
Network Working Group A. Dalela
Internet Draft Cisco Systems
Intended status: Standards Track M. Hammer
Expires: July 2012 January 4, 2012

SOP Network Architecture
draft-dalela-sop-architecture-00.txt

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

 This Internet-Draft will expire on July 4, 2012.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Dalela Expires July 4, 2012 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft SOP Network Architecture January 2012

Abstract

 Cloud services need to interoperate across cloud providers, service
 vendors and private/public domains. To enable this interoperability,
 there is need for network level deployment architecture to connect
 users and providers. This document describes functionality
 partitioning in network deployment and the different advantages of
 using distributed functionality deployments.

Table of Contents

1. Introduction...2
2. Conventions used in this document..............................3
3. Terms and Acronyms...4
4. Problem Statement..5
5. Solution Approach..8
6. Architecture Description......................................10

6.1. Functional Architecture..................................10
6.1.1. Proxy...11
6.1.2. Workflow Server.....................................12

6.2. Deployment Architecture..................................12
6.2.1. Types of Proxies....................................13

6.2.1.1. Requesting Proxy (RP) and WS (RWS).............13
6.2.1.2. Locating Proxy (LP) and WS (LWS)...............14
6.2.1.3. Serving Proxy (SP) and WS (SWS)................14

6.2.2. Interconnecting Proxies and WSs.....................15
6.2.3. Workflow Branching and Anchoring....................16
6.2.4. Distributed Workflow................................18

7. Security Considerations.......................................19
8. IANA Considerations...19
9. Conclusions...19
10. References...19

10.1. Normative References....................................19
10.2. Informative References..................................19

11. Acknowledgments..20

1. Introduction

 This document describes network architecture and deployment models
 for supporting service orchestration. The architecture and deployment
 models are driven by the following main requirements:

 - Security of the Service Network. A provider needs to ensure that
 its service network is secure from external attacks. To this end,
 the provider may need to hide service topologies, and inspect or

Dalela Expires July 4, 2012 [Page 2]

Internet-Draft SOP Network Architecture January 2012

 modify service transactions on the fly. Network architecture will
 define how topology hiding and security are achieved.

 - Policy Control of Service Network. Service deployments may cross
 customer and provider boundaries as described in Service
 Orchestration Protocol (SOP) requirements [REQT]. Each customer or
 provider may wish to enforce policy rules for service usage at
 ingress and egress points. An architecture definition will define
 how customers and providers can policy control services.

 - Separate Service-Dependent and Service-Independent functions in
 the network. A service consumer or provider should not have to
 upgrade their orchestration infrastructure in order to deploy or
 use a new service. Separation allows new service deployment
 without disrupting the network of existing services.

 - Scaling the Service Network. To scale service across many
 consumers, service type and locations, distribution of service
 functionality is needed. For instance, service-dependant
 intelligence for a set of customers might be stored in one network
 element. Or, all intelligence related to one class of services may
 be centralized in one network element. Or, all customers in one
 particular geography or location may access services from one
 particular network element. Service orchestration architecture
 should support these and other types of deployment models.

 - Bundling and Tiering of Services. Services often come in bundles.
 If we provision a Virtual Machine, we also need to provision
 storage, QoS, access control, intrusion prevention, etc. Some
 services may need to use other services in turn. Architecture
 should define how service tiering and bundling is achieved.

 - Service Network Reliability. When services are critical to the
 working of an organization, it is important to define how users
 will be able to receive continued service even in case of network
 failures. Architecture should help system reliability.

 This document describes a SOP network architecture that can be
 employed to fulfill these requirements.

2. Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC-2119 [RFC2119].

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Dalela Expires July 4, 2012 [Page 3]

Internet-Draft SOP Network Architecture January 2012

 In this document, these words will appear with that interpretation
 only when in ALL CAPS. Lower case uses of these words are not to be
 interpreted as carrying RFC-2119 significance.

3. Terms and Acronyms

 The key words Provider, Vendor, User, Orchestration, Client, in this
 document have the same meaning as defined in SOP requirements [REQT].

 Service Node (SN): A Service Node is any hardware or software entity
 that can be made available for use as a service. A Service Node may
 be associated with an "agent" that receives orchestration requests
 and may in turn execute them on behalf of the service. Use of an
 agent abstracts service logic from rest of the network.

 Proxy - this is the service-independent network element that accepts
 Client or other Proxy requests and forwards them to services or other
 proxies. The Proxy may forward requests to SNs, Workflow Servers or
 other Proxies. A network of interoperable clouds may use multiple
 proxies. A Proxy may inspect or modify packets in transit.

