
Workgroup: HTTP

Internet-Draft:

draft-davidben-http-client-hint-reliability-02

Updates: ietf-httpbis-client-hints

(if approved)

Published: 30 November 2020

Intended Status: Experimental

Expires: 3 June 2021

Authors: D. Benjamin

Google LLC

Client Hint Reliability

Abstract

This document defines the Critical-CH HTTP response header, and the

ACCEPT_CH HTTP/2 and HTTP/3 frames to allow HTTP servers to reliably

specify their Client Hint preferences, with minimal performance

overhead.

Discussion Venues

This note is to be removed before publishing as an RFC.

Source for this draft and an issue tracker can be found at https://

github.com/davidben/http-client-hint-reliability.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 3 June 2021.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfcietf-httpbis-client-hints
https://github.com/davidben/http-client-hint-reliability
https://github.com/davidben/http-client-hint-reliability
https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

2. Conventions and Definitions

3. The Critical-CH Response Header Field

3.1. Example

4. The ACCEPT_CH Frame

4.1. HTTP/2 ACCEPT_CH Frame

4.2. HTTP/3 ACCEPT_CH Frame

4.3. Processing ACCEPT_CH Frames

4.4. Interaction with Critical-CH

5. Security Considerations

6. IANA Considerations

7. References

7.1. Normative References

7.2. Informative References

Acknowledgments

Author's Address

1. Introduction

[I-D.ietf-httpbis-client-hints] defines a response header, Accept-

CH, for servers to advertise a set of request headers used for

proactive content negotiation. This allows user agents to send

request headers only when used, improving their performance overhead

as well as reducing passive fingerprinting surface.

However, on the first HTTP request to a server, the user agent will

not have received the Accept-CH header and may not take the server

preferences into account. More generally, the server's configuration

may have changed since the most recent HTTP request to the server.

This document defines a pair of mechanisms to resolve this:

an HTTP response header, Critical-CH, for the server to

instruct the user agent to retry the request

an alternate delivery mechanism for Accept-CH in HTTP/2

[RFC7540] and HTTP/3 [I-D.ietf-quic-http], which can avoid the

performance hit of a retry in most cases

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

1.

¶

2.

¶

https://trustee.ietf.org/license-info

2. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

This document uses the Augmented Backus-Naur Form (ABNF) notation of

[RFC5234].

This document uses the variable-length integer encoding and frame

diagram format from [I-D.ietf-quic-transport].

3. The Critical-CH Response Header Field

When a user agent requests a resource based on a missing or outdated

Accept-CH value, it may not send a desired request header field.

Neither user agent nor server has enough information to reliably and

efficiently recover from this situation. The server can observe that

the header is missing, but the user agent may not have supported the

header, or may have chosen not to send it. Triggering a new request

in these cases would risk an infinite loop or an unnecessary round-

trip.

Conversely, the user agent can observe that a request header appears

in the Accept-CH (Section 3.1 of [I-D.ietf-httpbis-client-hints])

and Vary (Section 7.1.4 of [RFC7231]) response header fields.

However, retrying based on this information would waste resources if

the resource only used the Client Hint as an optional optimization.

This document introduces critical Client Hints. These are the Client

Hints which meaningfully change the resulting resource. For example,

a server may use the Device-Memory Client Hint [DEVICE-MEMORY] to

select simple and complex variants of a resource to different user

agents. Such a resource should be fetched consistently across page

loads to avoid jarring user-visible switches.

The server specifies critical Client Hints with the Critical-CH

response header field. It is a Structured Header [I-D.ietf-httpbis-

header-structure] whose value MUST be an sf-list (Section 3.1 of [I-

D.ietf-httpbis-header-structure]) whose members are tokens (Section

3.3.4 of [I-D.ietf-httpbis-header-structure]). Its ABNF is:

For example:

¶

¶

¶

¶

¶

¶

¶

 Critical-CH = sf-list¶

¶

 Critical-CH: Sec-CH-Example, Sec-CH-Example-2¶

Each token listed in the Critical-CH header SHOULD additionally be

present in the Accept-CH and Vary response headers.

When a user agent receives an HTTP response containing a Critical-CH

header, it first processes the Accept-CH header as described in

Section 3.1 of [I-D.ietf-httpbis-client-hints]. It then performs the

following steps:

If the request did not use a safe method (Section 4.2.1 of

[RFC7231]), ignore the Critical-CH header and continue

processing the response as usual.

