
Independent Submission S. Dashevskyi
Internet-Draft D. dos Santos
Intended status: Informational J. Wetzels
Expires: August 14, 2022 A. Amri
 Forescout Technologies
 February 14, 2022

Common implementation anti-patterns related
to Domain Name System (DNS) resource record (RR) processing

draft-dashevskyi-dnsrr-antipatterns-01

Abstract

 This memo describes common vulnerabilities related to Domain Name
 System (DNS) response record (RR) processing as seen in several DNS
 client implementations. These vulnerabilities may lead to successful
 Denial-of-Service and Remote Code Execution attacks against the
 affected software. Where applicable, violations of RFC 1035 are
 mentioned.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 14, 2022.

Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Table of Contents

https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

 1. Introduction
 2. Compression Pointer and Offset Validation
 2.1. Compression Pointer Pointing Out of Bounds
 2.2. Compression Pointer Loops
 2.3. Invalid Compression Pointer Check
 3. Label and Name Length Validation
 4. NULL-terminator Placement Validation
 5. Response Data Length Validation
 6. Record Count Validation
 7. General Recommendations
 7.1. Compression Pointer
 7.2. Name, Label, and Resource Record Lengths
 7.3. Resource Record Count Fields
 8. Security Considerations
 9. IANA Considerations
 10. References
 10.1. Normative References
 10.2. Informative References
 Acknowledgements
 Authors' Addresses

1. Introduction

 Recently, there have been major vulnerabilities on DNS
 implementations that raised attention to this protocol as an
 important attack vector, such as CVE-2020-1350, known as "SIGRed",
 CVE-2020-2705, known as "SAD DNS", and "DNSpooq", a set of 7 critical
 issues affecting the DNS forwarder "dnsmasq"
 (<https://thekelleys.org.uk/dnsmasq/doc.html>).

 The authors of this memo have analyzed the DNS client implementations
 of several major TCP/IP protocol stacks and found a set of
 vulnerabilities that share common implementation flaws
 (anti-patterns). These flaws are related to processing DNS RRs
 (discussed in [RFC1035]) and may lead to critical security
 vulnerabilities.

 While implementation flaws may differ from one software project to
 another, these anti-patterns are highly likely to span across
 multiple implementations. In fact, one of the first CVEs related to
 one of the anti-patters (CVE-2000-0333) dates back to the year 2000.
 The affected software is not limited to DNS client implementations,
 and any software that attempts to process DNS RRs may be affected,
 such as firewalls, intrusion detection systems, or general purpose
 DNS packet dissectors (i.e., Wireshark).

 [COMP-DRAFT] and [RFC5625] briefly mention some of these
 anti-patterns, but the main purpose of this memo is to provide
 technical details behind these anti-patterns, so that the common
 mistakes can be eradicated.

https://thekelleys.org.uk/dnsmasq/doc.html
https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc5625

2. Compression Pointer and Offset Validation

 [RFC1035] defines the DNS message compression scheme that can be used
 to reduce the size of messages. When it is used, an entire domain
 name or several name labels are replaced with a (compression) pointer
 to a prior occurrence of the same name.

 The compression pointer is a combination of two octets: the two most
 significant bits are set to 1, and the remaining 14 bits are the
 OFFSET field. This field specifies the offset from the beginning of
 the DNS header, at which another domain name or label is located:

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | 1 1| OFFSET |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 The message compression scheme explicitly allows a domain name to be
 represented as: (1) a sequence of unpacked labels ending with a zero
 octet; (2) a pointer; (3) a sequence of labels ending with a pointer.

 However, [RFC1035] does not explicitly state that blindly following
 compression pointers of any kind can be harmful [COMP-DRAFT], as the
 authors could not have had any assumptions about various
 implementations that would follow.

 Yet, any DNS packet parser that attempts to uncompress domain names
 without validating the value of OFFSET is likely susceptible to
 memory corruption bugs and buffer overruns. These bugs allow for easy
 Denial-of-Service attacks, and may result in successful Remote Code
 Execution attacks.

