
Independent Submission S. Dashevskyi
Internet-Draft D. dos Santos
Intended status: Informational J. Wetzels
Expires: November 18, 2022 A. Amri
 Forescout Technologies
 May 18, 2022

Common implementation anti-patterns related
to Domain Name System (DNS) resource record (RR) processing

draft-dashevskyi-dnsrr-antipatterns-06

Abstract

 This memo describes common vulnerabilities related to Domain Name
 System (DNS) response record (RR) processing as seen in several DNS
 client implementations. These vulnerabilities may lead to successful
 Denial-of-Service and Remote Code Execution attacks against the
 affected software. Where applicable, violations of RFC 1035 are
 mentioned.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 18, 2022.

Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Table of Contents

https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

 1. Introduction
 2. Compression Pointer and Offset Validation
 3. Label and Name Length Validation
 4. Null-terminator Placement Validation
 5. Response Data Length Validation
 6. Record Count Validation
 7. Security Considerations
 8. IANA Considerations
 9. References
 9.1. Normative References
 9.2. Informative References
 Acknowledgements
 Authors' Addresses

1. Introduction

 Recently, there have been major vulnerabilities on DNS
 implementations that raised attention to this protocol as an
 important attack vector, such as [SIGRED], [SADDNS], and
 [DNSPOOQ] - a set of 7 critical issues affecting the DNS
 forwarder "dnsmasq".

 The authors of this memo have analyzed the DNS client implementations
 of several major TCP/IP protocol stacks and found a set of
 vulnerabilities that share common implementation flaws
 (anti-patterns). These flaws are related to processing DNS RRs
 (discussed in [RFC1035]) and may lead to critical security
 vulnerabilities.

 While implementation flaws may differ from one software project to
 another, these anti-patterns are highly likely to span across
 multiple implementations. In fact, one of the first CVEs related to
 one of the anti-patterns [CVE-2000-0333] dates back to the year 2000.
 The observations are not limited to DNS client implementations.
 Any software that processes DNS RRs may be affected, such as
 firewalls, intrusion detection systems, or general purpose DNS packet
 dissectors (e.g., [CVE-2017-9345] in Wireshark). Similar issues may
 also occur in DNS-over-HTTPS [RFC8484] and DNS-over-TLS [RFC7858]
 implementations. However, any implementation that deals with the DNS
 wire format is subject to the considerations discussed in this draft.

 [COMP-DRAFT] and [RFC5625] briefly mention some of these
 anti-patterns, but the main purpose of this memo is to provide
 technical details behind these anti-patterns, so that the common
 mistakes can be eradicated.

 We provide general recommendations on mitigating the anti-patterns.
 We also suggest that all implementations should drop
 malicious/malformed DNS replies and log them (optionally).

2. Compression Pointer and Offset Validation

https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc8484
https://datatracker.ietf.org/doc/html/rfc7858
https://datatracker.ietf.org/doc/html/rfc5625

 [RFC1035] defines the DNS message compression scheme that can be used
 to reduce the size of messages. When it is used, an entire domain
 name or several name labels are replaced with a (compression) pointer
 to a prior occurrence of the same name.

 The compression pointer is a combination of two octets: the two most
 significant bits are set to 1, and the remaining 14 bits are the
 OFFSET field. This field specifies the offset from the beginning of
 the DNS header, at which another domain name or label is located:

 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | 1 1| OFFSET |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 The message compression scheme explicitly allows a domain name to be
 represented as: (1) a sequence of unpacked labels ending with a zero
 octet; (2) a pointer; (3) a sequence of labels ending with a pointer.

 However, [RFC1035] does not explicitly state that blindly following
 compression pointers of any kind can be harmful [COMP-DRAFT], as we
 could not have had any assumptions about various implementations
 that would follow.

 Yet, any DNS packet parser that attempts to decompress domain names
 without validating the value of OFFSET is likely susceptible to
 memory corruption bugs and buffer overruns. These bugs allow for easy
 Denial-of-Service attacks, and may result in successful Remote Code
 Execution attacks.