If the response was already the result of a retry, ignore the

Critical-CH header and continue processing the response as

usual.

Determine the Client Hints that would have been sent given the

updated Accept-CH value, incorporating the user agent's local

policy and user preferences. See also Section 2.1 of [I-D.ietf-

httpbis-client-hints].

Compare this result to the Client Hints which were sent. If any

Client Hint listed in the Critical-CH header was not previously

sent and would now have been sent, retry the request with the

new preferences. Otherwise, continue processing the response as

usual.

Note this procedure does not cause the user agent to send Client

Hints it would not otherwise send.

3.1. Example

For example, if the user agent loads https://example.com with no

knowledge of the server's Accept-CH preferences, it may send the

following response:

In this example, the server, across the whole origin, uses both Sec-

CH-Example and Sec-CH-Example-2 Client Hints. However, this resource

only uses Sec-CH-Example, which it considers critical.

¶

¶

1.

¶

2.

¶

3.

¶

4.

¶

¶

¶

 GET / HTTP/1.1

 Host: example.com

 HTTP/1.1 200 OK

 Content-Type: text/html

 Accept-CH: Sec-CH-Example, Sec-CH-Example-2

 Vary: Sec-CH-Example

 Critical-CH: Sec-CH-Example

¶

¶

The user agent now processes the Accept-CH header and determines it

would have sent both headers. Sec-CH-Example is listed in Critical-

CH, so the user agent retries the request, and receives a more

specific response.

4. The ACCEPT_CH Frame

While Critical-CH header provides reliability, it requires a retry

on some requests. This document additionally introduces the

ACCEPT_CH HTTP/2 and HTTP/3 frames as an optimization so the

server's Client Hint preferences are usually available before the

client's first request.

HTTP/2 and HTTP/3 servers which request Client Hints SHOULD send an

ACCEPT_CH frame as early as possible. Connections using TLS

[RFC8446] which negotiate the Application Layer Protocol Settings

(ALPS) [I-D.vvv-tls-alps] extension SHOULD include the ACCEPT_CH

frame in the ALPS value as described in [I-D.vvv-httpbis-alps]. This

ensures the information is available to the user agent when it makes

the first request.

[[TODO: Alternatively, is it time to revive draft-bishop-httpbis-

extended-settings?]]

4.1. HTTP/2 ACCEPT_CH Frame

The HTTP/2 ACCEPT_CH frame type is TBD (decimal TBD) and contains

zero or more entries, each consisting of a pair of length-delimited

strings:

¶

 GET / HTTP/1.1

 Host: example.com

 Sec-CH-Example: 1

 Sec-CH-Example-2: 2

 HTTP/1.1 200 OK

 Content-Type: text/html

 Accept-CH: Sec-CH-Example, Sec-CH-Example-2

 Vary: Sec-CH-Example

 Critical-CH: Sec-CH-Example

¶

¶

¶

¶

¶

+-------------------------------+

| Origin-Len (16) |

+-------------------------------+-------------------------------+

| Origin ...

+-------------------------------+-------------------------------+

| Value-Len (16) |

+-------------------------------+-------------------------------+

| Value ...

+---+

¶

Origin-Len:

Origin:

Value-Len:

Value:

Origin Length:

The fields are defined as follows:

An unsigned, 16-bit integer indicating the length, in

octets, of the Origin field.

A sequence of characters containing the ASCII serialization

of an origin (Section 6.2 of [RFC6454]) that the sender is

providing an Accept-CH value for.

An unsigned, 16-bit integer indicating the length, in

octets, of the Value field.

A sequence of characters containing the Accept-CH value for

the corresponding origin. This value MUST satisfy the Accept-CH

ABNF defined in Section 3.1 of [I-D.ietf-httpbis-client-hints].

Clients MUST NOT send ACCEPT_CH frames. Servers which receive an

ACCEPT_CH frame MUST respond with a connection error (Section 5.4.1

of [RFC7540]) of type PROTOCOL_ERROR.

