing ones.

 A-3. The Policy control MUST contain rules for service Authorizing
 and Accounting. That is, it must have rules about which users are
 allowed to access which services, or how services are customized for
 users and the user-specific charging rules to be applied.

 A-4. Orchestration MUST be able to use the same Identity Management
 infrastructure for all services. Authentication should be performed
 by a coherent system across current and new applications. That is,
 each new service should not require new sets of mechanisms. Rather
 existing support systems should be extensible. Note, this may also
 span both provisioning and use of any particular service.

Dalela Expires July 4, 2012 [Page 25]

Internet-Draft SOP Requirements January 2012

 A-5. Orchestration MUST be able to utilize the same Accounting
 system across multiple services. New accounting systems should not be
 required for each service. Rather, the orchestrator MUST be able to
 use the same accounting system to create charging records.

 A-6. Orchestration MUST be able to integrate with existing Fault
 management systems. Orchestrators MAY offload and/or automate
 intelligence to recover from failures.

 A-7. Orchestration MUST be able to integrate with existing
 Performance management systems. Orchestrators MAY offload and/or
 automate intelligence to recover from performance issues.

 A-8. Orchestration MUST be able to use common Operational Support
 Systems (OSS) such as DNS, DHCP and BOOTP systems.

 A-9. Orchestration MUST be able to integrate with existing customer
 support and billing systems and/or provisioning new customers (BSS).
 This is to enable a single customer interface for all services.

14. IANA Considerations

 Not applicable.

15. Conclusions

 Interoperable ways of creating, delivering and consuming services is
 essential for cloud. To create this interoperability, there is need
 for an open standard protocol for exchanging service information.
 This document captures the requirements for such a protocol.

 We envision that such a protocol can be an essential ingredient of
 Cloud Controllers / Proxies to exchange services across multiple
 private, public, hosted, community and other clouds.

16. References

16.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

16.2. Informative References

 [NIST] DRAFT Cloud Computing Synopsis and Recommendations
http://csrc.nist.gov/publications/drafts/800-146/Draft-
NIST-SP800-146.pdf

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://csrc.nist.gov/publications/drafts/800-146/Draft-NIST-SP800-146.pdf
http://csrc.nist.gov/publications/drafts/800-146/Draft-NIST-SP800-146.pdf

Dalela Expires July 4, 2012 [Page 26]

Internet-Draft SOP Requirements January 2012

 [SIP] Session Initiation Protocol
http://www.ietf.org/rfc/rfc3261.txt

17. Acknowledgments

 This document was prepared using 2-Word-v2.0.template.dot.

Dalela Expires July 4, 2012 [Page 27]

http://www.ietf.org/rfc/rfc3261.txt

Internet-Draft SOP Requirements January 2012

Authors' Addresses

 Ashish Dalela
 Cisco Systems
 Cessna Business Park
 Bangalore
 India 560037

 Email: adalela@cisco.com

 Mike Hammer
 Reston
 Virginia
 USA 20190

 Email: mphmmr@gmail.com

 Monique Morrow
 Cisco Systems [Switzerland] GmbH
 Richistrasse 7
 CH-8304
 Walllisellen
 Switzerland

 Email: mmorrow@cisco.com

 Peter Tomsu
 Cisco Systems Austria GmbH
 30 Floor, Millennium Tower
 Handelskai 94-96
 A-1200 Vienna
 Austria

 Email: ptomsu@cisco.com

Dalela Expires July 4, 2012 [Page 28]

