
Individual Submission C. Dannewitz

Internet-Draft University of Paderborn

Intended status:

Informational
T. Rautio

Expires: September 15, 2011
VTT Technical Research Centre of

Finland

O. Strandberg

Nokia Siemens Networks

B. Ohlman

Ericsson

March 14, 2011

Secure naming structure and p2p application interaction

draft-dannewitz-ppsp-secure-naming-02

Abstract

Today, each application typically uses its own way to identify data.

The lack of a common naming scheme prevents applications from

benefiting from available copies of the same data distributed via

different P2P and CDN systems. The main proposal presented in this

draft is idea that there should be a secure and application independent

way of naming information objects that are transported over the

Internet. The draft defines a set of requirements for such a naming

structure. It also presents a proposal for such a naming structure that

could relevant for a number of work groups (existing and potential),

e.g. PPSP, DECADE and CDNI. In addition, today's P2P naming schemes

lack important security aspects that would allow the user to check the

data integrity and build trust in data and data publishers. This is

especially important in P2P applications as data is received from

untrusted peers. Providing a generic naming scheme for P2P systems so

that multiple P2P systems can use the same data regardless of data

location and P2P system increases the efficiency and data availability

of the overall data dissemination process. The secure naming scheme is

providing self-certification such that the receiver can verify the data

integrity, i.e., that the correct data has been received, without

requiring a trusted third party. It also enables owner authentication

to build up trust in (potentially anonymous) data publishers. The

secure naming structure should be beneficial as potential design

principle in defining the two protocols identified as objectives in the

PPSP charter. This document enumerates a number of design

considerations to impact the design and implementation of the tracker-

peer signaling and peer-peer streaming signaling protocols.

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119].

Status of this Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF). Note that other groups may also distribute working

documents as Internet-Drafts. The list of current Internet- Drafts is

at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as "work in progress."

This Internet-Draft will expire on September 15, 2011.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document. Code Components extracted

from this document must include Simplified BSD License text as

described in Section 4.e of the Trust Legal Provisions and are provided

without warranty as described in the Simplified BSD License.

This document may contain material from IETF Documents or IETF

Contributions published or made publicly available before November 10,

2008. The person(s) controlling the copyright in some of this material

may not have granted the IETF Trust the right to allow modifications of

such material outside the IETF Standards Process. Without obtaining an

adequate license from the person(s) controlling the copyright in such

materials, this document may not be modified outside the IETF Standards

Process, and derivative works of it may not be created outside the IETF

Standards Process, except to format it for publication as an RFC or to

translate it into languages other than English.

Table of Contents

1. Introduction

2. Naming requirements

3. Basic Concepts for an Application-independent Naming Scheme

3.1. Overview

3.2. ID Structure

3.3. Security Metadata Structure

*

*

*

*

*

*

4. Examples of application use of secure naming structure

4.1. Secure naming for P2P applications

4.2. Secure naming use in DECADE

4.3. Secure naming for CDNs

5. Conclusion

6. IANA Considerations

7. Security Considerations

8. Acknowledgements

9. References

Authors' Addresses

1. Introduction

Today's dominating naming schemes in the Internet, i.e., IP addresses

and URLs, are rather host-centric with respect to the fact that they

are bound to a location. This kind of naming scheme is not optimal for

many of the predominant users of todays Internet like P2P and CDN

systems as they are based on an information-centric thinking, i.e.,

putting the information itself in focus. In these system the source of

the information is secondary and can constantly change, e.g. new caches

or P2P peers becomes available. It also common to retrieve information

from more than one source at once.

For any type of caching solution (network based or P2P) and network

based storage, e.g. DECADE, a common application independent naming

scheme is essential to be able to identify cached copies of

information/data objects.

Many applications, in particular P2P applications, use their own data

model and protocol for keeping track of data and locations. This poses

a challenge for use of the same information for several applications. A

common naming scheme for information objects is important to enable

interconnectivity between different application systems, such as P2P

and CDN. To be able to build a common P2P infrastructure that can serve

a multitude of applications there is a need for a common application

independent naming scheme. With such a naming scheme different

applications can use and refer to the same information/data objects.