 Workflow Server (WS) - this is the service-dependent network element
 and contains Workflow definitions along with policies to validate or
 modify Workflow requests.

 Requesting Proxy (RP) - this is the SOP Proxy that makes service
 requests. The RP may forward them to the Locating Proxy (LP).

 Locating Proxy (LP) - this is the SOP Proxy that performs load-
 balancing, locating and security functions in SOP network. It
 forwards received requests to the Serving Proxy (SP).

 Serving Proxy (SP) - this is the SOP Proxy that actually controls a
 particular type of service orchestration.

 Requesting WS (RWS) - this is the WS associated with the RP.

 Locating WS (LWS) - this is the WS associated with the LP.

 Serving WS (SWS) - this is the WS associated with the SP.

 Workflow Anchor (WA) - this is the Proxy that controls the Workflow
 execution. All Task branching must take place at the Anchor.

https://datatracker.ietf.org/doc/html/rfc2119

Dalela Expires July 4, 2012 [Page 4]

Internet-Draft SOP Network Architecture January 2012

4. Problem Statement

 The key problem for orchestration architecture is how to ease the
 creation of new services by (a) tiering service one on top of
 another, (b) bundling multiple independent services as a single use-
 case, (c) customization of a single service for different users.

 Tiering refers to one service using another service for its
 functioning (e.g. SaaS might use PaaS, PaaS might use IaaS, and SaaS
 or PaaS will not work without IaaS). Bundling refers to two or more
 services that work independently but have improved functionality by
 combining (e.g. network, security and compute combine to deliver
 improved functionality to the user). Customization means adding
 functionality to a service without tiering or bundling (e.g. a
 security device may be improved with intrusion detection).

 A realistic service deployment requires complex service combinations.
 E.g., if we are provisioning a VM, we may also need to provision
 network attached storage, security rules that limit access to that
 storage, firewalls and access control that restricts access to the
 VM, bandwidth from a suitable starting point to the VM, user
 provisioning for who can access the VM, load-balancers and WAN
 optimization techniques, intrusion detection and prevention or
 techniques to log and report accesses to a service, etc.

 Currently, services are combined by combining lower level APIs into
 higher-level APIs. The inputs to these APIs must follow several
 cross-domain semantic "rules", without which the API combination will
 not give a usable service. For example, the IP of a host must belong
 to the subnet on the switch, because otherwise packets will never be
 routed. The IP access-list on the switch must permit the IP address
 on the host, otherwise packets will be dropped. Open ports on a host
 must also be open on the firewall because otherwise packets will
 never be received. There are many such "rules" to be followed. Each
 customer may design their own rules, restricting the service design
 per their needs. APIs don't allow us to define these rules in the
 abstract. They must be embedded in the input to the APIs.

 Orchestration rules deal with the "semantics" of a service, while
 APIs deal with the syntax. For any given semantics, there are several
 possible syntaxes to achieve it. Current cloud technology focuses on
 the syntax and not the semantics. Thus, the same service will require
 use of different APIs across different providers. This is unnecessary
 because the users don't care about the APIs. They care about the
 service semantics, and the rules of orchestration. How these rules
 are implemented, is totally irrelevant from the user viewpoint.

Dalela Expires July 4, 2012 [Page 5]

Internet-Draft SOP Network Architecture January 2012

 From a provider's viewpoint, it is important to integrate hardware
 and software from many possible vendors in the same way. To achieve
 this, it is important to have a standard interface to that hardware
 and software that the provider can use to orchestrate. As long as the
 interface is standard, it does not matter which type of API flavor is
 used to control the hardware or software. The provider does not care
 how a hardware or software vendor implements the interface on their
 side, as long as the standard interface is available.

 +---------------------+
 | Service Semantics |
 Customer View | Orchestration Rules |
 +---------------------+
 |
 |
 +---------------------+
 | Service Control |
 Implementation View | Software API Format |
 +---------------------+
 |
 |
 +---------------------+
 | Standard Interface |
 Vendor View | Protocol Messages |
 +---------------------+

 Figure-1: 3-Tier Orchestration Stack

 Figure-1 shows an ideal 3-tier orchestration stack, where users
 provide orchestration rules and vendors provide a standard interface
 to their services. In the middle of the orchestration stack are
 software objects that translate the user given rules into standard
 interfaces to the multi-vendor services. The properties of the
 software objects are not visible either to the users or to the
 service vendors. This decoupling between different views allows
 independent evolution and backwards compatibility. It means that the
 orchestration rules are portable and a user can take get the same
 services from different providers. The provider can integrate many
 software-hardware products. The software that links semantic rules
 with the standard service interfaces can evolve independently.