 Pseudocode that illustrates typical domain name parsing
 implementations is shown below (Snippet 1):

 1:uncompress_domain_name(*name, *dns_payload) {
 2:
 3: name_buffer[255];
 4: copy_offset = 0;
 5:
 6: label_len_octet = name;
 7: dest_octet = name_buffer;
 8:
 9: while (*label_len_octet != 0x00) {
 10:
 11: if (is_compression_pointer(*label_len_octet)) {
 12: ptr_offset = get_offset(label_len_octet,
 label_len_octet+1);
 13: label_len_octet = dns_payload + ptr_offset + 1;
 14: }
 15:
 16: else {

https://datatracker.ietf.org/doc/html/rfc1035

 17: length = *label_len_octet;
 18: copy(dest_octet + copy_offset,
 label_len_octet+1, *length);
 19:
 20: copy_offset += length;
 21: label_len_octet += length + 1;
 22: }
 23:
 24: }
 25:}
 Snippet 1 - A typical implementation of a function
 that is used for uncompressing DNS domain names (pseudocode)

 Such implementations typically have a dedicated function for
 uncompressing domain names. Among other parameters, these functions
 may accept a pointer to the beginning of the first name label within
 a RR ("name") and a pointer to the beginning of the DNS payload to be
 used as a starting point for the compression pointer ("dns_payload").
 The destination buffer for the domain name ("name_buffer") is
 typically limited to 255 bytes as per [RFC1035] and can be allocated
 either in the stack or in the heap memory region.

 The code of the function at Snippet 1 reads the domain name
 label-by-label from a RR until it reaches the NULL octet (0x00) that
 signifies the end of a domain name. If the current label length octet
 ("label_len_octet") is a compression pointer, the code extracts the
 value of the compression offset and uses it to "jump" to another
 label length octet. If the current label length octet is not a
 compression pointer, the label bytes will be copied into the name
 buffer, and the number of bytes copied will correspond to the value
 of the current label length octet. After the copy operation, the code
 will move on to the next label length octet.

 There are multiple issues with this implementation. In this Section
 we discuss the issues related to the handling of compression
 pointers.

 The first issue is due to unchecked compression offset values. The
 second issue is due to the absence of checks that ensure that a
 pointer will eventually arrive at an uncompressed domain label. We
 describe these issues in more detail below.

2.1 Compression Pointer Pointing Out of Bounds

 [RFC1035] states that "... [compression pointer is] a pointer to a
 prior occurrence of the same name". Also, according to [RFC1035],
 the maximum size of DNS packets that can be sent over the UDP
 protocol is limited to 512 octets.

 The pseudocode at Snippet 1 violates these constraints, as it will
 accept a compression pointer that forces the code to read out of the

https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc1035

 bounds of a DNS packet. For instance, the compression pointer of
 0xffff will produce the offset of 16383 octets, which is most
 definitely pointing to a label length octet somewhere past the
 original DNS packet. Supplying such offset values will most likely
 cause memory corruption issues and may lead to Denial-of-Service
 conditions (e.g., a NULL pointer dereference after "label_len_octet"
 is set to an invalid address in memory).

2.2 Compression Pointer Loops

 The pseudocode at Snippet 1 allows for jumping from a compression
 pointer to another compression pointer and it does not restricts the
 number of such jumps. That is, if a label length octet which is
 currently being parsed is a compression pointer, the code will
 perform a jump to another label, and if that other label is a
 compression pointer as well, the code will perform another jump, and
 so forth until it reaches an uncompressed label. This may lead to
 unforeseen side-effects that result in security issues.