It is possible to introduce false data into P2P systems, only

detectable when the content is played out in the user application. The

false data copies can be identified and sorted out if the P2P system

can verify the reference used in the tracker protocol towards data

received at the peer. One option to address this can be to secure the

*

*

*

*

*

*

*

*

*

*

naming structure i.e. make the data reference be dependent on the data

and related metadata.

An additional reason to introduce a common naming scheme for

information objects is caching. When data are named in a host-centric

way, as is done today, it is not always identify that copies of the

same information object are available in multiple hosts. With location

independent identifiers for information objects this becomes much

easier.

This document enumerates and explains the rationale for why a common

naming structure for information/data objects should be defined and

used by a wide range of applications and network protocols. Examples of

WGs (and potential WGs) where we think a new standard for naming of

information/data objects should be valuable includes PPS, DECADE and

CDNI. For P2P systems the main advantage is probably in the definition

of a protocol for signaling and control between trackers and peers (the

PPSP "tracker protocol") but also a signaling and control protocol for

communication among the peers (the PPSP "peer protocol") might have

benefits from a common and secure naming scheme. In DECADE one key

feature would be that different applications can easily share the same

cache entries. It should also be valuable for cooperative caching, e.g.

CDNI.

2. Naming requirements

In the following, we discuss the requirements that a common naming

scheme has to fulfill.

To enable efficient, large scale data dissemination that can make use

of any available data copy, identifiers (IDs) have to be location-

independent. Thereby, identical data can be identified by the same ID

independently of its storage location and improved data dissemination

can then benefit from all available copies. This should be possible

without compromising trust in data regardless of its network source.

Security in an information-centric network (including P2P, caching, and

network-based solutions) needs to be implemented differently than in

host-centric networks. In the latter, most security mechanisms are

based on host authentication and then trusting the data that the host

delivers. In e.g. a P2P system, host authentication cannot be relied

upon, or one of the main advantages of a P2P system, i.e., benefiting

from any available copy, is defeated. Host authentication of a random,

untrusted host that happens to have a copy does not establish the

needed trust. Instead, the security has to be directly attached to the

data which can be done via the scheme used to name the data.

Therefore, self-certification is a main requirement for the naming

scheme. Self-certification ensures the integrity of data and securely

binds this data to its ID. More precisely, this property means that any

unauthorized change of data with a given ID is detectable without

requiring a third party for verification. Beforehand, secure retrieval

of IDs (e.g., via search, embedded in a Web page as link, etc.) is

required to ensure that the user has the right ID in the first place.

Secure ID retrieval can be achieved by using recommendations, past

experience, and specialized ID authentication services and mechanisms

that are out of the scope of this discussion.

Another important requirement is name persistence, not only with

respect to storage location changes as discussed above, but also with

respect to changes of owner and/or owner's organizational structure,

and content changes producing a new version of the information.

Information should always be identifiable with the same ID as long as

it remains essentially equivalent. Spreading of persistent naming

schemes like the Digital Object Identifier (DOI) [Paskin2010] also

emphasizes the need for a persistent naming scheme. However, name

persistence and self-certification are partly contradictory and

achieving both simultaneously for dynamic content is not trivial.

From a user's perspective, persistent IDs ensure that links and

bookmarks remain valid as long as the respective information exists

somewhere in the network, reducing today's problem of "404 - file not

found" errors triggered by renamed or moved content. From a content

provider's perspective, name persistence simplifies data management as

content can, e.g., be moved between folders and different servers as

desired. Name persistence with respect to content changes makes it

possible to identify different versions of the same information by the

same consistent ID. If it is important to differentiate between

multiple versions, a dedicated versioning mechanism is required, and

version numbers may be included as a special part of the ID.