 Pseudocode that illustrates a typical example of a broken domain name
 parsing implementation is shown below (Snippet 1):

 1:decompress_domain_name(*name, *dns_payload) {
 2:
 3: name_buffer[255];
 4: copy_offset = 0;
 5:
 6: label_len_octet = name;
 7: dest_octet = name_buffer;
 8:
 9: while (*label_len_octet != 0x00) {
 10:
 11: if (is_compression_pointer(*label_len_octet)) {
 12: ptr_offset = get_offset(label_len_octet,
 label_len_octet+1);
 13: label_len_octet = dns_payload + ptr_offset + 1;
 14: }
 15:
 16: else {
 17: length = *label_len_octet;

https://datatracker.ietf.org/doc/html/rfc1035

 18: copy(dest_octet + copy_offset,
 label_len_octet+1, *length);
 19:
 20: copy_offset += length;
 21: label_len_octet += length + 1;
 22: }
 23:
 24: }
 25:}
 Snippet 1 - A broken implementation of a function
 that is used for decompressing DNS domain names (pseudocode)

 Such implementations typically have a dedicated function for
 decompressing domain names (for example, see [CVE-2020-24338] and
 [CVE-2020-27738]). Among other parameters, these functions may
 accept a pointer to the beginning of the first name label within a
 RR ("name") and a pointer to the beginning of the DNS payload to be
 used as a starting point for the compression pointer
 ("dns_payload"). The destination buffer for the domain name
 ("name_buffer") is typically limited to 255 bytes as per
 [RFC1035] and can be allocated either in the stack or in the heap
 memory region.

 The code of the function at Snippet 1 reads the domain name
 label-by-label from a RR until it reaches the NUL octet ("0x00") that
 signifies the end of a domain name. If the current label length octet
 ("label_len_octet") is a compression pointer, the code extracts the
 value of the compression offset and uses it to "jump" to another
 label length octet. If the current label length octet is not a
 compression pointer, the label bytes will be copied into the name
 buffer, and the number of bytes copied will correspond to the value
 of the current label length octet. After the copy operation, the code
 will move on to the next label length octet.

 The first issue with this implementation is due to unchecked
 compression offset values. The second issue is due to the absence of
 checks that ensure that a pointer will eventually arrive at an
 decompressed domain label. We describe these issues in more detail
 below.

 [RFC1035] states that "... [compression pointer is] a pointer to a
 prior occurrence of the same name". Also, according to [RFC1035],
 the maximum size of DNS packets that can be sent over the UDP
 protocol is limited to 512 octets.

 The pseudocode at Snippet 1 violates these constraints, as it will
 accept a compression pointer that forces the code to read out of the
 bounds of a DNS packet. For instance, the compression pointer of
 "0xffff" will produce the offset of 16383 octets, which is most
 definitely pointing to a label length octet somewhere past the
 original DNS packet. Supplying such offset values will most likely

https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc1035

 cause memory corruption issues and may lead to Denial-of-Service
 conditions (e.g., a Null pointer dereference after "label_len_octet"
 is set to an invalid address in memory). As an additional example,
 see [CVE-2020-25767], [CVE-2020-24339], and [CVE-2020-24335].

 The pseudocode at Snippet 1 allows for jumping from a compression
 pointer to another compression pointer and it does not restrict the
 number of such jumps. That is, if a label length octet which is
 currently being parsed is a compression pointer, the code will
 perform a jump to another label, and if that other label is a
 compression pointer as well, the code will perform another jump, and
 so forth until it reaches an decompressed label. This may lead to
 unforeseen side-effects that result in security issues.

 Consider the excerpt from a DNS packet illustrated below:

 +----+----+----+----+----+----+----+----+----+----+----+----+
 +0x00 | ID | FLAGS | QCOUNT | ANCOUNT | NSCOUNT | ARCOUNT |
 +----+----+----+----+----+----+----+----+----+----+----+----+
 ->+0x0c |0xc0|0x0c| TYPE | CLASS |0x04| t | e | s | t |0x03|
 | +----+--|-+----+----+----+----+----+----+----+----+----+----+
 | +0x18 | c | o| | m |0x00| TYPE | CLASS | |
 | +----+--|-+----+----+----+----+----+----+----+----+----+----+

 The packet begins with a DNS header at the offset +0x00, and its DNS
 payload contains several RRs. The first RR begins at the offset of
 12 octets (+0xc0) and its first label length octet is set to the
 value "0xc0", which indicates that it is a compression pointer. The
 compression pointer offset is computed from the two octets "0xc00c"
 and it is equal to 12. Since the broken implementation at Snippet 1
 follows this offset value blindly, the pointer will jump back to
 the first octet of the first RR (+0xc0) over and over again. The
 code at Snippet 1 will enter an infinite loop state, since it will
 never leave the "TRUE" branch of the "while" loop.