ACCEPT_CH frames always apply to a single connection, never a single

stream. The identifier in the ACCEPT_CH frame MUST be zero. The

flags field of an ACCEPT_CH field is unused and MUST be zero. If a

user agent receives an ACCEPT_CH frame whose stream identifier or

flags field is non-zero, it MUST respond with a connection error of

type PROTOCOL_ERROR.

4.2. HTTP/3 ACCEPT_CH Frame

The HTTP/3 ACCEPT_CH frame type is TBD (decimal TBD) and contains

zero or more entries, each containing an origin and a corresponding

Accept-CH value.

The fields of each HTTP/3 ACCEPT_CH Entry are defined as follows:

A variable-length integer containing the length, in

bytes, of the Origin field.

¶

¶

¶

¶

¶

¶

¶

¶

HTTP/3 ACCEPT_CH Entry {

 Origin Length (i),

 Origin (..)

 Value Length (i),

 Value (..),

}

HTTP/3 ACCEPT_CH Frame {

 Type (i) = TBD,

 Length (i),

 HTTP/3 ACCEPT_CH Entry (..) ...,

}

¶

¶

¶

Origin:

Value Length:

Value:

A sequence of characters containing the ASCII serialization

of an origin (Section 6.2 of [RFC6454]) that the sender is

providing an Accept-CH value for.

A variable-length integer containing the length, in

bytes, of the Value field.

A sequence of characters containing the Accept-CH value for

the corresponding origin. This value MUST satisfy the Accept-CH

ABNF defined in Section 3.1 of [I-D.ietf-httpbis-client-hints].

Clients MUST NOT send ACCEPT_CH frames. Servers which receive an

ACCEPT_CH frame MUST respond with a connection error (Section 8 of

[I-D.ietf-quic-http]) of type H3_FRAME_UNEXPECTED.

ACCEPT_CH frames may only be sent on the control stream. Clients

which receive an ACCEPT_CH frame on any other stream MUST respond

with a connection error of type H3_FRAME_UNEXPECTED.

4.3. Processing ACCEPT_CH Frames

The user agent remembers the most recently received ACCEPT_CH frame

for each HTTP/2 or HTTP/3 connection. When it receives a new

ACCEPT_CH frame, either in application data or ALPS, it overwrites

this value. As this is an optimization, the user agent MAY bound the

size and ignore or forget entries to reduce resource usage.

When the user agent makes an HTTP request to a particular origin

over an HTTP/2 or HTTP/3 connection, it looks up the origin in the

remembered ACCEPT_CH, if any. If it finds a match, it determines

additional Client Hints to send, incorporating its local policy and

user preferences. See Section 2.1 of [I-D.ietf-httpbis-client-

hints].

If there are additional Client Hints, the user agent restarts the

request with updated headers. The connection has already been

established, so this restart does not incur any additional network

latency. Note it may result in a different secondary HTTP cache key

(see Section 4.1 of [RFC7234]) and select a different cached

response. If the new cached response does not need revalidation, it

may not use the connection at all.

User agents MUST NOT process Client Hint preferences in ACCEPT_CH

frames corresponding to origins for which the connection is not

authoritative. Note the procedure above implicitly satisfies this by

deferring processing to after the connection has been chosen for a

corresponding request. Unauthoritative origins and other unmatched

entries are ignored.

¶

¶

¶

¶

¶

¶

¶

¶

¶

[[TODO: Some variations on this behavior we could choose instead:

Do new ACCEPT_CH frames override the whole set or implement some

kind of update? Overriding the whole set seems simplest and most

consistent with an EXTENDED_SETTINGS variant.

Should the user agent reject the ACCEPT_CH frame if there are

unexpected origins in there? Deferring avoids needing to worry

about this, and ignoring the unused ones may interact better with

secondary certs.

Should ACCEPT_CH frames be deferred or just written to the cache

when received? Deferred simplifies reasoning about bad origins,

predictive connections, etc., but means interactions between

ACCEPT_CH and Accept-CH are more complex (see below).

How should ACCEPT_CH and Accept-CH interact? The document

currently proposes unioning them, which is easy. Accept-CH first

would work, but unnecessarily ignore newer connection-level

ACCEPT_CHs. ACCEPT_CH would not; a stale connection-level

preference would get stuck. Whichever is received earlier would

also work, but requires tracking timestamps if deferred (see

above).]]