The requirement of building trust in an information-centric system

combined with the desire for anonymous publication as well as

accountability (at least for some content) can be translated into two

related naming requirements. The first is owner authentication, where

the owner is recognized as the same entity, which repeatedly acts as

the object owner, but may remain anonymous. The second is owner

identification, where the owner is also identified by a physically

verifiable identifier, such as a personal name. This separation is

important to allow for anonymous publication of content, e.g., to

support free speech, while at the same time building up trust in a

(potentially anonymous) owner.

In general, the naming scheme should be able to adapt to future needs.

Therefore, the naming scheme should be extensible, i.e., it should be

able to add new information (e.g., a chunk number for BitTorrent-like

protocols) to the naming scheme. The need for such extensions is

stressed by today's variety of naming schemes (e.g., DOI or PermaLink)

added on top of the original Internet architecture that fulfill

specialized needs which cannot be met by the common Internet naming

schemes, i.e., IP addresses and URLs.

3. Basic Concepts for an Application-independent Naming Scheme

In this section, we introduce an exemplary naming scheme that

illustrates a possible way to fulfill the requirements posed upon an

application-independent naming scheme for information-centric networks.

The naming scheme integrates security deeply into the system

architecture. Trust is based on the data's ID in combination with

additional security metadata. Section 3.1 gives an overview of the

naming scheme in general with details about the ID structure, and

Section 3.2 describes the security metadata in more detail.

3.1. Overview

Building on an identifier/locator split, each data element, e.g., file,

is given a unique ID with cryptographic properties. Together with the

additional security metadata, the ID can be used to verify data

integrity, owner authentication, and owner identification. The security

metadata contains information needed for the security functions of the

naming scheme, e.g., public keys, content hashes, certificates, and a

data signature authenticating the content. In comparison with the

security model in today's host-centric networks, this approach

minimizes the need for trust in the infrastructure, especially in the

host(s) providing the data.

In an information-centric network, multiple copies of the same data

element typically exist at different locations. Thanks to the ID/

locator split and the application-independent naming scheme, those

identical copies have the same ID and, hence, each application can

benefit from all available copies.

Data elements are manipulated (e.g., generated, modified, registered,

and retrieved) by physical entities such as nodes (clients or hosts),

persons, and companies. Physical entities able of generating, i.e.,

creating or modifying data elements are called owners here. Several

security properties of this naming scheme are based on the fact that

each ID contains the hash of a public key that is part of a public/

secret key pair PK/SK. This PK/SK pair is conceptually bound to the

data element itself and not directly to the owner as in other systems

like DONA [Koponen]. If desired, the PK/SK pair can be bound to the

owner only indirectly, via a certificate chain. This is important to

note because it enables owner change while keeping persistent IDs. The

key pair bound to the data is thus denoted as PK_D/SK_D.

Making the (hash of the) public key part of ID enables self-

certification of dynamic content while keeping persistent IDs. Self-

certification of static content can be achieved by simply including the

hash of content in the ID, but this would obviously result in non-

persistent IDs for dynamic content. For dynamic content, the public key

in the ID can be used to securely bind the hash of content to the ID,

by signing it with the corresponding secret key, while not making it

part of ID.

The owner's PK as part of the ID inherently provides owner

authentication. If the public key is bound to the owner's identity

(i.e., to its real-world name) via a trusted third party certificate,

this also allows owner identification. Without this additional

certificate, the owner can remain anonymous.

To support the potentially diverse requirements of certain groups of

applications and adapt to future changes, the naming scheme can enable

flexibility and extensibility by supporting different name structures,

differentiated via a Type field in the ID.

3.2. ID Structure

The naming scheme uses flat IDs to support self-certification and name

persistence. In addition, flat IDs are advantageous when it comes to

mobility and they can be allocated without an administrative authority

by relying on statistical uniqueness in a large namespace, with the

rare case of ID collisions being handled by the applications. Although

IDs are not hierarchical, they have a specified basic ID structure. The

ID structure given as ID = (Type field | A = hash(PK) | L) is described

subsequently.

The Authenticator field A=Hash(PK_D) binds the ID to a public key PK_D.