 In current cloud technology, all three orchestration tiers are
 collapsed into a single API construct. The user sees APIs which is an
 implementation view stretching all the way into the service itself.
 If the API changed, the user will need to adapt to a new API and the
 vendor will have to implement the new API. This makes cloud extremely

Dalela Expires July 4, 2012 [Page 6]

Internet-Draft SOP Network Architecture January 2012

 inflexible to interoperation across boundaries. The central problem
 of cloud control is that we need to move a single-tier orchestration
 model to the 3-tier model shown in Figure-1.

 Use of APIs as end-user interface hinders fast service customization.
 Each user encodes their service rules using APIs, but the toolset
 available to the user can only validate the syntax of the API but not
 its semantics. That means while the APIs can be compiled to be
 syntactically correct, the user cannot know that on executing those
 APIs the service will work as desired. We need a "semantic compiler"
 to achieve that. The rules in the "semantic compiler" will need to
 validate that the IP on the host is part of the subnet on the switch,
 that the ports on the host are open on the firewall, that IP of the
 host is part of permitted access-lists, etc. This semantic compiler
 can be customized by each provider and customer. That is, they can
 define their own rules of orchestration.

 Customer Provider
 +-------------+ +-------------+
 | Service | Brick and Mortar | Simple |
 | Combination |--------------------| Services |
 | Complexity | Low-level APIs | Supported |
 +-------------+ +-------------+

 Figure-2: End-User Deals with Complexity

 In the API approach, a provider exposes low-level APIs using which
 developers can build customized services. This approach pushes the
 complexity of service creation from the provider into the customer. A
 customer has to invest in building these custom solutions and thereby
 be responsible for the design of service. This is shown in Figure-2
 where a customer owns the complexity of service creation.

 Customer Provider
 +-------------+ +-------------+
 | Customized | Customized | Service |
 | Service |--------------------| Combination |
 | Combinations| High-level APIs | Complexity |
 +-------------+ +-------------+

 Figure-3: Provider Deals with Complexity

 If, however, the provider decides to incorporate these custom
 solutions as part of their offerings, the complexity in the
 Orchestrator grows rapidly. The complexity grows linearly with the
 number of unique combinations. The complexity grows exponentially
 with the number of services within a combination. The rapid increase

Dalela Expires July 4, 2012 [Page 7]

Internet-Draft SOP Network Architecture January 2012

 in complexity makes services brittle and hard to modify. This is
 shown in Figure-3 where the provider owns the complexity of service
 variety being created for various types of customers.

 Both architectures for building new services are not optimal. They
 either complicate the user-side or the provider-side of services. The
 3-tier architecture shown in Figure-1 on the other hand provides an
 optimal scheme to creation of new services.

5. Solution Approach

 Our solution involves the implementation of the 3-tier orchestration
 architecture through two functional components shown in Figure-4.

 +---------------------+ +---------------------+
 | Service Semantics | | Workflow Server |
 | Orchestration Rules | |=====================|
 +---------------------+ | Service-Dependant |
 | | Orchestration Rules |
 | | User + Provider |
 +---------------------+ | Service Definitions |
 | Service Control | +---------------------+
 | Software API Format | +---------------------+
 +---------------------+ | Orchestration Proxy |
 | |=====================|
 | | Service-Independent |
 +---------------------+ | Orchestration |
 | Standard Interface | | Execution Engine |
 | Protocol Messages | | Protocol Interfaces |
 +---------------------+ +---------------------+

 Figure-4: Orchestration Components

 The service-independent network element (Orchestration Proxy) is
 unaware of service, user or policy nuances. It is the execution
 engine for orchestrating services, and has protocol interfaces to
 other Proxies or to service end-points. The orchestration rules of a
 service are defined in the service-dependent network element
 (Workflow Server). This contains all the policies according which the
 service will be orchestrated. The Workflow Server delivers an
 orchestration "master-plan" or workflow to the Orchestration Proxy to
 execute. The Proxy executes the workflow and reports back status.

 The service, user and policy information is encoded in the Workflow
 Server in an abstract language like XML. We term an XML document that
 describes a service bundle a "Workflow". Workflows are comprised of
 Tasks, which represent individual acts of orchestration on individual

Dalela Expires July 4, 2012 [Page 8]

Internet-Draft SOP Network Architecture January 2012

 service elements. A Workflow represents the order in which the Tasks
 must be executed. Each Task in the Workflow contains a definition of
 actions that need to be taken for that task. Each Workflow can be
 referenced by a Workflow Name. A user requests a service bundle by
 invoking the workflow referenced by the Workflow-Name.