 Apart from achieving infinite loops, the implementation flaws at
 Snippet 1 make it possible to achieve various pointer loops that have
 other effects. For instance, consider the DNS packet excerpt shown
 below:

 +----+----+----+----+----+----+----+----+----+----+----+----+
 +0x00 | ID | FLAGS | QCOUNT | ANCOUNT | NSCOUNT | ARCOUNT |
 +----+----+----+----+----+----+----+----+----+----+----+----+
 ->+0x0c |0x04| t | e | s | t |0xc0|0x0c| |
 | +----+----+----+----+----+----+--|-+----+----+----+----+----+

 With such a domain name, the implementation at Snippet 1 will first

 copy the domain label at the offset "0xc0" ("test"), then it will
 fetch the next label length octet, which is a compression pointer
 ("0xc0"). The compression pointer offset is computed from the two
 octets "0xc00c" and is equal to 12 octets. The code will jump back
 at the offset "0xc0" where the first label "test" is located. The
 code will again copy the "test" label, and jump back to it,
 following the compression pointer, over and over again.

 Snippet 1 does not contain any logic that restricts multiple jumps
 from the same compression pointer and does not ensure that no more
 than 255 octets are copied into the name buffer ("name_buffer"). In
 fact, the code will continue to write the label "test" into it,
 overwriting the name buffer and the stack of the heap metadata. In
 fact, attackers would have a significant degree of freedom in
 constructing shell-code, since they can create arbitrary copy chains
 with various combinations of labels and compression pointers.

 Therefore, blindly following compression pointers may not only lead
 to Denial-of-Service as pointed by [COMP-DRAFT], but also to
 successful Remote Code Execution attacks, as there may be other
 implementation issues present within the corresponding code.

 Some implementations may not follow [RFC1035], which states: "the
 first two bits [of a compression pointer octet] are ones; this allows
 a pointer to be distinguished from a label, the label must begin
 with two zero bits because labels are restricted to 63 octets or less
 (the 10 and 01 combinations are reserved for future use)". Snippets 2
 and 3 show pseudocode that implements two functions that check
 whether a given octet is a compression pointer: correct and incorrect
 implementations respectively.

 1: unsigned char is_compression_pointer(*octet) {
 2: if ((*octet & 0xc0) == 0xc0)
 3: return true;
 4: } else {
 5: return false;
 6: }
 7: }
 Snippet 2 - Correct compression pointer check

 1: unsigned char is_compression_pointer(*octet) {
 2: if (*octet & 0xc0) {
 3: return true;
 4: } else {
 5: return false;
 6: }
 7: }
 Snippet 3 - Broken compression pointer check

 The correct implementation (Snippet 2) ensures that the two most
 significant bits of an octet are both set, while the broken

https://datatracker.ietf.org/doc/html/rfc1035

 implementation (Snippet 3) would consider an octet with only one of
 the two bits set as a compression pointer. This is likely an
 implementation mistake rather than an intended violation of
 [RFC1035], because there are no benefits in supporting such
 compression pointer values. The implementations related to
 [CVE-2020-24338] and [CVE-2020-24335] had a broken
 compression pointer check illustrated on Snippet 3.

 While incorrect implementations alone do not lead to vulnerabilities,
 they may have unforeseen side-effects when combined with other
 vulnerabilities. For instance, the first octet of the value "0x4130"
 may be incorrectly interpreted as a label length by a broken
 implementation. Such label length (65) is invalid, and is larger
 than 63 (as per [RFC1035]), and a packet that has this value should
 be discarded. However, the function shown on Snippet 3 will
 consider "0x41" to be a valid compression pointer, and the packet
 may pass the validation steps.