The hash function Hash is a cryptographic hash function, which is

required to be one-way and collision-resistant. The hash function

serves only to reduce the bit length of PK_D. PK_D is generated in

accordance with a chosen public-key cryptosystem. The corresponding

secret key SK_D should only be known to a legitimate owner. In

consequence, an owner of the data is defined as any entity who

(legitimately) knows SK_D.

The pair (A, L) has to be globally unique. Hence, the Label field L

provides global uniqueness if PK_D is repeatedly used for different

data.

To build a flexible and extensible naming scheme, e.g., to adapt the

naming scheme to future changes, different types of IDs are supported

by the naming scheme and differentiated via a mandatory and globally

standardized Type field in each ID. For example, the Type field

specifies the hash functions used to generate the ID. If a used hash

function becomes insecure, the Type field can be exploited by the P2P

system in order to automatically mark the IDs using this hash function

as invalid.

3.3. Security Metadata Structure

The security metadata is extensible and contains all information

required to perform the security functions embedded in the naming

scheme. The metadata (or selected parts of it) will be signed by SK_D

corresponding to PK_D. This securely binds the metadata to the ID,

i.e., to the Hash(PK_D) which is part of the ID. For example, the

security metadata may include:

A detailed description and security analysis of this naming scheme and

its security properties, especially self-certification, name

persistence, owner authentication, and owner identification can be

found in the GIS paper Secure Naming for a Network of Information

[Dannewitz_10].

4. Examples of application use of secure naming structure

This section contains a number of examples how a secure naming system,

as outlined in this draft, could be used by different types of

applications.

4.1. Secure naming for P2P applications

From an P2P application perspective the main advantage of a secure

naming structure for a P2P infrastructure is that multiple P2P

applications can have common access to the same data elements. Another

benefit of application-independent naming is that locally available and

cached copies can easily be located. The secure naming also enables

that data can be verified even if it is received from an untrusted

host.

For example, when an application like BitTorrent [WWWbittorrent] uses

self-certifying names, the user is guaranteed that the data received is

actually the data that has been requested, without having to trust any

servers in the network (e.g., the tracker) or the peers that provide

the data.

This means that BitTorrent's validation of the data integrity can be

improved significantly using the presented secure naming structure.

Currently, a standard BitTorrent system has no means to verify the

integrity of the torrent file and consequently of the data. The torrent

file (see Figure 1) contains the SHA1 hashes of the content pieces

(pieces in Figure 2). However, anyone can modify a torrent file to bind

different content to this file. If the torrent file gets modified, the

user has no means any more to verify the integrity of the data.

Modification of the torrent affects only to info_hash value, which is

SHA1 hash calculated from the torrent's info field (see figure). The

info_hash is respectively used for torrent session identification in

different software entities (e.g. in trackers). After changes in the

torrent's info field, the torrent is referring to different torrent

session that is carrying a forged content. Additionally if, the tracker

allows insertion of several torrents with the same name - delivers

forged data (consistent with the forged torrent file), a user could

effectively be tricked into downloading forged content which would

falsely be identified as being correct by the BitTorrent client. On the

other hand, the torrent referring to a forged content can be also

modified to point to, another, "convenient" tracker by modifying the

announce field in the torrent, and the outcome would be the same from

user perspective. I.e., in the current BitTorrent system, a user has no

guarantee that the downloaded content actually matches the expected/

correct content.

+---------------------------------+---------------------------------+

| announce | info |

+---------------------------------+---------------------------------+

+-----------+--------------+-------------+------------+-------------+

| name | piece length | pieces | length | path (opt) |

+-----------+--------------+-------------+------------+-------------+

+-----------+--------------+-------------+------------+-------------+

| name | piece length | pieces | length | path (opt) |

+-----------+--------------+-------------+------------+-------------+

+----------------------+----------------------+---------------------+

| h | DSAlg | PK_D |

+----------------------+----------------------+---------------------+

+----------------------+----------------------+---------------------+

| certified pieces | ID | signature |

+----------------------+----------------------+---------------------+

The secure naming structure presented in this draft can provide a

simple solution for this problem by securely binding the content of the

torrent file to the name/ID of the torrent file. This can be done by

extending the torrent file to include the above described security

metadata information, as it is seen in Figure 3. In practice, during

the torrent file creation, an object owner would store information

about utilized algorithms (h - hash function and DSAlg - digital

signature algorithm), the public key (PK_D), specification of signed

data and ID into the torrent's info field, and will sign the

combination of the secure metadata and the piece hash values (pieces in

the torrent's info field) with the private key (SK_D). The generated

signature will also be included in the extension part of the info field

(signature).