4.4. Interaction with Critical-CH

The ACCEPT_CH frame avoids a round-trip, so relying on it over

Critical-CH would be preferable. However, this is not always

possible:

The server may be running older software without support for

ACCEPT_CH or ALPS.

The server's Accept-CH preferences may change while existing

connections are open. Those connections will have outdated

ACCEPT_CH frames. While the server could send a new frame, it may

not arrive in time for the next request. Moreover, if the HTTP

serving frontend is an intermediary like a CDN, it may not be

proactively notified of origin server changes.

HTTP/2 and HTTP/3 allow connection reuse across multiple origins

(Section 9.1.1 of [RFC7540] and Section 3.4 of [I-D.ietf-quic-

http]). Some origins may not be listed in the ACCEPT_CH frame,

particularly if the server used a wildcard X.509 certificate.

Thus this document defines both mechanisms. Critical-CH provides

reliable Client Hint delivery, while the ACCEPT_CH frame avoids the

retry in most cases.

¶

*

¶

*

¶

*

¶

*

¶

¶

*

¶

*

¶

*

¶

¶

5. Security Considerations

Request header fields may expose sensitive information about the

user's environment. Section 4.1 of [I-D.ietf-httpbis-client-hints]

discusses some of these considerations. The document augments the

capabilities of Client Hints, but does not change these

considerations. The procedure described in Section 3 does not result

in the user agent sending request headers it otherwise would not

have.

The ACCEPT_CH frame does introduce a new way for HTTP/2 or HTTP/3

connections to make assertions about origins they are not

authoritative for, but the procedure in Section 4.3 defers

processing until after the user agent has decided to use the

connection for a particular request (Section 9.1.1 of [RFC7540] and

Section 3.4 of [I-D.ietf-quic-http]). The user agent will thus only

use information from an ACCEPT_CH frame if it considers the

connection authoritative for the origin.

6. IANA Considerations

This specification adds an entry to the "HTTP/2 Frame Type" registry

[RFC7540] with the following parameters:

Frame Type: ACCEPT_CH

Code: TBD

Allowed in ALPS: Yes

Reference: [[this document]]

This specification adds an entry to the "HTTP/3 Frame Type" registry

[I-D.ietf-quic-http] with the following parameters:

Frame Type: ACCEPT_CH

Code: TBD

Allowed in ALPS: Yes

Reference: [[this document]]

[[TODO: As of writing, the Frame Type registries do not include

Allowed in ALPS columns, but [I-D.vvv-httpbis-alps] adds them. This

document should be updated as that design evolves.]]

7. References

7.1. Normative References

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

* ¶

¶

[I-D.ietf-httpbis-client-hints]

[I-D.ietf-httpbis-header-structure]

[I-D.ietf-quic-http]

[I-D.ietf-quic-transport]

[I-D.vvv-httpbis-alps]

[I-D.vvv-tls-alps]

[RFC2119]

[RFC5234]

Grigorik, I. and Y. Weiss, "HTTP Client Hints", Work in

Progress, Internet-Draft, draft-ietf-httpbis-client-

hints-15, 3 July 2020, <http://www.ietf.org/internet-

drafts/draft-ietf-httpbis-client-hints-15.txt>.

Nottingham, M. and P. Kamp, "Structured Field Values for

HTTP", Work in Progress, Internet-Draft, draft-ietf-

httpbis-header-structure-19, 3 June 2020, <http://

www.ietf.org/internet-drafts/draft-ietf-httpbis-header-

structure-19.txt>.

Bishop, M., "Hypertext Transfer Protocol

Version 3 (HTTP/3)", Work in Progress, Internet-Draft,

draft-ietf-quic-http-32, 20 October 2020, <http://

www.ietf.org/internet-drafts/draft-ietf-quic-

http-32.txt>.

Iyengar, J. and M. Thomson, "QUIC: A UDP-Based

Multiplexed and Secure Transport", Work in Progress,

Internet-Draft, draft-ietf-quic-transport-32, 20 October

2020, <http://www.ietf.org/internet-drafts/draft-ietf-

quic-transport-32.txt>.

Vasiliev, V., "Using TLS Application-Layer

Protocol Settings (ALPS) in HTTP", Work in Progress,

Internet-Draft, draft-vvv-httpbis-alps-00, 6 July 2020,

<http://www.ietf.org/internet-drafts/draft-vvv-httpbis-

alps-00.txt>.