 This might give an additional leverage for attackers in constructing
 payloads and circumventing the existing DNS packet validation
 mechanisms.

 The first occurrence of a compression pointer in a RR (an octet with
 the 2 highest bits set to 1) must resolve to an octet within a DNS
 record with the value that is greater than 0 (i.e., it must not be a
 Null-terminator) and less than 64. The offset at which this octet is
 located must be smaller than the offset at which the compression
 pointer is located - once an implementation makes sure of that,
 compression pointer loops can never occur.

 In small DNS implementations (e.g., embedded TCP/IP stacks) the
 support for nested compression pointers (pointers that point to a
 compressed name) should be discouraged: there is very little to be
 gained in terms of performance versus the high possibility of
 introducing errors, such as the ones discussed above.

 The code that implements domain name parsing should check the offset
 not only with respect to the bounds of a packet, but also its
 position with respect to the compression pointer in question. A
 compression pointer must not be "followed" more than once. We have
 seen several implementations using a check that ensures that
 a compression pointer is not followed more than several times. A
 better alternative may be to ensure that the target of a compression
 pointer is always located before the location of the pointer in the
 packet.

3. Label and Name Length Validation

 [RFC1035] restricts the length of name labels to 63 octets, and
 lengths of domain names to 255 octets (i.e., label octets and label
 length octets). Some implementations do not explicitly enforce these

https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc1035

 restrictions.

 Consider the function "copy_domain_name()" shown on Snippet 4 below.
 The function is a variant of the "decompress_domain_name()" function
 (Snippet 1), with the difference that it does not support compressed
 labels, and copies only decompressed labels into the name buffer.

 1:copy_domain_name(*name, *dns_payload) {
 2:
 3: name_buffer[255];
 4: copy_offset = 0;
 5:
 6: label_len_octet = name;
 7: dest_octet = name_buffer;
 8:
 9: while (*label_len_octet != 0x00) {
 10:
 11: if (is_compression_pointer(*label_len_octet)) {
 12: length = 2;
 13: label_len_octet += length + 1;
 14: }
 15:
 16: else {
 17: length = *label_len_octet;
 18: copy(dest_octet + copy_offset,
 label_len_octet+1, *length);
 19:
 20: copy_offset += length;
 21: label_len_octet += length + 1;
 22: }
 23:
 24: }
 25:}
 Snippet 4 - A broken implementation of a function
 that is used for copying non-compressed domain names

 This implementation does not explicitly check for the value of the
 label length octet: this value can be up to 255 octets, and a single
 label can fill the name buffer. Depending on the memory layout of the
 target, how the name buffer is allocated, and the size of the
 malformed packet, it is possible to trigger various memory corruption
 issues.

 Both Snippets 1 and 4 restrict the size of the name buffer to 255
 octets, however there are no restrictions on the actual number of
 octets that will be copied into this buffer. In this particular case,
 a subsequent copy operation (if another label is present in the
 packet) will write past the name buffer, allowing to overwrite heap
 or stack metadata in a controlled manner.

 Similar examples of vulnerable implementations can be found in the

 code relevant to [CVE-2020-25110], [CVE-2020-15795], and
 [CVE-2020-27009].

 As a general recommendation, a domain label length octet must have
 the value of more than 0 and less than 64 ([RFC1035]). If this is
 not the case, an invalid value has been provided within the packet,
 or a value at an invalid position might be interpreted as a domain
 name length due to other errors in the packet (e.g., misplaced Null-
 terminator or invalid compression pointer).

 The number of domain label characters must correspond to the value of
 the domain label octet. To avoid possible errors when interpreting
 the characters of a domain label, developers may consider
 recommendations for the preferred domain name syntax outlined in
 [RFC1035].

 The domain name length must not be more than 255 octets, including
 the size of decompressed domain names. The NUL octet ("0x00") must
 be present at the end of the domain name, and within the maximum name
 length (255 octets).

4. Null-terminator Placement Validation

 A domain name must end with a NUL ("0x00") octet, as per [RFC1035].
 The implementations shown at Snippets 1 and 4 assume that this is the
 case for the RRs that they process, however names that do not have a
 NUL octet placed at the proper position within a RR are not
 discarded.