After the content of the extended torrent is created, the respective

torrent file ID would be generated according to the rules described in

Section 3. As defined in that section, ID contains three different

fields, namely Type, A and L. In the case of BitTorrent, Type field

would carry on information about used hash function to generate field A

from PK_D, and also structure of the field L. If, for example, L has

name and version of the distributed file, Type field should tell that

by including strings "Name" and "Version" in it. The next one, field A,

includes hash values of the used PK_D (method defined in Type). And

finally the proposed BitTorrents ID field L, can take in name and

version of the distributed file. According to the description and by

using separators - (within one field) and _ (between fields) the

torrent file name could look, for example, like: HashMethod-Name-

Version_HashofPK_Filename-Fileversion.torrent.

Consequently, whenever a user knows the ID of the content/torrent file

and retrieves the torrent file, she/he can now open the torrent with

the secure naming supported BitTorrent client. The client verifies the

integrity of the torrent file by comparing PK_D in secure metadata and

field A in the ID, in addition, conformance of ID in the torrent name

and ID in the metadata is verified. With respect to the secure metadata

the signature and actual data is compared also. Once these three are

verified, the client can download the data pieces, and can use the

BitTorrent's included (and now secured) hash(es) to verify the

integrity of the received data. As a result, the user can be sure that

the correct content was retrieved.

4.2. Secure naming use in DECADE

DECADE WG is specifying requirements for a protocol concerning

accessing data in a network storage and resource control of said data.

A key aspect in accessing data in a network storage is the way the data

is referenced. This naming draft has outlined a naming structure that

can be utilized to enhance the reference to include additional

features. The secure naming structure tries to fulfill several design

targets and requirements, however not all are necessarily the priority

requirements for the DECADE scope.

The DECADE storage is used by individual and uncoordinated entities,

thus the naming of the data must be collision free. Also when a user

accesses data the name should point to the correct data. With no entity

to keep track of used names for data, one potential approach is to use

large enough identifier designed with statistically collision free

random properties. One obvious identifier alternative is to base it on

the hash of the content.

The basic requirement for naming in DECADE is that the data identifier

is tied to the hash of the content and that it is taken from a large

enough flat namespace. In this way, wherever the same data is stored,

the same name identifier can be used. Someone accessing the data can

verify that the content is correct based on relationship between data

and identifier. Other requirements can be included to further enhance

the meaning and capability of the data reference identifier. Additional

naming requirements could be:

self-certified name for verifying content owner (owner of Pk/Sk

keys), the self-certification can be used for building trust

about data publisher

solution for persistent identifier names for dynamic (changing)

data

potentially way to identify content owner, this typically

requires trusted third party certifier.

This draft specifies several requirements that would be useful for the

DECADE protocol, the main requirement is hashing of data into the

identifier name. Depending of data use (like enhanced security

properties) other secondary requirements will be beneficial for

additional functionality.

*

*

*

4.3. Secure naming for CDNs

The use of common naming within a CDN is not the challenge, it is the

common naming between end users and the CDN or between CDNs that can be

feasible. A common naming enables use of numerous caching points and

CDNs as the same data can be referenced in the same way. The same data

can depending of popularity be available in multiple location like

caches and CDNs. The population of the resources (caches and CDNs) can

be efficient if a common naming of data is used. The interaction

between CDNs to 'negotiate' data population of caching resources would

benefit from a common data reference model. The security features of

the naming scheme also helps the CDN provider trust the data it is

accessing and providing. The CDN interaction is potentially in the

scope of the CDNI WG BOF.