 Customer Provider
 +--------------+ +---------------+
 | Workflow | | Workflow |
 | Server | | Server |
 +--------------+ +---------------+
 | |
 | |
 +--------------+ +---------------+ +-----------+
 | Service | User Friendly | Service | | Simple |
 | Orchestration|--------------------| Orchestration |--| Services |
 | Proxy | High-level APIs | Proxy | | Supported |
 +--------------+ +---------------+ +-----------+

 Figure-5: Complexity Abstracted into XML Workflows

 One or multiple Workflow Servers (WS) may be situated at various
 points in the network. The WS can dereference a Workflow Name into an
 XML document comprised of Tasks. The WS can perform service-specific
 validations of the Workflow request against the service specific
 syntax and semantic rules stored in the WS. If the language to
 describe syntax and semantics of services has been standardized, the
 WS can support any number of new service combinations through
 configuration in the WS alone. These configurations will create a new
 Workflow in the WS, and specify rules for validating it. Neither the
 Proxy nor the WS need to be upgraded to support new services.

 With a XML definition of Workflows and Tasks, validation rules can be
 easily defined. For example, XML Schema Definition [XSD] can be used
 to validate syntax and Object Constraint Language [OCL] to validate
 semantics of a Workflow request. When a Workflow request arrives, the
 requested Workflow can be validated against the associated schemes
 already defined in XML or other abstract languages.

 If a request fails validation according to syntax and semantic rules
 already defined in the WS, the request MAY be rejected. The rules may
 also specify how to modify all or selected requests before forwarding
 them downstream. The collection of all the syntax and semantic rules
 constitute the "policy" framework for service orchestration. This
 policy framework may be centralized at the provider, at the customer
 or distributed between the provider and customers. Accordingly, the
 requests may be modified and/or validated multiple times.

Dalela Expires July 4, 2012 [Page 9]

Internet-Draft SOP Network Architecture January 2012

 To add a new service, we don't need to create a new API combination.
 Rather we can add (through configuration) new XML documents to define
 a service and validate syntax and semantics of the service request.
 New services can thus be added through configuration alone. With the
 ability to define and validate Workflows, a user or provider can
 create service bundles on-demand. The WS stores all user or provider
 defined Workflows, which are referenced by a Workflow-Name.

6. Architecture Description

 This section covers two architecture flavors. First, we describe a
 Functional Architecture that partitions SOP functionality into
 separate network elements. This partitioning achieves the service-
 dependant and service-independent separation at the network level.
 Second, we describe a Deployment Architecture that allows a provider
 to scale their service network with security and policy control.

6.1. Functional Architecture

 | | |
 Customer | Provider 1 | Provider 2 |
 | | |
 +----------+ | +----------+ | +----------+ |
 | Workflow | | | Workflow | | | Workflow | |
 | Server | | | Server | | | Server | |
 +----------+ | +----------+ | +----------+ |
 | | | | | |
 | | | | | |
 +-------+ | +-------+ | +-------+ |
 | Proxy |----|-------| Proxy |-------|------| Proxy | |
 +-------+ | +-------+ | +-------+ |
 | | / | \ | / | \ |
 | | / | \ | / | \ |
 | | / | \ | / | \ |
 +-------+ | +----+ +----+ +----+ | +----+ +----+ +----+ |
 | User | | | SN | | SN | | SN | | | SN | | SN | | SN | |
 +-------+ | +----+ +----+ +----+ | +----+ +----+ +----+ |
 | | |

 Figure-4: SOP System Architecture

 The SOP network comprises of two types of network elements: a SOP
 Proxy and a Workflow Server (WS). The Proxy deals with service-
 independent aspects of orchestration while the WS contains the
 service-dependant features. These two elements interact using SOP.

Dalela Expires July 4, 2012 [Page 10]

Internet-Draft SOP Network Architecture January 2012

6.1.1. Proxy

 A Proxy performs Service Routing. When users request a service, the
 Proxy will route the request to the right location. To do service
 routing, the Proxy discovers and monitors services. It authenticates
 services and users, so that unwanted users or services cannot get
 into the service routing database. A Proxy can forward packets to
 Service Nodes, Workflow Servers, other Proxies, and responses back to
 Proxies and Users. The Proxy may statefully inspect packets and
 insert or remove headers. But, the proxy does not have service-
 specific intelligence to orchestrate services.

 Proxies may operate in one of two modes: Transparent and Aggregated.
 A Transparent Proxy does not aggregate services; it only forwards all
 messages transparently. An Aggregated Proxy would aggregate services
 and publish them as aggregates. In the Aggregated Mode, a single
 Proxy may publish a wide variety of services to their users, although
 these services are in turn managed by other Proxies.