 This issue is closely related to the absence of label and name length
 checks. For example, the logic behind Snippets 1 and 4 will continue
 to copy octets into the name buffer, until a NUL octet is
 encountered. This octet can be placed at an arbitrary position
 within a RR, or not placed at all.

 Consider a pseudocode function shown on Snippet 5. The function
 returns the length of a domain name ("name") in octets to be used
 elsewhere (e.g., to allocate a name buffer of a certain size): for
 compressed domain names the function returns 2, for decompressed
 names it returns their true length using the "strlen(3)" function.

 1: get_name_length(*name) {
 2:
 3: if (is_compression_pointer(name))
 4: return 2;
 5:
 6: name_len = strlen(name) + 1;
 7: return name_len;
 8: }
 Snippet 5 - A broken implementation of a function that returns the
 length of a domain name

https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc1035

 "strlen(3)" is a standard C library function that returns the length
 of a given sequence of characters terminated by the NUL ("0x00")
 octet. Since this function also expects names to be explicitly
 Null-terminated, the return value "strlen(3)" may be also controlled
 by attackers. Through the value of "name_len" attackers may control
 the allocation of internal buffers, or specify the number by octets
 copied into these buffers, or other operations depending on the
 implementation specifics.

 The absence of explicit checks for the NUL octet placement may also
 facilitate controlled memory reads and writes. An example of
 vulnerable implementations can be found in the code relevant to
 [CVE-2020-25107], [CVE-2020-17440], [CVE-2020-24383], and
 [CVE-2020-27736].

 As a general recommendation for mitigating such issues, developers
 should never trust user data to be Null-terminated. For example, to
 fix/mitigate the issue in the code Snippet 5, developers should use
 the function "strnlen(3)" that reads at most X characters(the second
 argument of the function), and ensure that X is not larger than the
 buffer allocated for the name.

5. Response Data Length Validation

 As stated in [RFC1035], every RR contains a variable length string of
 octets that contains the retrieved resource data (RDATA) (e.g., an IP
 address that corresponds to a domain name in question). The length of
 the RDATA field is regulated by the resource data length field
 (RDLENGTH), that is also present in an RR.

 Implementations that process RRs may not check for the validity of
 the RDLENGTH field value, when retrieving RDATA. Failing to do so may
 lead to out-of-bound read issues (similarly to the label and name
 length validation issues discussed in Section 3), whose impact may
 vary significantly depending on the implementation specifics. We have
 observed instances of Denial-of-Service conditions and information
 leaks.

 Therefore, the value of the data length byte in response DNS records
 (RDLENGTH) must reflect the number of bytes available in the field
 that describes the resource (RDATA). The format of RDATA must
 conform to the TYPE and CLASS fields of the RR.

 Examples of vulnerable implementations can be found in the code
 relevant to [CVE-2020-25108], [CVE-2020-24336], and [CVE-2020-27009].

6. Record Count Validation

 According to [RFC1035], the DNS header contains four two-octet
 fields that specify the amount of question records (QDCOUNT), answer
 records (ANCOUNT), authority records (NSCOUNT), and additional

https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc1035

 records (ARCOUNT).

 1: process_dns_records(dns_header, ...) {
 // ...
 2: num_answers = dns_header->ancount
 3: data_ptr = dns_header->data
 4:
 5: while (num_answers > 0) {
 6: name_length = get_name_length(data_ptr);
 7: data_ptr += name_length + 1;
 8:
 9: answer = (struct dns_answer_record *)data_ptr;
 10:
 11: // process the answer record
 12:
 13: --num_answers;
 14: }
 // ...
 15: }
 Snippet 6 - A broken implementation of a RR processing function

 Snippet 6 illustrates a recurring implementation anti-pattern for a
 function that processes DNS RRs. The function "process_dns_records()"
 extracts the value of ANCOUNT ("num_answers") and the pointer to the
 DNS data payload ("data_ptr"). The function processes answer records
 in a loop decrementing the "num_answers" value after processing each
 record, until the value of "num_answers" becomes zero. For
 simplicity, we assume that there is only one domain name per answer.
 Inside the loop, the code calculates the domain name length
 "name_length", and adjusts the data payload pointer "data_ptr" by the
 offset that corresponds to "name_length + 1", so that the pointer
 lands on the first answer record. Next, the answer record is
 retrieved and processed, and the "num_answers" value is decremented.