 Consider the excerpt from a DNS packet illustrated below:

 +----+----+----+----+----+----+----+----+----+----+----+----+
 +0x00 | ID | FLAGS | QCOUNT | ANCOUNT | NSCOUNT | ARCOUNT |
 +----+----+----+----+----+----+----+----+----+----+----+----+
 ->+0x0c |0xc0|0x0c| TYPE | CLASS |0x04| t | e | s | t |0x03|
 | +----+--|-+----+----+----+----+----+----+----+----+----+----+
 | +0x18 | c | o| | m |0x00| TYPE | CLASS | |
 | +----+--|-+----+----+----+----+----+----+----+----+----+----+

 The packet begins with a DNS header at the offset +0x00, and its DNS
 payload contains several RRs. The first RR begins at the offset of 12
 octets (+0xc0) and its first label length octet is set to the value
 "0xc0", which indicates that it is a compression pointer. The
 compression pointer offset is computed from the two octets "0xc00c"
 and it is equal to 12. Since the implementation at Snippet 1 follows
 this offset value blindly, the pointer will jump back to the first
 octet of the first RR (+0xc0) over and over again. The code at
 Snippet 1 will enter an infinite loop state, since it will never
 leave the "TRUE" branch of the "while" loop.

 Apart from achieving infinite loops, the implementation flaws at
 Snippet 1 make it possible to achieve various pointer loops that have
 different effects. For instance, consider the DNS packet excerpt
 shown below:

 +----+----+----+----+----+----+----+----+----+----+----+----+
 +0x00 | ID | FLAGS | QCOUNT | ANCOUNT | NSCOUNT | ARCOUNT |
 +----+----+----+----+----+----+----+----+----+----+----+----+
 ->+0x0c |0x04| t | e | s | t |0xc0|0x0c| |

 | +----+----+----+----+----+----+--|-+----+----+----+----+----+

 With such a domain name, the implementation at Snippet 1 will first
 copy the domain label at the offset 0xc0 ("test"), then it will fetch
 the next label length octet, which is a compression pointer (0xc0).
 The compression pointer offset is computed from the two octets
 "0xc00c" and is equal to 12 octets. The code will jump back at the
 offset 0xc0 where the first label "test" is located. The code will
 again copy the "test" label, and jump back to it, following the
 compression pointer, over and over again.

 Snippet 1 does not contain any logic that restricts multiple jumps
 from the same compression pointer and does not ensure that no more
 than 255 octets are copied into the name buffer ("name_buffer"). In
 fact, the code will continue to write the label "test" into it,
 overwriting the name buffer and the stack of the heap metadata. In
 fact, attackers would have a significant degree of freedom in
 constructing shell-code, since they can create arbitrary copy chains
 with various combinations of labels and compression pointers.

 Therefore, blindly following compression pointers may not only lead
 to Denial-of-Service as pointed by [COMP-DRAFT], but also to
 successful Remote Code Execution attacks, as there may be other
 implementation issues present within the corresponding code.

2.3 Invalid compression pointer check

 Some implementations may not follow [RFC1035], which states: "the
 first two bits [of a compression pointer octet] are ones; this allows
 a pointer to be distinguished from a label, the label must begin
 with two zero bits because labels are restricted to 63 octets or less
 (the 10 and 01 combinations are reserved for future use)". Snippets 2
 and 3 show pseudocode that implements two functions that check
 whether a given octet is a compression pointer: correct and incorrect
 implementations respectively.

 1: unsigned char is_compression_pointer(*octet) {
 2: if ((*octet & 0xc0) == 0xc0)
 3: return true;
 4: } else {
 5: return false;
 6: }
 7: }
 Snippet 2 - Correct compression pointer check

 1: unsigned char is_compression_pointer(*octet) {
 2: if (*octet & 0xc0) {
 3: return true;
 4: } else {

https://datatracker.ietf.org/doc/html/rfc1035

 5: return false;
 6: }
 7: }
 Snippet 3 - Incorrect compression pointer check

 The correct implementation (Snippet 2) ensures that the two most
 significant bits of an octet are both set, while the incorrect
 implementation (Snippet 3) would consider an octet with only one of
 the two bits set as a compression pointer. This is likely an
 implementation mistake rather than an intended violation of
 [RFC1035], because there are no benefits in supporting such
 compression pointer values.