 A Proxy is expected to perform the following functions:

 - Advertize its presence as a network element that is capable and
 willing to Proxy for service transactions for certain types of
 services (service-specific Proxies should be possible).

 - A Proxy should have the ability to connect to other Proxies and
 exchange service related information in a way similar to how it
 might do with a service client. This allows a distributed network
 of service proxies to be built that exchange service information.

 - Discover servers and their service capabilities. After discovery,
 a Proxy should create a Service Registry that clients or other
 Proxies can query to discover types of services available.

 - Discover user locations and presence status through user
 registrations and indication of service interests. Location is
 often a key consideration in delivering services, since certain
 services may be routed differently based on locations or may be
 forbidden access or allowed restricted access only.

 - Ability to connect to policy databases that determine the rules by
 which a service request is routed to the next hop, or how a
 service request may be modified or translated prior to routing.
 Policy routing of service requests is a very key function by which
 customers and providers can control service transactions through
 single points of control in the network. Details on the nature of
 these policy databases should be described separately.

Dalela Expires July 4, 2012 [Page 11]

Internet-Draft SOP Network Architecture January 2012

 - Authentication, Authorizing and Accounting of services should be
 performed by the Proxy. A Proxy may intercept requests and
 challenge the client to authenticate itself. It may then lookup a
 policy database to validate that the user is authorized to make
 service transactions. After services have been created, periodic
 accounting must also be performed. Existing protocols such as
 RADIUS or DIAMETER should be used for this purpose.

6.1.2. Workflow Server

 The WS stores service-dependant intelligence. This includes service
 authorization, SLAs for those services, location preferences,
 charging policies, processes for fulfilling requests, etc. These
 policies should be available as syntax and semantics validation
 procedures that can be applied by the WS to received requests. If the
 validation fails, the requests may be rejected.

 To apply customer specific rules, the WS must know about users and
 their location. To apply service specific rules, the WS must know
 about service availability and location. The WS should receive this
 information from the Proxy on a periodic basis or whenever it
 changes. The WS MUST subscribe for updates with the Proxy.

 A WS may automatically trim or expand a requested Workflow prior to
 execution. For example, to a VM creation workflow, the WS may add
 tasks for storage, access control, QoS, load balancing, etc. even
 though the end-user hasn't requested them. These policies may be
 defined by the user, by the provider, or mutually agreed upon as a
 SLA. This greatly simplifies the creation of service bundles.

 Once a Workflow has been defined, the Proxy or Service Nodes can
 download the Workflow and Task definitions from the WS. In case of
 failures or service termination, the WS will determine action
 reversal, by flipping the individual tasks in the correct order.

6.2. Deployment Architecture

 Proxies and WSs may be designated for specific customers, providers,
 service types, etc. One or both of these network elements may be
 deployed at multiple points in the network, including but not limited
 to (a) customer/provider egress, (b) customer/provider ingress, (c)
 customer/provider intranet. The Proxy and WS interaction MAY be any-
 to-any. Thus, one Proxy may interact with multiple WSs for multiple
 service types. Similarly, a WS may serve one type of service-
 dependant rules to multiple Proxies that support the same service.

Dalela Expires July 4, 2012 [Page 12]

Internet-Draft SOP Network Architecture January 2012

 If proxy does not interact with any WS, it acts as a stateless-proxy
 that will not modify the orchestration messages in transit.

6.2.1. Types of Proxies

 We define three types of Proxies based upon their different roles in
 a service network. These types are shown in Figure-5 and described in
 detail in the following sections. Note that these are logical and
 functional distinctions and one physical network element could play
 the role of multiple Proxies, or all Proxies may be combined into a
 single network element in an implementation.

 The separation between types of Proxies makes it easier to discuss
 the functions of a Proxy in different kinds of deployments. Each
 Proxy may be managing some SNs and/or Users.

 +-------------+ +--------------+ +--------------+
Requesting		Locating		Serving
Workflow		Workflow		Workflow
Server		Server		Server
 +-------------+ +--------------+ +--------------+
 | | |
 | | |
 +-------------+ +--------------+ +--------------+
 | Requesting | | Locating | | Serving |
 | Proxy |-----------| Proxy |-----------| Proxy |
 +-------------+ +--------------+ +--------------+

 Figure-5: Three Types of Proxies

6.2.1.1. Requesting Proxy (RP) and WS (RWS)

 This Proxy is typically located at a Client premise. The Client may
 be an end-user, a provider who sources services from other providers
 and combines them with their own services, or a 3rd party provider
 who only aggregates services from multiple providers. In these cases,
 the RP would be located at the edge of a customer or provider's
 networks, and play functions of egress control.