 If the ANCOUNT number retrieved from the header
 ("dns_header->ancount") is not checked against the amount of data
 available in the packet and it is, e.g., larger than the number of
 answer records available, the data pointer "data_ptr" will read out
 of the bounds of the packet. This may result in Denial-of-Service
 conditions.

 In this section, we used an example of processing answer records.
 However, the same logic is often reused for implementing the
 processing of other types of records: e.g., the number of Question
 (QCOUNT), Authority (NSCOUNT), and Additional (ARCOUNT) records. The
 number of these records specified must correspond to the actual data
 present within the packet. Therefore, all record count fields must
 be checked before fully parsing the contents of a packet.
 Specifically, Section 6.3 of[RFC5625] recommends that such malformed
 DNS packets should be dropped, and (optionally) logged.

 Examples of vulnerable implementations can be found in the code
 relevant to [CVE-2020-25109], [CVE-2020-24340],[CVE-2020-24334], and
 [CVE-2020-27737].

7. Security Considerations

 Security issues are discussed throughout this memo. The document
 discusses implementation flaws (anti-patterns) that affect the
 functionality of processing DNS RRs. The presence of such
 anti-patterns leads to bugs causing buffer overflows,
 read-out-of-bounds, and infinite loop issues. These issues have the
 following security impact: Information Leak, Denial-of-Service, and
 Remote Code Execution.

 The document lists general recommendation for the developers of DNS
 record parsing functionality that allow to prevent such
 implementation flaws, e.g., by rigorously checking the data received
 over the wire before processing it.

8. IANA Considerations

 This document introduces no new IANA considerations. Please see
 [RFC6895] for a complete review of the IANA considerations
 introduced by DNS.

9. References

9.1 Normative References

 [RFC1035]
 Mockapetris, P., "Domain names - implementation and
 specification", RFC 1035, November 1987,
 <https://www.rfc-editor.org/info/rfc1035>.

 [RFC5625]
 Bellis, R., "DNS Proxy Implementation Guidelines", RFC

5625, August 2009,
 <https://www.rfc-editor.org/info/rfc5625>.

9.2 Informative References

 [SIGRED]
 Common Vulnerabilities and Exposures, "CVE-2020-1350:
 A remote code execution vulnerability in Windows Domain
 Name System servers", July 2020, <https://cve.mitre.org/

cgi-bin/cvename.cgi?name=CVE-2020-1350>.

 [SADDNS]
 Man, K., Qian, Z., Wang, Z., Zheng, X., Huang, Y., Duan,
 H., "DNS Cache Poisoning Attack Reloaded: Revolutions
 with Side Channels", November 2020, Proc. of ACM CCS'20,
 <https://dl.acm.org/doi/pdf/10.1145/3372297.3417280>.

https://datatracker.ietf.org/doc/html/rfc6895
https://datatracker.ietf.org/doc/html/rfc1035
https://www.rfc-editor.org/info/rfc1035
https://datatracker.ietf.org/doc/html/rfc5625
https://datatracker.ietf.org/doc/html/rfc5625
https://www.rfc-editor.org/info/rfc5625
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-1350
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-1350
https://dl.acm.org/doi/pdf/10.1145/3372297.3417280

 [DNSPOOQ]
 Kol, M., Oberman, S., "DNSpooq: Cache Poisoning and RCE
 in popular DNS Forwarder dnsmasq", January 2021, technical
 report, <https://www.jsof-tech.com/wp-content/uploads/

2021/01/DNSpooq-Technical-WP.pdf>.

 [CVE-2000-0333]
 Common Vulnerabilities and Exposures, "CVE-2000-0333:
 A denial-of-service vulnerability in tcpdump, Ethereal,
 and other sniffer packages via malformed DNS packets",
 2000, <https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2000-0333>.