 While incorrect implementations alone do not lead to vulnerabilities,
 they may have unforeseen side-effects when combined with other
 vulnerabilities. For instance, the first octet of the value "0x4130"
 represents an invalid label length (65) which is larger than 63 (as
 per [RFC1035]) and a packet that has this value should be discarded.
 However, the function shown on Snippet 3 will consider "0x41" to be a
 valid compression pointer, and the packet may pass the validation
 steps.

 This might give an additional leverage for attackers in constructing
 payloads and circumventing the existing DNS packet validation
 mechanisms.

3. Label and Name Length Validation

 [RFC1035] restricts the length of name labels to 63 octets, and
 lengths of domain names to 255 octets. Some implementations do not
 explicitly enforce these restrictions.

 Consider the pseudocode function "copy_domain_name()" shown on
 Snippet 4 below. The function is a variant of the
 "uncompress_domain_name" function (Snippet 1), with the difference
 that it does not support compressed labels, and copies only
 uncompressed labels into the name buffer.

 1:copy_domain_name(*name, *dns_payload) {
 2:
 3: name_buffer[255];
 4: copy_offset = 0;
 5:
 6: label_len_octet = name;
 7: dest_octet = name_buffer;
 8:
 9: while (*label_len_octet != 0x00) {
 10:
 11: if (is_compression_pointer(*label_len_octet)) {
 12: length = 2;
 13: label_len_octet += length + 1;

https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc1035

 14: }
 15:
 16: else {
 17: length = *label_len_octet;
 18: copy(dest_octet + copy_offset,
 label_len_octet+1, *length);
 19:
 20: copy_offset += length;
 21: label_len_octet += length + 1;
 22: }
 23:
 24: }
 25:}
 Snippet 4 - A typical implementation of a function
 that is used for copying non-compressed domain names (pseudocode)

 This implementation does not explicitly check for the value of the
 label length octet: this value can be up to 255 octets, and a single
 label can fill the name buffer. Depending on the memory layout of the
 target, how the name buffer is allocated, and the size of the
 malformed packet, it is possible to trigger various memory corruption
 issues.

 Both Snippets 1 and 4 restrict the size of the name buffer to 255
 octets, however there are no restrictions on the actual number of
 octets that will be copied into this buffer. In this particular case,
 a subsequent copy operation (if another label is present in the
 packet) will write past the name buffer, allowing to overwrite heap
 or stack metadata in a controlled manner.

4. NULL-terminator Placement Validation

 A domain name must end with a NULL (0x00) octet, as per [RFC1035].
 The implementations shown at Snippets 1 and 4 assume that this is the
 case for the RRs that they process, however names that do not have a
 NULL octet placed at the proper position within a RR are not
 discarded.

 This issue is closely related to the absence of label and name length
 checks. For example, the logic behind Snippets 1 and 4 will continue
 to copy octets into the name buffer, until a NULL octet is
 encountered. This octet can be placed at an arbitrary position
 within a RR, or not placed at all.

 Consider a pseudocode function shown on Snippet 5. The function
 returns the length of a domain name ("name") in octets to be used
 elsewhere (e.g., to allocate a name buffer of a certain size): for
 compressed domain names the function returns 2, for uncompressed
 names it returns their true length using the "strlen()" function.

 1: get_name_length(*name) {

https://datatracker.ietf.org/doc/html/rfc1035

 2:
 3: if (is_compression_pointer(name))
 4: return 2;
 5:
 6: name_len = strlen(name) + 1;
 7: return name_len;
 8: }
 Snippet 5 - A function that returns the length of a domain name

 "strlen()" is a standard C library function that returns the length
 of a given sequence of characters terminated by the NULL (0x00)
 octet. Since this function also expects names to be explicitly
 NULL-terminated, the return value "strlen()" may be also controlled
 by attackers. Through the value of "name_len" attackers may control
 the allocation of internal buffers, or specify the number by octets
 copied into these buffers, or other operations depending on the
 implementation specifics.