 A RP may also be located inside a provider's network, when it
 requests services from other Proxies. For example, a SaaS Proxy may
 be a RP to query IaaS services, for its SaaS services. In this case,
 the Requesting Proxy would be located inside a provider's network.

 The RWS associated with the RP should be used to validate the
 requests before allowing them to be forwarded. For example, the RWS
 may be used to validate a customer's requests against the policies

Dalela Expires July 4, 2012 [Page 13]

Internet-Draft SOP Network Architecture January 2012

 provisioned for a given user before forwarding them. Or, the RWS may
 be used by a provider to validate provider-to-provider requests
 before sending them to another provider. The validations may be
 defined unilaterally or based upon agreements or SLAs defined prior.

6.2.1.2. Locating Proxy (LP) and WS (LWS)

 The LP aggregates service information and publishes aggregated
 information outside. The LP may be used to hide the service topology
 inside a provider. For instance, a provider who supports multiple
 services, may only publish its LP address and internally route the
 requests to a dynamically or policy-selected SP. The LP can also be
 used to implement high-availability of services by routing service
 requests to where the requests are best fulfilled.

 The LP may statefully inspect received requests and authenticate the
 senders before forwarding the requests further. It may rate-limit
 requests from a particular source, and may have the intelligence for
 intrusion detection and prevention, for protecting the internal
 network from denial of service (DoS and DDoS) attacks, etc. The rest
 of the network behind the LP may then assume that packets entering
 them are secure. This obviates need for every service authenticating
 the user requests, and building security defenses.

 The LWS associated with the LP may have rules to forward the requests
 based on policies. For instance, the LWS may determine that service
 requests from a certain customer must be always directed to a
 definite location. The LWS may choose the nearest service creation
 location, or route to a location that has resources available.

6.2.1.3. Serving Proxy (SP) and WS (SWS)

 The SP may be defined to cater to specific customers, service-types
 or locations. For instance, there may be a SP for a group of
 customers who have been guaranteed a certain level of service. A SP
 may orchestrate services in a given geography. Or, it may deal with a
 specific type of services such as compute or storage.

 The SP can control orchestration across multiple resources or
 resource domains. For instance, a SP may orchestrate services across
 compute, storage, network, security, etc. It can also delegate the
 tasks of individual service components to that domain specific
 orchestrator. It may instantiate multiple service instances based on
 a single request, and may be used to setup a complete virtual
 datacenter on a single request. It shall handle error or failure
 scenarios and trigger rollback actions. The SP must discover
 services, allow service registrations, and publish aggregates of

Dalela Expires July 4, 2012 [Page 14]

Internet-Draft SOP Network Architecture January 2012

 services to upstream LPs. The SP is also responsible for accounting
 for service usage and must generating charging records.

 A SP may become the anchor for complex service orchestration that are
 outside the domain of its own control. In this case, the SP will play
 the role of a RP, and make requests to a LP to route requests outside
 its domain of control. For instance, a SP that creates a pool of
 virtual machines may run out of resources and direct a request to a
 LP to find it additional resources in another location.

 The SWS associated with the SP should have rules to orchestrate
 particular types of service requests. It would perform per-service
 validations of Workflows, checking if a user is authorized to make
 those service requests, and if those requests are well-formed.
 Service-specific syntax and semantic rules reside in the SWS. It may
 modify Workflow requests based on service or user policies.

6.2.2. Interconnecting Proxies and WSs

 The connections between Proxies and WSs may not be one-to-one as
 shown above. A Proxy may connect to multiple WSs for different
 Workflows and a WS may serve multiple Proxies. A distribution of
 Proxies and WSs creates optimal load-balancing.

 Each WS SHOULD advertize the Workflows it supports to the Proxy. The
 WS SHOULD also advertize class of users and service domains it can
 support. A Proxy can use this information to forward appropriate
 service requests to appropriate WSs. The WS and Proxies use SOP to
 exchange orchestration information.

 +--------+ +--------+ +--------+
 | WS1 | | WS2 | | WS3 |
 +--------+ +--------+ +--------+
 | \ | \ |
 | -------------\ | -------------\ |
 +--------+ +--------+ +--------+
 | Proxy1 |--------| Proxy2 |---------| Proxy3 |
 +--------+ +--------+ +--------+

 Figure-6: Many-to-Many Relation between Proxy to WS

 A Proxy must also advertise the Workflows it receives from the WS to
 other Proxies. This way, a Proxy can know how to reach the Proxy that
 can execute a Workflow, and be able to route requests to it.