Benjamin, D. and V. Vasiliev, "TLS Application-

Layer Protocol Settings Extension", Work in Progress,

Internet-Draft, draft-vvv-tls-alps-01, 21 September 2020,

<http://www.ietf.org/internet-drafts/draft-vvv-tls-

alps-01.txt>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Crocker, D., Ed. and P. Overell, "Augmented BNF for

Syntax Specifications: ABNF", STD 68, RFC 5234, DOI

http://www.ietf.org/internet-drafts/draft-ietf-httpbis-client-hints-15.txt
http://www.ietf.org/internet-drafts/draft-ietf-httpbis-client-hints-15.txt
http://www.ietf.org/internet-drafts/draft-ietf-httpbis-header-structure-19.txt
http://www.ietf.org/internet-drafts/draft-ietf-httpbis-header-structure-19.txt
http://www.ietf.org/internet-drafts/draft-ietf-httpbis-header-structure-19.txt
http://www.ietf.org/internet-drafts/draft-ietf-quic-http-32.txt
http://www.ietf.org/internet-drafts/draft-ietf-quic-http-32.txt
http://www.ietf.org/internet-drafts/draft-ietf-quic-http-32.txt
http://www.ietf.org/internet-drafts/draft-ietf-quic-transport-32.txt
http://www.ietf.org/internet-drafts/draft-ietf-quic-transport-32.txt
http://www.ietf.org/internet-drafts/draft-vvv-httpbis-alps-00.txt
http://www.ietf.org/internet-drafts/draft-vvv-httpbis-alps-00.txt
http://www.ietf.org/internet-drafts/draft-vvv-tls-alps-01.txt
http://www.ietf.org/internet-drafts/draft-vvv-tls-alps-01.txt
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119

[RFC6454]

[RFC7231]

[RFC7234]

[RFC7540]

[RFC8174]

[RFC8446]

[DEVICE-MEMORY]

10.17487/RFC5234, January 2008, <https://www.rfc-

editor.org/info/rfc5234>.

Barth, A., "The Web Origin Concept", RFC 6454, DOI

10.17487/RFC6454, December 2011, <https://www.rfc-

editor.org/info/rfc6454>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Semantics and Content", RFC

7231, DOI 10.17487/RFC7231, June 2014, <https://www.rfc-

editor.org/info/rfc7231>.

Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,

Ed., "Hypertext Transfer Protocol (HTTP/1.1): Caching",

RFC 7234, DOI 10.17487/RFC7234, June 2014, <https://

www.rfc-editor.org/info/rfc7234>.

Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext

Transfer Protocol Version 2 (HTTP/2)", RFC 7540, DOI

10.17487/RFC7540, May 2015, <https://www.rfc-editor.org/

info/rfc7540>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

7.2. Informative References

Panicker, S., "Device Memory", n.d., <https://

w3c.github.io/device-memory/>.

Acknowledgments

This document has benefited from contributions and suggestions from

Ilya Grigorik, Nick Harper, Matt Menke, Aaron Tagliaboschi, Victor

Vasiliev, Yoav Weiss, and others.

Author's Address

David Benjamin

Google LLC

Email: davidben@google.com

¶

https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc6454
https://www.rfc-editor.org/info/rfc6454
https://www.rfc-editor.org/info/rfc7231
https://www.rfc-editor.org/info/rfc7231
https://www.rfc-editor.org/info/rfc7234
https://www.rfc-editor.org/info/rfc7234
https://www.rfc-editor.org/info/rfc7540
https://www.rfc-editor.org/info/rfc7540
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8446
https://w3c.github.io/device-memory/
https://w3c.github.io/device-memory/
mailto:davidben@google.com

	Client Hint Reliability
	Abstract
	Discussion Venues
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions and Definitions
	3. The Critical-CH Response Header Field
	3.1. Example

	4. The ACCEPT_CH Frame
	4.1. HTTP/2 ACCEPT_CH Frame
	4.2. HTTP/3 ACCEPT_CH Frame
	4.3. Processing ACCEPT_CH Frames
	4.4. Interaction with Critical-CH

	5. Security Considerations
	6. IANA Considerations
	7. References
	7.1. Normative References
	7.2. Informative References

	Acknowledgments
	Author's Address