[CVE-2020-24338]
 Common Vulnerabilities and Exposures, "CVE-2020-24338:
 A denial-of-service and remote code execution
 vulnerability in the DNS domain name record
 decompression functionality of picoTCP", December 2020,
 <https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2020-24338>

[CVE-2020-27738]
 Common Vulnerabilities and Exposures, "CVE-2020-27738:
 A denial-of-service and remote code execution
 vulnerability DNS domain name record decompression
 functionality of Nucleus NET", April 2021,
 <https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2020-27738>.

[CVE-2020-25767]
 Common Vulnerabilities and Exposures, "CVE-2020-25767:
 An out-of-bounds read and denial-of-service vulnerability
 in the DNS name parsing routine of HCC Embedded
 NicheStack", August 2021, <https://cve.mitre.org/

cgi-bin/cvename.cgi?name=CVE-2020-25767>.

[CVE-2020-24339]
 Common Vulnerabilities and Exposures, "CVE-2020-24339:
 An out-of-bounds read and denial-of-service
 vulnerability in the DNS domain name record
 decompression functionality of picoTCP", December 2020,

https://cve.mitre.org/cgi-bin/cvename.cgi?name=
 CVE-2020-24339>.

[CVE-2020-24335]
 Common Vulnerabilities and Exposures, "CVE-2020-24335:
 A memory corruption vulnerability in domain name parsing
 routines of uIP", December 2020, <https://cve.mitre.org/

cgi-bin/cvename.cgi?name=CVE-2020-24335>.

https://www.jsof-tech.com/wp-content/uploads/2021/01/DNSpooq-Technical-WP.pdf
https://www.jsof-tech.com/wp-content/uploads/2021/01/DNSpooq-Technical-WP.pdf
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0333
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2000-0333
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-24338
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-24338
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-27738
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-27738
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-25767
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-25767
https://cve.mitre.org/cgi-bin/cvename.cgi?name=
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-24335
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-24335

[CVE-2020-25110]
 Common Vulnerabilities and Exposures, "CVE-2020-25110:
 A denial-of-service and remote code execution
 vulnerability in the DNS implementation of Ethernut
 Nut/OS", December 2020, <https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2020-25110>.

[CVE-2020-15795]
 Common Vulnerabilities and Exposures, "CVE-2020-15795:
 A denial-of-service and remote code execution
 vulnerability DNS domain name label parsing
 functionality of Nucleus NET", April 2021,
 <https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2020-15795>.

[CVE-2020-27009]
 Common Vulnerabilities and Exposures, "CVE-2020-27009:
 A denial-of-service and remote code execution
 vulnerability DNS domain name record decompression
 functionality of Nucleus NET", April 2021,
 <https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2020-27009>.

[CVE-2020-25107]
 Common Vulnerabilities and Exposures, "CVE-2020-25107:
 A denial-of-service and remote code execution
 vulnerability in the DNS implementation of Ethernut
 Nut/OS", December 2020, <https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2020-25107>.

[CVE-2020-17440]
 Common Vulnerabilities and Exposures, "CVE-2020-17440
 A denial-of-service vulnerability in the DNS name
 parsing implementation of uIP", December 2020,
 <https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2020-17440>.

[CVE-2020-24383]
 Common Vulnerabilities and Exposures, "CVE-2020-24383:
 An information leak and denial-of-service vulnerability
 while parsing mDNS resource records in FNET", December
 2020, <https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2020-24383>.

[CVE-2020-27736]
 Common Vulnerabilities and Exposures, "CVE-2020-27736:
 An information leak and denial-of-service vulnerability
 in the DNS name parsing functionality of Nucleus NET",
 April 2021, <https://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2020-27736>.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-25110
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-25110
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15795
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-15795
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-27009
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-27009
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-25107
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-25107
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-17440
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-17440
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-24383
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-24383
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-27736
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-27736

[CVE-2020-25108]
 Common Vulnerabilities and Exposures, "CVE-2020-25108:
 A denial-of-service and remote code execution
 vulnerability in the DNS implementation of Ethernut
 Nut/OS", December 2020, <https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2020-25108>.

[CVE-2020-24336]
 Common Vulnerabilities and Exposures, "CVE-2020-24336:
 A buffer overflow vulnerability in the DNS
 implementation of Contiki and Contiki-NG", December
 2020, <https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2020-24336>.