5. Conclusion

The main proposal presented in this draft is idea that there should be

a secure and application independent way of naming information objects

that are transported over the Internet. The draft defines a set of

requirements for such a naming structure. It also presents a proposal

for such a naming structure that could relevant for a number of work

groups (existing and potential), e.g. PPSP, DECADE and CDNI.

Specifically for the PPSP WG the secure naming structure is proposed

for consideration as common reference ID structure. For any P2P

streaming application to have fair and multitude of data access, it is

essential to have a common naming structure that is suitable for many

different needs. The common naming is probably best displayed in the

tracker protocol case but potential benefit in the actual streaming

protocol case has to still be identified. The secure binding of

reference ID to the actual content is manifested in the end user peer

possibility to check correct data reception in regard to the used ID.

The naming structure has been implemented in the 4WARD project

prototypes and has been released as open source (www.netinf.org). The

naming structure is also available through a public NetInf registration

service at www.netinf.org. Three NetInf-enabled applications have also

been published, the InFox (Firefox plugin), InBird (Thunderbird

plugin), and a NetInf Information Object Management Tool, all available

at the www.netinf.org site.

Continued work on defining a common naming structure for information

objects is carried out in the SAIL project. More information is

available at the www.sail-project.eu site.

6. IANA Considerations

This document has no requests to IANA.

7. Security Considerations

There are considerations about what private/public key and hash

algorithms to utilize when designing the naming structure in a secure

way.

8. Acknowledgements

We would like to thank all the persons participating in the Network of

Information work packages in the EU FP7 projects 4WARD and SAIL and the

Finnish ICT SHOK Future Internet 2 project for contributions and

feedback to this document.

9. References

[RFC2119]

Bradner, S., "Key words for use in RFCs to

Indicate Requirement Levels", BCP 14, RFC 2119,

March 1997.

[Dannewitz_10]

Dannewitz, C., Golic, J., Ohlman, B. and B.

Ahlgren, "Secure Naming for a Network of

Information", 13th IEEE Global Internet Symposium

, 2010.

[Paskin2010]

Paskin, N., "Digital Object Identifier ({DOI}?)

System", Encyclopedia of Library and Information

Sciences , 2010.

[Koponen]

Koponen, T., Chawla, M., Chun, B.-G.,

Ermolinskiy, A., Kim, K. H., Shenker, S. and I.

Stoica, "A Data-Oriented (and beyond) Network

Architecture", Proc. ACM SIGCOMM , 2007.

[WWWbittorrent]

Cohen, B., "The BitTorrent Protocol

Specification", http://www.bittorrent.org/beps/

bep_0003.html , 2008.

Authors' Addresses

Christian Dannewitz Dannewitz University of Paderborn Paderborn,

Germany EMail: cdannewitz@upb.de

Teemu Rautio Rautio VTT Technical Research Centre of Finland Oulu,

Finland EMail: teemu.rautio@vtt.fi

Ove Strandberg Strandberg Nokia Siemens Networks Espoo, Finland

EMail: ove.strandberg@nsn.com

Borje Ohlman Ohlman Ericsson Stockholm, Sweden EMail:

Borje.Ohlman@ericsson.com

mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
mailto:cdannewitz@upb.de
mailto:teemu.rautio@vtt.fi
mailto:ove.strandberg@nsn.com
mailto:Borje.Ohlman@ericsson.com

	Abstract
	Requirements Language
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Naming requirements
	3. Basic Concepts for an Application-independent Naming Scheme
	3.1. Overview
	3.2. ID Structure
	3.3. Security Metadata Structure
	4. Examples of application use of secure naming structure
	4.1. Secure naming for P2P applications
	4.2. Secure naming use in DECADE
	4.3. Secure naming for CDNs
	5. Conclusion
	6. IANA Considerations
	7. Security Considerations
	8. Acknowledgements
	9. References
	Authors' Addresses