Dalela Expires July 4, 2012 [Page 15]

Internet-Draft SOP Network Architecture January 2012

6.2.3. Workflow Branching and Anchoring

 When a complex Workflow spans across multiple SNs (compute, storage,
 network, security, software, etc.) there has to be a point where the
 Workflow is broken into individual Tasks for execution. We call the
 decomposing of a Workflow into Tasks "Workflow Branching". The point
 in the network where the Workflow is decomposed into Tasks is called
 the "Workflow Anchor". The component Tasks in a Workflow are defined
 by the WS. These Tasks must be initiated by a Proxy. The initiator
 Proxy for all Tasks in the Workflow is the Workflow Anchor.

 The need for an Anchor arises because once a Workflow has been
 branched into Tasks, other downstream entities don't have the
 complete picture of the Workflow and they cannot own the Workflow as
 a whole. The Workflow Anchor owns the Workflow. It is responsible for
 (a) executing the right tasks, (b) executing these tasks in the
 correct order (c) correctly accounting for tasks after execution, (d)
 handling failures in the right way when they arise, etc.

 +--------+
 +-------| TASK-1 |
 | +--------+
 +----------+ |
 WORKFLOW | Workflow | | +--------+
 -------------->| Anchor |----+-------| TASK-2 |
 +----------+ | +--------+
 |
 | +--------+
 +-------| TASK-3 |
 +--------+

 Figure-7: Workflow Branching into Tasks

 The Workflow Anchor can be located at multiple points in the network,
 such as the Client, Customer's Proxies, Provider's Proxies, etc.

 For instance, the Client of services can be the Anchor and in this
 case the Client will have to own the workflow execution, service
 accounting and failure handling. The Customer's Proxies and
 Provider's Proxies may inspect or authenticate the messages in
 transit but they may have no understanding of the complete sequence
 of tasks, and will not be able to validate if the Client is executing
 the right sequence of actions. If the Client is unreliable, it may
 skip service accounting. The Client may perform invalid operations
 which may not lead to usable services, and then not account for
 these. This shows the importance of Anchor placement, and the trust
 relationship between the Provider and the Workflow Anchor.

Dalela Expires July 4, 2012 [Page 16]

Internet-Draft SOP Network Architecture January 2012

 To address the trust issues, we might decide to Anchor the Workflow
 in the Customer's Proxy or the Provider's Proxy. Now, the Client must
 request the Workflow execution from one of these Proxies. The Client
 should refer to the Workflow through some Workflow Name in order for
 the receiving Proxies to validate if the request is correctly formed.
 Now, the Workflow execution is owned by the Proxies (although the
 Client may know the Workflow composition and can frame the Workflow
 request). The Proxy will validate the Workflow before branching
 Tasks. The Proxy will ensure accounting and failure handling.

 To execute any Workflow, the Workflow Anchor must be trustworthy.
 Depending on the deployment scenario, the Anchor may be situated at
 various points in the network. For personal clouds, the Client may be
 a valid Anchor. For private enterprise clouds, the Customer's Proxy
 may be a valid Anchor. For public clouds, the Provider's Proxy may be
 the only trustworthy anchor. For community clouds, the end Service
 Node may be the trustworthy anchor. Depending on where the Anchor is
 located, Workflow branching will take place at the Anchor.

 +--------+ +----------+ +----------+ +---------+
 | Client | | Customer | | Provider | | Service |
 | |<------>| Proxy |<------->| Proxy |<----->| Node |
 +--------+ +----------+ +----------+ +---------+

 Personal Private Public Community
 Cloud Cloud Cloud Cloud
 Anchor Anchor Anchor Anchor

 Figure-8: Possible Workflow Anchor Locations

 Network elements that are upstream from the Anchor MUST NOT be able
 to branch the Workflow into Tasks. These elements may validate the
 Workflow but they are not responsible for doing so. The Anchor MUST
 be responsible for validating the Workflow and correct execution.
 There SHOULD be an interface between Clients and Proxies, and between
 Proxies, through which they can request complete Workflows.

 The Workflow request received at the Anchor may be incomplete. The
 request may specify parameters about a VM, and may leave the details
 of network, storage and security to the Anchor. The request received
 at the Anchor is treated as indicative by the Anchor. The Anchor
 SHOULD forward the received request to the WS and obtain a complete
 and accurate description of the Workflow prior to executing it.