[CVE-2020-25109]
 Common Vulnerabilities and Exposures, "CVE-2020-25109:
 A denial-of-service and remote code execution
 vulnerability in the DNS implementation of Ethernut
 Nut/OS", December 2020, <https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2020-25109>.

[CVE-2020-24340]
 Common Vulnerabilities and Exposures, "CVE-2020-24340:
 An out-of-bounds read and denial-of-service
 vulnerability in the DNS response parsing functionality
 of picoTCP", December 2020, <https://cve.mitre.org/

cgi-bin/cvename.cgi?name=CVE-2020-24340>.

[CVE-2020-24334]
 Common Vulnerabilities and Exposures, "CVE-2020-24334:
 An out-of-bounds read and denial-of-service
 vulnerability in the DNS response parsing functionality
 of uIP", December 2020, <https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2020-24334>.

[CVE-2020-27737]
 Common Vulnerabilities and Exposures, "CVE-2020-27737:
 An information leak and denial-of-service vulnerability
 in the DNS response parsing functionality of Nucleus
 NET", April 2021, <https://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2020-27737>.

 [CVE-2017-9345]
 Common Vulnerabilities and Exposures, "CVE-2017-9345:
 An infinite loop in the DNS dissector of Wireshark",
 2017, <https://cve.mitre.org/cgi-bin/cvename.cgi?name=

CVE-2017-9345>.

 [COMP-DRAFT]
 Koch, P., "A New Scheme for the Compression of
 Domain Names", Internet-Draft, draft-ietf-dnsind-local-

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-25108
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-25108
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-24336
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-24336
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-25109
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-25109
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-24340
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-24340
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-24334
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-24334
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-27737
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-27737
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-9345
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-9345
https://datatracker.ietf.org/doc/html/draft-ietf-dnsind-local-compression-05

compression-05, June 1999, Work in progress,
 <https://tools.ietf.org/html/draft-ietf-dnsind-local-

compression-05>.

 [RFC6895]
 Eastlake 3rd, D., "Domain Name System (DNS) IANA
 Considerations", RFC 6895, April 2013,
 <https://www.rfc-editor.org/info/rfc6982>.

 [RFC8484]
 Hoffman, P., McManus, P., "DNS Queries over HTTPS
 (DoH)", RFC 8484, October 2018,
 <https://www.rfc-editor.org/info/rfc8484>.

 [RFC7858]
 Hu, Z. et al, "Specification for DNS over Transport
 Layer Security (TLS)", RFC 7858, May 2016,
 <https://www.rfc-editor.org/info/rfc7858>.

Acknowledgements

 We would like to thank Shlomi Oberman, who has greatly contributed to
 the research that led to the creation of this document.

Authors' Addresses

 Stanislav Dashevskyi
 Forescout Technologies
 John F. Kennedylaan, 2
 Eindhoven, 5612AB
 The Netherlands

 Email: stanislav.dashevskyi@forescout.com

 Daniel dos Santos
 Forescout Technologies
 John F. Kennedylaan, 2
 Eindhoven, 5612AB
 The Netherlands

 Email: daniel.dossantos@forescout.com

 Jos Wetzels
 Forescout Technologies
 John F. Kennedylaan, 2
 Eindhoven, 5612AB
 The Netherlands

 Email: jos.wetzels@forescout.com

 Amine Amri

https://datatracker.ietf.org/doc/html/draft-ietf-dnsind-local-compression-05
https://tools.ietf.org/html/draft-ietf-dnsind-local-compression-05
https://tools.ietf.org/html/draft-ietf-dnsind-local-compression-05
https://datatracker.ietf.org/doc/html/rfc6895
https://www.rfc-editor.org/info/rfc6982
https://datatracker.ietf.org/doc/html/rfc8484
https://www.rfc-editor.org/info/rfc8484
https://datatracker.ietf.org/doc/html/rfc7858
https://www.rfc-editor.org/info/rfc7858

 Forescout Technologies
 John F. Kennedylaan, 2
 Eindhoven, 5612AB
 The Netherlands

 Email: amine.amri@forescout.com