 The absence of explicit checks for the NULL octet placement may also
 facilitate controlled memory reads and writes.

5. Response Data Length Validation

 As stated in [RFC1035], every RR contains a variable length string of
 octets that contains the retrieved resource data (RDATA) (e.g., an IP
 address that corresponds to a domain name in question). The length of
 the RDATA field is regulated by the resource data length field
 (RDLENGTH), that is also present in an RR.

 Implementations that process RRs may not check for the validity of
 the RDLENGTH field value, when retrieving RDATA. Failing to do so may
 lead to out-of-bound read issues (similarly to the label and name
 length validation issues discussed in Section 3), whose impact may
 vary significantly depending on the implementation specifics. The
 authors observed instances of Denial-of-Service conditions and
 information leaks.

6. Record Count Validation

 According to [RFC1035], the DNS header contains four two-octet
 fields that specify the amound of question records (QDCOUNT), answer
 records (ANCOUNT), authority records (NSCOUNT), and additional
 records (ARCOUNT).

 1: process_dns_records(dns_header, ...) {
 // ...
 2: num_answers = dns_header->ancount
 3: data_ptr = dns_header->data
 4:
 5: while (num_answers > 0) {
 6: name_length = get_name_length(data_ptr);

https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc1035

 7: data_ptr += name_length + 1;
 8:
 9: answer = (struct dns_answer_record *)data_ptr;
 10:
 11: // process the answer record
 12:
 13: --num_answers;
 14: }
 // ...
 15: }
 Snippet 6 - A RR processing function

 Snippet 6 illustrates a recurring implementation anti-pattern for a
 function that processes DNS RRs. The function "process_dns_records()"
 extracts the value of ANCOUNT ("num_answers") and the pointer to the
 DNS data payload ("data_ptr"). The function processes answer records
 in a loop decrementing the "num_answers" value after processing each
 record, until the value of "num_answers" becomes zero. For
 simplicity, we assume that there is only one domain name per answer.
 Inside the loop, the code calculates the domain name length
 "name_length", and adjusts the data payload pointer "data_ptr" by the
 offset that corresponds to "name_length + 1", so that the pointer
 lands on the first answer record. Next, the answer record is
 retrieved and processed, and the "num_answers" value is decremented.

 If the ANCOUNT number retrieved from the header
 ("dns_header->ancount") is not checked against the amount of data
 available in the packet and it is, e.g., larger than the number of
 answer records available, the data pointer "data_ptr" will read out
 of the bounds of the packet. This may result in Denial-of-Service
 conditions.

 In this section, we used an example of processing answer records.
 However, the same logic is often reused for processing other types of
 records. Therefore all record count fields must be checked before
 parsing the contents of a packet. [RFC5625] recommends that DNS
 packets with wrong RR count fields should be dropped.

7. General Recommendations

7.1. Compression Pointer

 A compression pointer (a byte with the 2 highest bits set to 1) must
 resolve to a byte within a DNS record with the value that is greater
 than 0 (i.e., it must not be a NULL terminator) and less than 64. The
 offset at which this byte is located must be smaller than the offset
 at which the compression pointer is located. There is no valid reason
 for nesting compression pointers. The code that implements domain
 name parsing should check the offset not only with respect to the
 bounds of a packet, but also its position with respect to the
 compression pointer in question. A compression pointer must not be

https://datatracker.ietf.org/doc/html/rfc5625

 "followed" more than once. This might be difficult to implement
 within the logic of TCP/IP stacks, as the authors have seen several
 implementations using a check that ensures that a compression pointer
 is not followed more than several times. While this is not a perfect
 solution, it may still be a practical one.