Dalela Expires July 4, 2012 [Page 17]

Internet-Draft SOP Network Architecture January 2012

6.2.4. Distributed Workflow

 It should be possible to compose Workflows by combining Workflows.
 Each of these Workflows and their combinations may have its own
 (different) Anchor. Each Anchor will completely own its Workflow, and
 a higher level Anchor can own a Workflow combination.

 For example, a customer may create a complex service by combining
 Workflows in a private cloud and a public cloud through a single
 request. Or, one provider may create services in their network and
 another provider's network through the same request. Or, a single
 request may be orchestrated by multiple domain-specific proxies
 within a provider's network. To distribute Workflows across service
 domains and provider/customer boundaries, a large Workflow may be
 decomposed into individual Workflows owned by individual Proxies.

 Workflow-M +---------+
 +--------------| Proxy-B |
 Workflow | +---------+
 MN | |
 | | V
 V | Execute
 +---------+ | Workflow-M
 | Proxy-A |---+ Workflow-Y +---------+
 +---------+ | +------------| Proxy-D |
 | Execute | +---------+
 | Workflow-X | |
 | ^ | V
 | | | Execute
 | Workflow-N +---------+ | Workflow-Y
 +--------------| Proxy-C |----+
 +---------+ | Execute
 | Workflow-Z
 | ^
 | |
 | Workflow-Z +---------+
 +------------| Proxy-E |
 +---------+

 Figure-9: Distributing Workflows

 In Figure-8, a workflow branching is illustrated. Proxy-A receives a
 two-stage workflow called MN (M and N are two stages) and forwards it
 to Proxies B and C. Proxy B executes the Workflow M as is. The Proxy
 C divides the Workflow N into Workflows X, Y and Z. Proxy C executes

Dalela Expires July 4, 2012 [Page 18]

Internet-Draft SOP Network Architecture January 2012

 the workflow X by itself, and delegates Y and Z to other proxies D
 and E. Workflow division allows intelligence related to a Workflow to
 be abstracted. The implementation of a Workflow may be changed while
 keeping the interface to it unchanged. The mapping between Workflows
 and their branching patterns may also be changed. This gives
 operators flexibility in how they want to deploy services.

7. Security Considerations

 Encryption and authentication of SOP messages is described in the
 Protocol document [SOP]. The LP is responsible for securing a
 Provider's network. The LP and RP should establish secure connections
 over IPSec or other kinds of VPNs over the Internet.

8. IANA Considerations

 NA.

9. Conclusions

 This document described the architecture for separating service-
 independent and service-dependant orchestration functions at the
 network level. This architecture can be used to rapidly create new
 services and for security and policy control of service networks.

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

10.2. Informative References

 [NIST] DRAFT Cloud Computing Synopsis and Recommendations
http://csrc.nist.gov/publications/drafts/800-146/Draft-
NIST-SP800-146.pdf

 [REQT] Service Orchestration Protocol Requirements
http://www.ietf.org/id/draft-dalela-orchestration-00.txt

 [XSD] XML Schema Description
http://www.w3.org/XML/Schema

 [OCL] Object Constraint Language
http://www.omg.org/technology/documents/modeling_spec_catal
og.htm#OCL

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://csrc.nist.gov/publications/drafts/800-146/Draft-NIST-SP800-146.pdf
http://csrc.nist.gov/publications/drafts/800-146/Draft-NIST-SP800-146.pdf
http://www.ietf.org/id/draft-dalela-orchestration-00.txt
http://www.w3.org/XML/Schema
http://www.omg.org/technology/documents/modeling_spec_catalog.htm#OCL
http://www.omg.org/technology/documents/modeling_spec_catalog.htm#OCL

Dalela Expires July 4, 2012 [Page 19]

Internet-Draft SOP Network Architecture January 2012

11. Acknowledgments

 This document was prepared using 2-Word-v2.0.template.dot.

Dalela Expires July 4, 2012 [Page 20]

Internet-Draft SOP Network Architecture January 2012

Authors' Addresses

 Ashish Dalela
 Cisco Systems
 Cessna Business Park
 Bangalore
 India 560037

 Email: adalela@cisco.com

 Mike Hammer
 Reston
 Virginia
 USA 20190

 Email: mphmmr@gmail.com

 Monique Morrow
 Cisco Systems [Switzerland] GmbH
 Richistrasse 7
 CH-8304
 Walllisellen
 Switzerland

 Email: mmorrow@cisco.com

 Peter Tomsu
 Cisco Systems Austria GmbH
 30 Floor, Millennium Tower
 Handelskai 94-96
 A-1200 Vienna
 Austria

 Email: ptomsu@cisco.com

Dalela Expires July 4, 2012 [Page 21]