7.2 Name, Label, and Resource Record Lengths

 A domain name length byte must have the value of more than 0 and less
 than 64 ([RFC1035]). If this is not the case, an invalid value has
 been provided within the packet, or a value at an invalid position
 might be interpreted as a domain name length due to other errors in
 the packet (e.g., misplaced NULL terminator or invalid compression
 pointer). The characters of the domain label allowed for Internet
 hosts must strictly conform to [RFC1035], and the number of domain
 label characters must correspond to the value of the domain label
 byte. The domain name length must not be more than 255 bytes,
 including the size of uncompressed domain names. The NULL octet
 (0x00) must be present at the end of the domain name, and within the
 maximum name length (255 octets).

 The value of the data length byte in response DNS records (RDLENGTH)
 must reflect the number of bytes available in the field that
 describes the resource (RDATA). The format of RDATA must conform to
 the TYPE and CLASS fields of the RR.

7.3 Resource Record Count Fields

 The values of the bytes within a DNS header that reflect the number
 of Question (QCOUNT), Answer (ANCOUNT), Authority (NSCOUNT) and
 Additional (ARCOUNT) must correspond to the actual data present
 within the packet. The packets with with invalid RR counts must be
 discarded, in accordance with [RFC5625].

8. Security Considerations

 Security issues are discussed throughout this memo.

9. IANA Considerations

 This document introduces no new IANA considerations. Please see
 [RFC6895] for a complete review of the IANA considerations
 introduced by DNS.

10. References

10.1 Normative References

 [RFC1035] Mockapetris, P., "Domain names - implementation and
 specification", RFC 1035, November 1987,
 <https://www.rfc-editor.org/info/rfc1035>.

https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc5625
https://datatracker.ietf.org/doc/html/rfc6895
https://datatracker.ietf.org/doc/html/rfc1035
https://www.rfc-editor.org/info/rfc1035

10.2 Informative References

 [COMP-DRAFT] Koch, P., "A New Scheme for the Compression of
 Domain Names", Internet-Draft, draft-ietf-dnsind-local-

compression-05, June 1999, Work in progress,
 <https://tools.ietf.org/html/draft-ietf-dnsind-local-

compression-05>.

 [RFC5625] Bellis, R., "DNS Proxy Implementation Guidelines", RFC
5625, August 2009,

 <https://www.rfc-editor.org/info/rfc5625>.

 [RFC6895] Eastlake 3rd, D., "Domain Name System (DNS) IANA
 Considerations", RFC 6895, April 2013,
 <https://www.rfc-editor.org/info/rfc6982>.

Acknowledgements

 We would like to thank Shlomi Oberman, who has greatly contributed to
 the research that led to this document.

Authors' Addresses

 Stanislav Dashevskyi
 Forescout Technologies
 John F. Kennedylaan, 2
 Eindhoven, 5612AB
 The Netherlands

 Email: stanislav.dashevskyi@forescout.com

 Daniel dos Santos
 Forescout Technologies
 John F. Kennedylaan, 2
 Eindhoven, 5612AB
 The Netherlands

 Email: daniel.dossantos@forescout.com

 Jos Wetzels
 Forescout Technologies
 John F. Kennedylaan, 2
 Eindhoven, 5612AB
 The Netherlands

 Email: jos.wetzels@forescout.com

 Amine Amri
 Forescout Technologies
 John F. Kennedylaan, 2
 Eindhoven, 5612AB
 The Netherlands

https://datatracker.ietf.org/doc/html/draft-ietf-dnsind-local-compression-05
https://datatracker.ietf.org/doc/html/draft-ietf-dnsind-local-compression-05
https://tools.ietf.org/html/draft-ietf-dnsind-local-compression-05
https://tools.ietf.org/html/draft-ietf-dnsind-local-compression-05
https://datatracker.ietf.org/doc/html/rfc5625
https://datatracker.ietf.org/doc/html/rfc5625
https://www.rfc-editor.org/info/rfc5625
https://datatracker.ietf.org/doc/html/rfc6895
https://www.rfc-editor.org/info/rfc6982

 Email: amine.amri@forescout.com

